
Under review as a conference paper at ICLR 2020

FR-GAN: FAIR AND ROBUST TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of fair and robust model training in the presence of data
poisoning. Ensuring fairness usually involves a tradeoff against accuracy, so if the
data poisoning is mistakenly viewed as additional bias to be fixed, the accuracy
will be sacrificed even more. We demonstrate that this phenomenon indeed holds
for state-of-the-art model fairness techniques. We then propose FR-GAN, which
holistically performs fair and robust model training using generative adversarial
networks (GANs). We first use a generator that attempts to classify examples as
accurately as possible. In addition, we deploy two discriminators: (1) a fairness
discriminator that predicts the sensitive attribute from classification results and
(2) a robustness discriminator that distinguishes examples and predictions from a
clean validation set. Our framework respects all the prominent fairness measures:
disparate impact, equalized odds, and equal opportunity. Also, FR-GAN opti-
mizes fairness without requiring the knowledge of prior statistics of the sensitive
attributes. In our experiments, FR-GAN shows almost no decrease in fairness
and accuracy in the presence of data poisoning unlike other state-of-the-art fair-
ness methods, which are vulnerable. In addition, FR-GAN can be adjusted using
parameters to maintain reasonable accuracy and fairness even if the validation set
is too small or unavailable.

1 INTRODUCTION

As machine learning becomes widespread in the Software 2.0 era (Karpathy, 2017), there is an ur-
gent need to address the issues of fairness and robustness. For sensitive applications like healthcare,
finance, and self-driving cars, a trained model must not discriminate customers based on sensitive
attributes including age, sex, or religion. In addition, as applications often rely on external data sets
for their training data, the model training must be resilient against noisy or even adversarial data.

Traditionally, model fairness research (Venkatasubramanian, 2019; Chouldechova & Roth, 2018;
Verma & Rubin, 2018) has focused on developing metrics such as disparate impact (Feldman et al.,
2015), equalized odds (Hardt et al., 2016), and equal opportunity (Hardt et al., 2016), which capture
various notions of discrimination. More recently, there has been a surge in unfairness mitigation
techniques (Bellamy et al., 2018), which improve the model fairness by either fixing the training
data, training process, or trained model. Unfairness mitigation usually involves some tradeoff be-
tween the model’s accuracy and fairness. Most recently, generative adversarial networks (GANs)
are being adapted to a fairness setting (Zhang et al., 2018). The architecture of GANs is suitable
because it can be used to compete the training between two objectives: accuracy and fairness.

Robust model training is also important and needs to be concurrently taken into consideration. There
has been a proliferation of algorithms that make model training resilient against noisy and even
adversarial data (Natarajan et al., 2013; Biggio et al., 2011; Frénay & Verleysen, 2014). The latter
scenario may occur when the source of the training data is external, and we cannot control the data
that is being added. For example, any public dataset on the Web may contain intentionally-false
information. Moreover, one must have a robust training algorithm if the data set comes from diverse
users’ inputs that cannot be fully trusted (Konečnỳ et al., 2016). Recently, data poisoning attacks
have become increasingly sophisticated where it is becoming difficult to sanitize the data against all
of them (Koh et al., 2018).

Solving model fairness without addressing data poisoning may lead to a worse tradeoff between
accuracy and fairness. For example, consider a banking system that is giving out loans where there
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are two sensitive groups: men and women. According to disparate impact, the two groups must have
similar ratios of positive predictions. A perfect disparate impact would have a value of 1. Suppose
the clean training data has no bias and a perfect (or high) disparate impact score. Now suppose this
data is poisoned where half of the positive labels of men are flipped to negative labels. If the model
is fitted so as to make more negative predictions on men than women, then disparate impact would
worsen. To address this problem, one may suggest using data sanitization techniques prior to the
model training, but it is challenging to do so without any knowledge of the model. Even though
many data sanitization methods are proposed, there have been newer attacks that can easily evade
such defenses (Koh et al., 2018).

Our main contribution is the development of a new framework called FR-GAN, which trains ac-
curate models that are also fair and robust to poisoning. FR-GAN consists of a generator used for
classification, a discriminator that distinguishes predictions from one sensitive group against oth-
ers, and a second discriminator that distinguishes {examples, predictions} of the training data from
{examples, labels} of a separate and clean validation set. The first discriminator ensures that the
prediction ŷ is independent of the sensitive attribute z. We show that variations of this approach can
be used to maximize any of the following prominent fairness measures: disparate impact, equalized
odds, and equal opportunity. The second discriminator ensures that the model predictions on the
training data are “consistent” with labels on clean data. We theoretically show that FR-GAN opti-
mizes fairness without requiring the knowledge of prior statistics of sensitive attributes. In addition,
the parameters of FR-GAN can be adjusted to maintain reasonable accuracy and fairness even if
the validation set is too small or unavailable. In the following sections, we present the related work,
demonstrate the weaknesses of current fairness methods, and propose FR-GAN.

2 RELATED WORK

Model fairness The notion of discrimination has many definitions and usually comes from certain
social goals that one wants to guarantee. Fairness research has been focused on defining fairness
measures that capture a variety of notions of fairness (Verma & Rubin, 2018) and on identifying
their relationships (Kleinberg et al., 2017). Recently, there has also been a surge of research on
unfairness mitigation techniques (Bellamy et al., 2018). Depending on where a fix occurs, there are
mainly three approaches: (1) pre-processing techniques (Kamiran & Calders, 2011; du Pin Calmon
et al., 2017; Zemel et al., 2013; Feldman et al., 2015) that fix the training data; (2) in-processing
techniques (Zafar et al., 2017; Jiang & Nachum, 2019; Zhang et al., 2018; Kamishima et al., 2012;
Cotter et al., 2019; 2018; Agarwal et al., 2018) that address the issue during model training; and
(3) post-processing techniques (Hardt et al., 2016; Pleiss et al., 2017; Kamiran et al., 2012) that
manipulate predictions while maintaining the model.

Among the three, the in-processing techniques have the advantages that one can work with any data
and that there is more control on model training (Venkatasubramanian, 2019). FAIRNESS CON-
STRAINTS (Zafar et al., 2017) incorporates a regularization term that reflects fairness constraints in
the context of convex margin-based classifiers such as logistic regression and support vector ma-
chines (SVMs). The main hyperparameter is the λ term, which serves to balance the accuracy and
fairness objectives. LABEL BIAS CORRECTION (Jiang & Nachum, 2019) assumes the existence of
true yet possibly biased labels. A reweighting algorithm is proposed with theoretical guarantees that
training on the resulting loss corresponds to training on the true unbiased labels, which yields a fair
model. Here the hyperparameters include the number of training iterations. Finally, ADVERSARIAL
DEBIASING (Zhang et al., 2018) trains a classifier so that an adversary cannot predict the sensi-
tive attributes based on the output of the classifier. Hence, the classifier achieves fairness when its
predictions do not have any correlation with sensitive attributes. This idea of adversarial training is
similar to GANs (Goodfellow et al., 2014). As we demonstrate in Section 3, these techniques are not
tailored for robust training, so are vulnerable to data poisoning attacks. In comparison, FR-GAN
addresses both model fairness and robust training within the same model training process.

Robust training There is a heavy literature on how to make the model training robust against
noisy or even adversarial data (Natarajan et al., 2013; Biggio et al., 2011; Frénay & Verleysen,
2014; Kurakin et al., 2017). A major challenge is that there can be a wide range of data poisoning
attacks that keep on evolving. One defense approach is to sanitize the training data and thus fix the
root cause. A fundamental limitation is that we do not know in general what kind of poisoning will
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Figure 1: The left figure shows a synthetic dataset with a certain poisoning. Examples are divided
into z = 0 (marked with circles) and z = 1 (crosses) as per a sensitive attribute z. The blue points
indicate positive labels while the red points denote negative ones. For data poisoning, we flipped z
values that reduce the model accuracy the most (similar to label flipping (Paudice et al., 2018), but
specialized for fairness). The right figure shows that poisoning significantly worsens the accuracy-
fairness tradeoff (i.e., shifts to the left) of the FAIRNESS CONSTRAINTS method (Zafar et al., 2017).

occur, so a universal defense against all possible attacks does not seem feasible as demonstrated
by Koh et al. (2018). A more recent trend is to develop general defense algorithms for any attack
during model training using meta learning (Veit et al., 2017; Li et al., 2017; Xiao et al., 2015;
Hendrycks et al., 2018). Ren et al. (2018) propose a meta-learning framework that employs a clean
validation set for the purpose of preventing the model training from being influenced by poisoned
data. By using the validation loss as a meta objective, it intends to defend against any poisoning
attack. Our FR-GAN framework is inspired by this approach, but employs a GAN-based model to
support fair and robust training without using meta learning. Another line of research is defending
against adversarial attacks during test time (Biggio et al., 2013; Goodfellow et al., 2015; Wong &
Kolter, 2018). In comparison, our focus is on defending against data poisoning on the training data.

3 VULNERABILITY OF FAIRNESS METHODS

We perform experiments to demonstrate that state-of-the-art fairness methods are indeed vulnerable
even to simple poisoning attacks. We generate a synthetic dataset as shown in Figure 1a (see the
generation details in Section 5.1). There are two non-sensitive attributes a and b, which are reflected
in the x-axis and y-axis, respectively. The examples are further divided into two classes based on
the sensitive attribute z. In order to generate poisoned data, we flip the 10% of the z values in the
training data so that the model accuracy is reduced the most. This approach is similar to the existing
label flipping method (Paudice et al., 2018), except that the z value is being flipped instead of the
label so that the model fairness is also affected. To make a validation set, we randomly select clean
examples that amount to 10% of the entire training data.

We use disparate impact (Feldman et al., 2015) as a fairness measure and evaluate one fairness
method, called FAIRNESS CONSTRAINTS (Zafar et al., 2017). As this method involves a regulariza-
tion factor λ that balances the accuracy and fairness objectives, we can obtain a tradeoff curve by
adjusting its value. Figure 1b shows two accuracy-fairness tradeoff curves obtained with the clean
and poisoned synthetic datasets. Notice that adding data poisoning clearly shifts the curve to the left,
which means both accuracy and fairness decrease. This coincides with our intuition. The poisoning
confuses the model so that there are more biased examples to fix, which in turn makes it overreact
and thus sacrifice more on accuracy. In the supplementary, we show similar trends when the data
is poisoned via label flipping. In Section 5, we will show how data poisoning affects LABEL BIAS
CORRECTION (Jiang & Nachum, 2019) and ADVERSARIAL DEBIASING (Zhang et al., 2018).

4 FR-GAN

We now describe FR-GAN, which is shown in Figure 2. Unlike traditional GANs, the generator is
a classifier that receives an example x ∈ X and returns a prediction ŷ. The other two discriminators
optimize fairness and robustness as we describe in the following sections.
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Figure 2: The architecture of FR-GAN.

4.1 FAIRNESS

We denote by Dtr the training data set. Suppose Dtr has m examples {(x(i), z(i), y(i))}mi=1 where
x(i) contains the non-sensitive attributes, z(i) contains the sensitive attributes, and y(i) is the label.
Both the sensitive attribute and label can be multi-class, i.e., they can have one of multiple values.
For notational simplicity, we assume there is one sensitive attribute, which can be viewed as a
merged result of multiple sensitive attributes with a larger alphabet size. For illustrative purposes,
we focus on disparate impact, leaving in the supplementary our formulation for equalized odds and
equal opportunity.

The first discriminator in FR-GAN distinguishes predictions w.r.t. one sensitive group from those
in the others. Disparate impact intends the sensitive attribute to be independent of the model’s
prediction, i.e.,

I(Z; Ŷ ) = 0.

We explain how FR-GAN can enforce the above constraint. Let PZ(z) be the distribution of Z
where z ∈ Z and Z is the set of possible sensitive attribute values. Let Ŷ |Z = z ∼ PŶ |z(·) and

Ŷ ∼ PŶ (·). Then PŶ (·) =
∑

z∈Z PZ(z)PŶ |z(·).

We show that mutual information is equivalent to the following expression where the optimal dis-
criminator D?

z(ŷ) =
PŶ ,Z(ŷ,z)

PŶ (ŷ) and
∑

z∈Z D
?
z(ŷ) = 1 ∀ŷ ∈ Y .

Theorem 1. I(Z; Ŷ ) = maxDz(ŷ):
∑

z Dz(ŷ)=1∀ŷ
∑

z∈Z PZ(z)EPŶ |z

[
logDz(Ŷ )

]
+H(Z).

While deferring the detailed proof to the supplemental materials, we provide a brief overview of
the proof. As the optimization problem in the RHS is convex, we find the optimal dicriminator
by solving the KKT conditions. We then show that the maximum value attained by the optimal
discriminator is equal to the mutual information by using the properties of mutual information and
the generalized Jensen-Shannon divergence (Lin, 1991).

What is more involved than showing the above equality is designing a right optimization prob-
lem. One needs to carefully handcraft a plausible optimization problem so that its unique solution
matches the desired quantity. Here, we design the above optimization problem via a ‘guess-&-check’
approach aided by the structural insights across the KL divergences that appear in an alternative ex-
pression of mutual information.

We now discuss how to implement the above expression. Since we do not know PŶ |z(·) exactly, we
compute the following empirical version:

max
Dz(ŷ):

∑
z Dz(ŷ)=1∀ŷ

∑
z∈Z

PZ(z)
∑

i:z(i)=z

1

mz
logDz(ŷ

(i)) +H(Z).

Now for sufficiently large m, the number mz of examples with z(i) = z is approximately the same
as PZ(z)m. Therefore, the above expression becomes:

max
Dz(ŷ):

∑
z Dz(ŷ)=1∀ŷ

∑
z∈Z

∑
i:z(i)=z

1

m
logDz(ŷ

(i)) +H(Z).

Interestingly, this formulation is exactly the same as that in the original GAN (Goodfellow et al.,
2014) when |Z| = 2. We also remark that our formulation does not require a prior knowledge on
PZ(z).
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4.2 ROBUSTNESS

We utilize a clean yet small validation set to ensure robust training. In particular, we add a second
discriminator that distinguishes the training data with predictions {(x(i), z(i), ŷ(i))}mi=1 from the
validation set {(x(i)val, z

(i)
val, y

(i)
val)}

mval
i=1 . Intuitively, if the classifier is confused by data poisoning in

the training data, then its predictions will not be consistent with the labels of the clean data, and
the discriminator would be able to detect that difference. While using a validation set is inspired by
the meta learning approach by Ren et al. (2018), we take an adversarial learning approach. A key
motivation behind this choice is that our GAN approach introduces a knob that controls the emphasis
of robust training. We find that this knob enables FR-GAN to be more robust to the validation set
size. See details in Section 5.1.

Our formulation is as follows. Let V ∼ Bern(β) denote whether an example comes from training
data (V = 1) or from the validation set (V = 0). We then want to ensure that V is independent
of the training data and predictions, i.e., I(V ;X,Z, Ŷ ) = 0, which means the predictions on the
training data are indistinguishable from labels of the validation set. This way we can mimic the
clean data set while expecting an indirect sanitization effect. We optimize this independence using a
formulation similar to that of fairness. Another possible formulation is to use the hard decision value
from D(Ŷ ), say Ẑ, instead of Z. However, this discriminator can only be trained after the fairness
discriminator is trained. Instead, we take an approach that allows us to train the two discriminators
at the same time.

4.3 ARCHITECTURE

Figure 2 illustrates the architecture of FR-GAN. For the loss function in the generator, we employ
the cross entropy loss:

L1 =
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)).

As per Theorem 1, we set the loss function w.r.t. the fairness discriminator as:

L2 = max
D(·)

∑
z∈Z

∑
i:z(i)=z

1

m
logDz(ŷ

(i)) +H(Z)

where D(·) := (D1(·), . . . , D|Z|(·)). The condition
∑

z∈Z D
?
z(Ŷ ) = 1 can be enforced by adding

a softmax layer to the discriminator.

Finally, implementing I(V ;X,Z, Ŷ ) as advised by Theorem 1, we set the loss function w.r.t. the
robustness discriminator as:

L3 = max
Dr(·)

∑
i:v(i)=0

1

m
logDr(x(i), z(i), ŷ(i)) +

∑
i:v(i)=1

1

m
log(1−Dr(x(i), z(i), ŷ(i))) +H(V ).

The final objective function is to minimize the weighted sum of these value functions:

min
G(·)

L1 + λ1L2 + λ2L3.

Here λ1 and λ2 are tuning knobs that play roles to emphasize fair and robust training, respectively.

5 EXPERIMENTS

We provide experimental results for disparate impact, while leaving in the supplementary those for
equalized odds and equal opportunity. More implementation details are also in the supplementary.

5.1 SYNTHETIC DATA RESULTS

For the synthetic data, we generate 2,000 examples with two non-sensitive attributes a and b, a
sensitive attribute z, and a label y, using a method similar to the algorithm proposed by Zafar et al.
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Table 1: Accuracy and fairness performances on the clean and poisoned synthetic datasets w.r.t.
disparate impact. Two types of methods are compared: (1) non-fairness methods: logistic regres-
sion (LR), the meta learning by Ren et al. (2018) (ML), and R-GAN (FR-GAN with λ1 = 0);
(2) fairness-only methods: FAIRNESS CONSTRAINTS (Zafar et al., 2017) (FC), LABEL BIAS COR-
RECTION (Jiang & Nachum, 2019) (LBC), and ADVERSARIAL DEBIASING (Zhang et al., 2018)
(AD). Also “+ LD” denotes loss defense (Koh et al., 2018) (a data sanitization technique that is
applied prior to model training). For FR-GAN, the validation set is 10% of Dtr. For each fairness
or accuracy result of the poisoned data, we make a comparison with the clean data result and show
the percentage increase or decrease.

Type Method Clean data Poisoned data

D. impact Acc. D. impact Acc.

Non-fair
LR 0.409 0.885 0.436 (6.60% ↑) 0.876 (1.02% ↓)
ML 0.429 0.883 0.386 (10.0% ↓) 0.884 (0.11% ↑)
R-GAN 0.414 0.883 0.338 (18.4% ↓) 0.884 (0.11% ↑)

Fair-only

FC 0.822 0.806 0.756 (8.03% ↓) 0.655 (18.7% ↓)
LBC 0.819 0.760 0.816 (0.37% ↓) 0.738 (2.89% ↓)
AD 0.807 0.811 0.711 (11.9% ↓) 0.812 (0.12% ↑)
FC+LD 0.822 0.806 0.763 (7.18% ↓) 0.651 (19.2% ↓)
LBC+LD 0.819 0.760 0.513 (37.4% ↓) 0.859 (13.0% ↑)
AD+LD 0.807 0.811 0.730 (9.54% ↓) 0.818 (0.86% ↑)

Both FR-GAN 0.813 0.809 0.830 (2.09% ↑) 0.808 (0.12% ↓)

(2017). Both z and y are binary and generated uniformly at random. For the four possible (z, y)
combinations, we generate different normal distributions for a and b. Finally for each example, the
a and b values are sampled as per the normal distribution associated with the (z, y) pair. For data
poisoning, we flip the z values of examples so as to lower the model’s accuracy the most as described
in Section 3.

To make a fair comparison in the context of robust training, we also improve the existing fairness
methods with data sanitization and compare them with FR-GAN. There are several sanitization
techniques surveyed in Koh et al. (2018), and we choose the loss defense method. Here examples that
are not well fit by the model and result in a high loss are considered poisoned and are subsequently
discarded. Loss defense is the only method that utilizes the trained model and thus has the best
chance of defending poisoning attacks.

Accuracy and fairness We compare FR-GAN with FAIRNESS CONSTRAINTS (Zafar et al.,
2017), LABEL BIAS CORRECTION (Jiang & Nachum, 2019), ADVERSARIAL DEBIASING (Zhang
et al., 2018), and a plain non-fairness method, logistic regression. We also compare with the meta
learning approach by Ren et al. (2018), which focuses on robust training. For this comparison, we
tailor our framework to a setting where λ1 = 0 (no fairness constraint), and name it R-GAN. For
FR-GAN, we use a validation set that amounts to 10% of Dtr. When setting λ1 and λ2, we usually
fix λ2 to some value and then adjust λ1. For the clean data, we apply proper hyperparameters so that
the disparate impacts are similar (around 0.8) across all distinct methods. We do the same for the
poisoned data. There is no such hyperparameter tuning for logistic regression and the meta learning
by Ren et al. (2018), as the frameworks have no knob for adjusting fairness. We find that this leads
to poor disparate impacts. For the three fairness methods, data poisoning aggravates performances
in accuracy, fairness or both. For example, the disparate impact and accuracy of FAIRNESS CON-
STRAINTS fall by 8.03% and 18.7%, respectively. On the other hand, the performance changes for
FR-GAN are negligible: disparate impact increases by 2.09%, and accuracy decreases by 0.12%.
Table 1 also shows that combining the fairness methods with loss defense (rows 6–8) does not al-
ways yield better accuracy and fairness. In fact, using the loss defense may lower the accuracy or
fairness (e.g., LBC+LD has a disparate impact of 0.513 on poisoned data while LBC has 0.816).
Perhaps this is because the data sanitization sometimes mistakenly discards clean data as well. The
results demonstrate that even a data sanitization technique may not help much. In the supplementary,
we also perform experiments using equalized odds and show that FR-GAN has similar benefits.
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(Val. set size = 0.02%; λ2 = 0.2)
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Figure 3: Accuracy-fairness tradeoff curves.

We observe how accuracy trades off with fairness on clean and poisoned datasets. The results for
FAIRNESS CONSTRAINTS are shown in Figure 1b. For LABEL BIAS CORRECTION, we employ the
number of training iterations as a knob to trade accuracy off fairness. As shown in Figure 3a, the
tradeoff curve shifts to the left, which demonstrates a clear tradeoff degradation. For ADVERSARIAL
DEBIASING, we employ the α parameter (Zhang et al., 2018) analogous to λ1 as a knob to trade
accuracy off fairness. We see in Figure 3b that the tradeoff curve again shifts to the left.

Validation set size Figures 3c to 3e show how the validation set size affects the robustness of FR-
GAN. In particular, we compare the accuracy-fairness tradeoff of FR-GAN on clean data and that on
poisoned data while varying the size of the validation set. When running on poisoned data, we fixed
λ2 = 0.2 and varied λ1. We see that even 2% validation set (Figure 3d) is sufficient to maintain the
accuracy and fairness obtained on the clean data. When using 0.5% (Figure 3e), the validation set
is too small and has an adverse effect on the training. However, our framework includes a tuning
knob λ2, so by decreasing λ2 down to 0.1, we could de-emphasize robust training, thereby avoiding
the adverse effect (Figure 3f). This is in contrast to the meta learning approach, which suffers
from a non-negligible performance degradation for a very small validation set. See details in the
supplementary. The results show that only a holistic framework like FR-GAN can achieve both
excellent model fairness and training robustness. In comparison, other methods tailored for only
one of these objectives lose either accuracy, fairness or both.

Ablation study (Without ‘R’) For a small value of λ2, we observe in Figure 3f that the accuracy-
fairness tradeoff curve shifts to the left, just like other fairness-only methods. To make the compari-
son clearer, we also plot them together in the supplementary. (Without ‘F’) When λ1 = 0, FR-GAN
is expected to behave similarly to the other non-fair algorithms. The performance of FR-GAN with
λ1 = 0, which we dub as R-GAN, is reported in Table 1. One can observe that R-GAN achieves a
poor fairness performance just like the other non-fair algorithms.

5.2 REAL DATA RESULTS

We use the following benchmark datasets: ProPublica COMPAS (Angwin et al., 2016) and Adult
Census (Kohavi, 1996). For sensitive attributes, we use SEX for both datasets. We do not employ
the German Credit data set (Dua & Graff, 2017) as its highly biased towards positive labels. With
such dataset, it is nearly impossible to observe any meaningful tradeoff.

For data poisoning, we use the same method employed on synthetic data: flipping the z values so
as to maximize the accuracy performance degradation. While there may be stronger attacks, this
poisoning attack is effective enough to fool the three fairness methods. In the supplementary, we
also evaluate FR-GAN against label flipping attacks and show similar results. We use the same
constructions for the validation set and poisoning as described in Section 3.
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Table 2: Accuracy and fairness performances on real data for disparate impact. Two types of meth-
ods are compared: (1) non-fairness methods: logistic regression (LR), the meta learning by Ren et al.
(2018) (ML), and R-GAN (FR-GAN with λ1 = 0); (2) fairness-only methods: FAIRNESS CON-
STRAINTS (Zafar et al., 2017) (FC), LABEL BIAS CORRECTION (Jiang & Nachum, 2019) (LBC),
and ADVERSARIAL DEBIASING (Zhang et al., 2018) (AD). Also “+ LD” denotes loss defense (Koh
et al., 2018) (a data sanitization technique that is applied prior to model training). For FR-GAN, the
validation set is 10% of Dtr. For each fairness or accuracy result of the poisoned data, we compare
with the clean data result and show the percentage increase or decrease.

Dataset Type Method Clean data Poisoned data

D. impact Acc. D. impact Acc.

Non-fair
LR 0.465 0.674 0.431 (7.31% ↓) 0.667 (1.04% ↓)
ML 0.493 0.680 0.164 (66.7% ↓) 0.661 (2.79% ↓)
R-GAN 0.574 0.683 0.393 (31.5% ↓) 0.650 (4.83% ↓)

COMPAS Fair-only

FC 0.777 0.682 0.790 (1.67% ↑) 0.671 (1.61% ↓)
LBC 0.866 0.671 0.807 (6.81% ↓) 0.615 (8.35% ↓)
AD 0.846 0.680 0.822 (2.84% ↓) 0.655 (3.68% ↓)
FC + LD 0.777 0.682 0.790 (1.67% ↑) 0.668 (2.05% ↓)
LBC + LD 0.866 0.671 0.822 (5.08% ↓) 0.628 (6.41% ↓)
AD + LD 0.846 0.680 0.836 (1.18% ↓) 0.620 (8.82% ↓)

Both FR-GAN 0.936 0.667 0.947 (1.18% ↑) 0.660 (1.05% ↓)

Non-fair
LR 0.328 0.847 0.230 (29.9% ↓) 0.848 (0.12% ↑)
ML 0.346 0.844 0.215 (37.9% ↓) 0.843 (0.12% ↓)
R-GAN 0.335 0.847 0.285 (14.9% ↓) 0.834 (1.53% ↓)

Adult Fair-only

FC 0.825 0.826 0.816 (1.09% ↓) 0.828 (0.24% ↑)
LBC 0.825 0.825 0.825 (0.00% -) 0.795 (3.64% ↓)
AD 0.850 0.767 0.679 (20.1% ↓) 0.754 (1.69% ↓)
FC + LD 0.825 0.826 0.798 (3.27% ↓) 0.807 (2.30% ↓)
LBC + LD 0.825 0.825 0.815 (1.21% ↓) 0.811 (1.70% ↓)
AD + LD 0.850 0.767 0.625 (26.5% ↓) 0.769 (0.26% ↑)

Both FR-GAN 0.870 0.819 0.864 (0.69% ↓) 0.800 (2.32% ↓)

Accuracy and fairness See Table 2. As in Table 1, we apply proper hyperparameters so that
disparate impacts are similar across all distinct methods, both for the clean and poisoned datasets.
The results are similar to Table 1: logistic regression and meta learning exhibit poor disparate im-
pacts; the three fairness methods have worse disparate impact and accuracy due to data poisoning;
and FR-GAN again shows little degradation both in fairness and accuracy. Table 2 also shows that
combining the fairness methods with loss defense (rows 6–8 and 15–17) does not always yield better
accuracy and fairness and may even lower them, which is consistent to the results on synthetic data.

6 CONCLUSION

We proposed FR-GAN, which is a holistic framework that enables both unfairness mitigation and
robust training. Our key contribution is proposing a novel GAN architecture that enjoys the syner-
gistic effect of combining two approaches: (1) employing a fairness discriminator that distinguishes
predictions w.r.t. one sensitive group from others and (2) employing a robust discriminator that dis-
tinguishes training data with predictions from a clean yet small validation set. We showed that
existing fairness methods are vulnerable to data poisoning, even when combined with data sanitiza-
tion techniques. In comparison, FR-GAN is robust to the poisoning and can be adjusted to maintain
reasonable accuracy and fairness even if the validation set is too small or unavailable. We showed
that FR-GAN is guaranteed to maximize fairness and supports all the prominent fairness measures:
disparate impact, equalized odds, and equal opportunity.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and Hanna M. Wallach. A
reductions approach to fair classification. In ICML, pp. 60–69, 2018.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software used across the
country to predict future criminals. And its biased against blacks., 2016.

Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Na-
gar, Karthikeyan Natesan Ramamurthy, John T. Richards, Diptikalyan Saha, Prasanna Sattigeri,
Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI fairness 360: An extensible toolkit
for detecting, understanding, and mitigating unwanted algorithmic bias. CoRR, abs/1810.01943,
2018.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial label
noise. In ACML, pp. 97–112, 2011.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In ECML
PKDD, pp. 387–402, 2013.

Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning. CoRR,
abs/1810.08810, 2018.

Andrew Cotter, Maya R. Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang,
Blake E. Woodworth, and Seungil You. Training well-generalizing classifiers for fairness metrics
and other data-dependent constraints. CoRR, abs/1807.00028, 2018.

Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. Two-player games for efficient non-convex
constrained optimization. In ALT, pp. 300–332, 2019.

Flávio du Pin Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R. Varshney. Optimized pre-processing for discrimination prevention. In NeurIPS, pp.
3995–4004, 2017.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In KDD, pp. 259–268, 2015.

Benoı̂t Frénay and Michel Verleysen. Classification in the presence of label noise: A survey. IEEE
Trans. Neural Netw. Learning Syst., 25(5):845–869, 2014.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, pp. 2672–2680,
2014.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
NeurIPS, pp. 3315–3323, 2016.

Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using trusted data to train
deep networks on labels corrupted by severe noise. In NeurIPS, pp. 10477–10486, 2018.

Heinrich Jiang and Ofir Nachum. Identifying and correcting label bias in machine learning. CoRR,
abs/1901.04966, 2019.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrim-
ination. Knowl. Inf. Syst., 33(1):1–33, 2011.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware
classification. In ICDM, pp. 924–929, 2012.

9



Under review as a conference paper at ICLR 2020

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier
with prejudice remover regularizer. In ECML PKDD, pp. 35–50, 2012.

Andrej Karpathy. Software 2.0. https://medium.com/@karpathy/
software-2-0-a64152b37c35, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. In ITCS, pp. 43:1–43:23, 2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. CoRR, abs/1811.00741, 2018.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In KDD,
pp. 202–207, 1996.
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A APPENDIX

A.1 PROOF FOR THEOREM 1

Before we present the proof of the main theorem, we first recall our notation. Let PZ(z) be the
distribution of Z where z ∈ Z and Z is the set of possible sensitive attribute values. Let Ŷ |Z =

z ∼ PŶ |z(·) and Ŷ ∼ PŶ (·). Then PŶ (·) =
∑

z∈Z PZ(z)PŶ |z(·). Also, let Y ∼ PY (·).

For convenience, let us repeat the statement of Theorem 1 here:

I(Z; Ŷ ) = max
Dz(ŷ):

∑
z Dz(ŷ)=1,∀ŷ

∑
z∈Z

PZ(z)EPŶ |z

[
logDz(Ŷ )

]
+H(Z).

We now prove the theorem.

Proof. Denote byD the collection of Dz(ŷ) for all possible values of z and ŷ, and by ν the collec-
tion of νŷ for all values of ŷ. We can construct the Lagrangian function as follows:

L(D,ν) =
∑
z∈Z

PZ(z)EPŶ |z

[
logDz(Ŷ )

]
+H(Z) +

∑
ŷ∈Y

νŷ

(
1−

∑
z∈Z

Dz(ŷ)

)
.

We use the following KKT conditions:

∂L(D,ν)
∂Dz(ŷ)

= PZ(z)
PŶ |z(ŷ)

D?
z(ŷ)

− ν?ŷ = 0, ∀(ŷ, z) ∈ Y × Z,

1−
∑
z∈Z

D?
z(ŷ) = 0, ∀ŷ ∈ Y.

Solving the two equations, we obtain ν?ŷ = PŶ (ŷ) for all ŷ. Thus,

D?
z(ŷ) =

PZ(z)PŶ |z(ŷ)

PŶ (ŷ)
.

Putting this to the above optimization,∑
z∈Z

PZ(z)EPŶ |z

[
log

PZ(z)PŶ |z(Ŷ )

PŶ (Ŷ )

]
+H(Z)

=
∑
z∈Z

PZ(z)EPŶ |z

[
log

PZ(z)PŶ |z(Ŷ )

PŶ (Ŷ )

]
+
∑
z∈Z

PZ(z) log
1

PZ(z)

=
∑
z∈Z

PZ(z)EPŶ |z

[
log

PŶ |z(Ŷ )

PŶ (Ŷ )

]
=
∑
z∈Z

PZ(z)DKL(PŶ |z‖PŶ )

, JSPZ
(PŶ |z1 , . . . , PŶ |z|Z|

) = I(Z; Ŷ ).

Here, the second last equality is due to the definition of the generalized JS divergence, and the last
equality is due to its equivalence to the mutual information (Lin, 1991).

A.2 EXTENSIONS TO OTHER FAIRNESS MEASURES

The following theorem relates the conditional mutual information I(Z; Ŷ |Y ) to the solution of an
optimization problem.
Theorem 2.

I(Z; Ŷ |Y ) = max
Dz|y(ŷ):

∑
z∈Z Dz|y(ŷ)=1;∀ŷ

∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
logDz|y(Ŷ )

]
+H(Z|Y ).
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Recall that this conditional mutual information term can be used to capture equalized odds, which
is another important fairness metric. We also note that the following theorem can be modified in a
straightforward manner so that it can handle I(Z; Ŷ |Y = 1), which can be used to capture equal
opportunity.

We now prove the theorem.

Proof. Denote by D the collection of Dz|y(ŷ) for all possible values of (z, ŷ, and y) and by ν the
collection of νy,ŷ for all values of y and ŷ. We can construct the Lagrangian function as follows:

L(D,ν) =
∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
logDz|y(Ŷ )

]
+H(Z|Y ) +

∑
ŷ∈Y

∑
y∈Y

νy,ŷ

(
1−

∑
z∈Z

Dz|y(ŷ)

)
.

We use the following KKT conditions:

∂L(D,ν)
∂Dz|y(ŷ)

= PY,Z(y, z)
PŶ |y,z(ŷ)

D?
z|y(ŷ)

− νy,ŷ = 0, ∀(ŷ, y, z) ∈ Y × Y × Z

1−
∑
z∈Z

D?
z|y(ŷ) = 0, ∀(ŷ, y) ∈ Y × Y.

Solving the two equations, we obtain ν?y,ŷ = PY,Ŷ (y, ŷ) for all (y, ŷ) ∈ Y × Y . Thus,

D?
z|y(ŷ) =

PZ|y(z)PŶ |y,z(ŷ)

PŶ |y(ŷ)
,∀y, ŷ ∈ Y × Y.

Putting this to the above optimization,∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
log

PZ|y(z)PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]
+H(Z|Y )

=
∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
log

PZ|y(z)PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]
+
∑
y∈Y

∑
z∈Z

PY,Z(y, z) log
1

PZ|y(z)

=
∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
log

PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]

=
∑
y∈Y

∑
z∈Z

PY (y)PZ|y(z)EPŶ |y,z

[
log

PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]

=
∑
y∈Y

PY (y)
∑
z∈Z

PZ|y(z)EPŶ |y,z

[
log

PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]
=
∑
y∈Y

PY (y)
∑
z∈Z

PZ|y(z)DKL(PŶ |y,z‖PŶ |y)

,
∑
y∈Y

PY (y) · JSPZ|y (PŶ |z1,y, . . . , PŶ |z|Z|,y
)

=
∑
y∈Y

PY (y)I(Z; Ŷ |Y = y) = I(Z; Ŷ |Y ).

The third last equality is due to the definition of the generalized JS divergence; the second last
equality is due to its equivalence to the mutual information (Lin, 1991); and the last equality is due
to the definition of conditional mutual information.

We now discuss how to actually compute the mutual information. We compute the following empir-
ical version using the example {(x(i), z(i), y(i))}mi=1.

max
Dz|y(ŷ):

∑
z∈Z Dz|y(ŷ)=1;∀ŷ

∑
y∈Y

∑
z∈Z

PY,Z(y, z)
∑

i:(y(i),z(i))=(y,z)

1

my,z
logDz|y(ŷ

(i)) +H(Z|Y ).
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Figure 4: The architecture of FR-GAN for equalized odds.
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(c) ADVERSARIAL DEBIASING
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(d) FR-GAN (Val. set size = 10%; λ2 = 0.15)

Figure 5: Accuracy-fairness tradeoff curves for poisoned synthetic data with label flipping (7%).

Now for a sufficiently large value of m, my,z ≈ PY,Z(y, z)m. Therefore, the above expression is
approximated as:

max
Dz|y(ŷ):

∑
z∈Z Dz|y(ŷ)=1;∀ŷ

∑
y∈Y

∑
z∈Z

∑
i:(y(i),z(i))=(y,z)

1

m
logDz|y(ŷ

(i)) +H(Z|Y ).

Hence, we can set L2 (i.e., the loss w.r.t. the fairness discriminator) to the above expression. The
rest of the objective function is the same. Figure 4 shows the resulting FR-GAN architecture.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 SYNTHETIC DATA

We continue our experiments from Sections 3 and 5.1.

Label flipping for data poisoning Figure 5a to 5d show the experimental results when the data
is poisoned via label flipping. We used the same synthetic data, as illustrated in Figure 1a, and
flipped 7% of labels from the clean data to make a poisoned data. Figures 5a, 5b, and 5c show the
accuracy-fairness tradeoff curves of FAIRNESS CONSTRAINTS, LABEL BIAS CORRECTION, and
ADVERSARIAL DEBIASING, respectively. While the tradeoff curves in Figure 5a to 5c considerably
shift to the left, Figure 5d shows that FR-GAN is noticeably robust against label flipping.
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Table 3: Accuracy and fairness performances of the meta learning method by Ren et al. (2018) on the
clean and poisoned synthetic datasets for different validation set sizes. We used the same z-flipping
poisoning attack described in Section 3.

Data Validation set size Disparate impact Accuracy

Clean Data 10% 0.429 0.883

Poisoned Data

10% 0.386 0.884
5% 0.401 0.886
1% 0.297 0.845
0.5% 0.269 0.829
0.1% 0.348 0.585
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Figure 6: Comparison between ADVERSARIAL DEBIASING (AD) and FR-GAN with small valida-
tion set (0.5%) on synthetic data.

Meta learning with different validation set sizes Table 3 shows the accuracy and fairness results
for the meta learning method by Ren et al. (2018) (ML) for different validation set sizes. We observe
a drastic decrease of accuracy when the validation set size is 0.1% of the training data.

Ablation study for fairness Figure 6 shows the accuracy-fairness tradeoff curves for ADVER-
SARIAL DEBIASING and FR-GAN on the synthetic dataset. ADVERSARIAL DEBIASING tradeoff
curves are from Figure 3b, and the FR-GAN curve comes from Figure 3f. We observe in Figure
6 that the accuracy-fairness tradeoff of FR-GAN using a small value of λ2 on the poisoned data is
similar to the results of fairness-only methods.

A.3.2 REAL DATA

We continue our experiments from Section 5.2.

Label flipping for data poisoning Table 4 uses the same experimental setting as in Table 2, except
that data poisoning is label flipping (not w.r.t. sensitive attributes). We observe similar trends as
in Table 2. For the non-fairness methods, the fairness results are significantly worse than other
methods. For the fairness-only methods, both fairness and accuracy tend to be high on the clean
data, but at least one of them decreases significantly on the poisoned data. On the other hand,
FR-GAN yields high fairness and accuracy on the clean data and is also the most resilient against
poisoned data. The results emphasize our holistic technique that takes both fairness and accuracy
into consideration.

A.3.3 FR-GAN USING OTHER FAIRNESS MEASURES

As we showed in Appendix A.2, FR-GAN respects equalized odds and equal opportunity. Table
5 shows the experimental results on the synthetic and real datasets for equalized odds. We see that
FR-GAN significantly improves equalized odds with reasonable accuracy. The results w.r.t. equal
opportunity are similar and thus not shown here.
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Table 4: Accuracy and fairness performances on real data for disparate impact where the data is
poisoned using a label flipping attack (Paudice et al., 2018). Two types of methods are compared:
(1) non-fairness methods: logistic regression (LR), the meta learning by Ren et al. (2018) (ML),
and R-GAN (FR-GAN with λ1 = 0); (2) fairness-only methods: FAIRNESS CONSTRAINTS (Zafar
et al., 2017) (FC), LABEL BIAS CORRECTION (Jiang & Nachum, 2019) (LBC), and ADVERSARIAL
DEBIASING (Zhang et al., 2018) (AD). Also “+ LD” denotes loss defense (Koh et al., 2018) (a data
sanitization technique that is applied prior to model training). For FR-GAN, the validation set is
10% of Dtr. For each fairness or accuracy result of the poisoned data, we make a comparison with
the clean data result and show the percentage increase or decrease.

Dataset Type Method Clean data Poisoned data

D. impact Acc. D. impact Acc.

Non-fair
LR 0.465 0.674 0.856 (84.1% ↑) 0.487 (27.7% ↓)
ML 0.493 0.680 0.608 (23.3% ↑) 0.629 (7.50% ↓)
R-GAN 0.574 0.683 0.919 (60.1% ↑) 0.621 (9.08% ↓)

COMPAS Fair-only

FC 0.777 0.682 0.931 (19.8% ↑) 0.490 (28.2% ↓)
LBC 0.866 0.671 0.945 (9.12% ↑) 0.488 (27.3% ↓)
AD 0.846 0.680 0.941 (11.2% ↑) 0.615 (9.56% ↓)
FC + LD 0.777 0.682 0.820 (5.53% ↑) 0.544 (20.2% ↓)
LBC + LD 0.866 0.671 0.928 (7.16% ↑) 0.550 (18.0% ↓)
AD + LD 0.846 0.680 0.822 (2.84% ↓) 0.614 (9.71% ↓)

Both FR-GAN 0.936 0.667 0.964 (2.99% ↑) 0.621 (6.90% ↓)

Non-fair
LR 0.328 0.847 0.316 (3.66% ↓) 0.824 (2.72% ↓)
ML 0.346 0.844 0.413 (19.4% ↑) 0.826 (2.13% ↓)
R-GAN 0.335 0.847 0.342 (2.09% ↑) 0.833 (2.13% ↓)

Adult Fair-only

FC 0.825 0.826 0.814 (1.33% ↓) 0.802 (2.91% ↓)
LBC 0.825 0.825 0.734 (11.0% ↓) 0.819 (0.73% ↓)
AD 0.850 0.767 0.652 (23.3% ↓) 0.749 (2.35% ↓)
FC + LD 0.825 0.826 0.762 (7.64% ↓) 0.831 (0.61% ↑)
LBC + LD 0.825 0.825 0.720 (12.7% ↓) 0.827 (0.24% ↑)
AD + LD 0.850 0.767 0.761 (10.5% ↓) 0.803 (4.69% ↑)

Both FR-GAN 0.870 0.819 0.859 (1.26% ↓) 0.789 (3.66% ↓)

Table 5: Accuracy and fairness performances on synthetic and real datasets w.r.t. equalized odds.
Two algorithms are compared: (1) logistic regression (LR, non-fairness method) and (2) FR-GAN.

Dataset Method Equalized odds Accuracy

Y = 0 Y = 1

Synthetic Data LR 0.351 0.804 0.885
FR-GAN 0.888 0.936 0.865

Compas LR 0.427 0.557 0.674
FR-GAN 0.718 0.959 0.628

AdultCensus LR 0.286 0.909 0.848
FR-GAN 0.503 0.917 0.842

A.4 TRAINING METHODOLOGY

We implement all algorithms in PyTorch (Paszke et al., 2017), and all experiments are performed on
a server with Intel i7-6850 CPUs.

The generator G is a neural network with zero or one hidden layer. The discriminator Df is a single
layer neural network, and the discriminator Dr is a neural network with one hidden layer. We set an
Adam optimizer (Kingma & Ba, 2014) for the generator, and a stochastic gradient descent (SGD)
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optimizer for each discriminator. We empirically observe that one can stabilize the training proce-
dure by freezing the parameters of the fairness discriminator Df for the initial phase of training.
Thus, we choose to freeze the parameters of the fairness discriminator Df for the first few epochs
until the generator achieves a certain accuracy. We use the generator/discriminator update ratio of
1:1 for the first 300 epochs and use the update ratio of 1:3 (or 1:5) for the rest of training.

Also, we use the following details for choosing the values of λ1 and λ2. For clean data, we set λ2
as a small value (e.g., 0.01) and vary λ1 from 0 to 0.95. For poisoned data, we set λ2 as 0.2, 0.3,
or 0.4, and vary λ1 from 0 to 0.95 − λ2. Given the values of λ1 and λ2, we also normalize L1 (the
generator loss) by multiplying it with (1− λ1 − λ2).
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