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ABSTRACT

This paper handles a challenging problem, unseen attribute-object pair recogni-
tion, which asks a model to simultaneously recognize the attribute type and the
object type of a given image while this attribute-object pair is not included in the
training set. In the past years, the conventional classifier-based methods, which
recognize unseen attribute-object pairs by composing separately-trained attribute
classifiers and object classifiers, are strongly frustrated. Different from conven-
tional methods, we propose a generative model with a visual pathway and a lin-
guistic pathway. In each pathway, the attractor network is involved to learn the
intrinsic feature representation to explore the inner relationship between the at-
tribute and the object. With the learned features in both pathways, the unseen
attribute-object pair is recognized by finding out the pair whose linguistic feature
closely matches the visual feature of the given image. On two public dataset-
s, our model achieves impressive experiment results, notably outperforming the
state-of-the-art methods.

1 INTRODUCTION

Inferring the unknown from the known signals the advanced intelligence. This paper targets to teach
the machine to recognize unseen attribute-object pairs based on seen attribute-object pairs. For
example, teach the machine to recognize the “sliced apple” (unseen pairs) after letting the machine
observe the samples of “green apple” and “sliced tomato” (seen pairs), as shown in Fig. 1 (upper).
This problem is termed as unseen attribute-object pair recognition.

Unseen attribute-object pair recognition is a meaningful and challenging problem. Deep neural net-
work techniques (Krizhevsky et al., 2012; Lecun et al., 2015; Simonyan & Zisserman, 2015; He
et al., 2015), especially supervised learning techniques, have achieved impressive successes on var-
ious tasks. However, due to the large number of possible attribute-object pairs, supervised learning
methods, asking for massive data annotations for each attribute-object pair, will confront the com-
position explosion disaster. Therefore, it is meaningful to recognize unseen attribute-object pairs
based on seen pairs. The main challenge of the unseen attribute-object pair recognition is that the
testing attribute-object pairs are not included in the training set. The abstractness of attributes further
increases the challenge. Another challenge results from the similarity between some attributes such
as “huge” and “big”.

To recognize unseen attribute-object pairs, conventional methods (Chen & Grauman, 2014; Misra
et al., 2017) typically learn attribute classifiers and object classifiers at the first, and then recognize
unseen pairs by composing these separately-trained classifiers, which ignore the inner relationship
between attributes and objects. The conventional classifier-based methods also ignore the abstract-
ness of attributes. It is the fact that objects can be accurately classified since the same type of objects
share similar appearance. As shown in Fig. 1 (middle), different cars present similar characteristic.
However, the attribute is abstract, and the same type of attribute varies significantly when describing
different types of objects. For example, as shown in Fig. 1 (lower), the visual characteristics of the
attribute “beautiful” are notably different from each other when describing a sunset, an aurora, or a
mountain. Due to the abstractness of attributes, the classifier-based methods achieve lower perfor-
mance on attribute recognition than that on the object recognition, which further leads to the low
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Figure 1: Problem definition and analysis.

accuracy of attribute-object pair recognition. In addition, though an image conveys rich informa-
tion in internal structure, the conventional classifier-based methods are designed to learn a feature
representation to simply infer a label, and any information not required to infer the label is omitted.
Unseen attribute-object pair recognition is a high-level and complex vision problem relying on the
deep and comprehensive understanding of an image, which asks a model to learn an intrinsic feature
representation conveying the rich information of an image.

Based on the above observations, we propose a dual pathway generative model. The dual pathways
are the visual pathway and the linguistic pathway, respectively. In each pathway, taking the initial
feature representation as the input, we employ the attractor networks to iteratively learn the intrinsic
feature representation. We design several loss functions to optimize the model. Given the optimized
model and all possible attribute-object pairs, the recognition is realized using a voting inference
method. In the experiments, we compare our model with several state-of-the-art models on two
challenging public datasets. Experiment results demonstrate that our model outperforms the state-
of-the-art models by large margins.

The contributions of this paper are as follows: (1) We for the first time introduce the attractor net-
works to recognize unseen attribute-object pairs; (2) Our method exhibits much better performance
than conventional methods and state-of-the-art methods on two challenging public datasets.

2 RELATED WORK

Unseen Attribute-Object Pair Recognition The intuitive idea to recognize unseen attribute-
object pairs is combining attribute classifiers and object classifiers (Chen & Grauman, 2014; Misra
et al., 2017). However, these classifier-based methods separately process the attribute and the object,
ignoring the inner relation between the attribute and the object. As a result, these methods do not
achieve satisfied performance and heavily suffer from the “domain shift” problem (Fu et al., 2015)
- the distribution of the testing data is different from that of the training data. To overcome the
“domain shift” problem, Nagarajan & Grauman (2018) creatively proposes to model an attribute as
an operator and an attribute-object pair as an object vector that is “operated” by the operator, and
the model presents competitive results. Recently, Nan et al. (2019) introduces a generative model
with the encoder-decoder mechanism and obtains state-of-the-art results. Motivated by these works,
we propose a generative model with attractor networks and vision-language fusion mechanism to
recognize unseen attribute-object pairs.

Semantic Attractor Network The attractor network is a recurrent neural network, which is origi-
nally proposed as a memory model to represent a concept (Hinton & Shallice, 1991; Herrmann et al.,
1993). The model implies that a concept in the semantic memory is represented by a set of nodes
that are mutually connected according to their semantic relatedness (Lerner et al., 2010). Given the
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initial nodes to represent a concept, the value of each node evolves over time to reach a stable state,
which is called an attractor (Plaut & Shallice, 1993; Masson, 1995; Cree et al., 1999). A set of states
surrounding an attractor is termed as the basin of attraction (Zemel & Mozer, 2001; ichi Asakawa,
2013). The basin of attraction plays a key role in the evolution of an attractor network, and the states
surrounding an attractor represent similar concepts.

For unseen attribute-object pair recognition, a model is required to learn an intrinsic representation
of the given image. The attractor network is able to recurrently learn a set of mutually connected
nodes to represent the input image, and this representation is stable and intrinsic. In addition, the
basin of attraction allows the model to associate similar unseen attribute-object pairs with the seen
pairs, which is significant for unseen attribute-object pair recognition. Therefore, we involve attrac-
tor networks in our model to further improve the stability and generalization of the initial feature
representations in both visual pathway and linguistic pathway.

Zero Shot Learning The supervised learning is one of the most important techniques in artificial
intelligence, presenting striking advantages on a series of tasks in object detection (Sermanet et al.,
2013), machine translation (Bahdanau et al., 2014) and speech recognition (Graves et al., 2013).
However, the supervised learning heavily relies on massive data annotations. The large scale data
annotation is time-consuming, and some data are difficult to annotate. Therefore, zero shot learning
(ZSL) gradually draws researchers’ interest (Larochelle et al., 2008; Palatucci et al., 2009). ZSL
aims to recognize unseen objects (i.e., object types in the testing set are not included in the training
set). To recognize unseen objects, early works including Lampert et al. (2009; 2014) typically learn a
projection from the input visual space to a semantic space where the attribute descriptions of unseen
objects are known. Then, given an image, the model extracts visual feature in the visual space and
projects it into the semantic space to obtain the attribute prediction. The recognition is realized by
finding the unseen object whose attribute description is closest with the attribute prediction. For
these methods, attribute classifiers are trained separately and the relation between attributes are
ignored. In order to mitigate this issue, some works seek to embed the visual features and the
attribute descriptions into a common latent space (Ba et al., 2015; Wang et al., 2019). However, the
input visual space and the latent space have their own manifold structure, which usually leads to
significant variation in recognition performance. Therefore, Li et al. (2017) proposes an alternate
optimization mechanism to make the latent space consistent with the input space. However, the
above methods lack either the ability to learn the bi-directional mappings between the visual space
and the semantic/latent space or a flexible metric to evaluate the similarity between different kinds of
features, thus Huang et al. (2018) leverages the Generative Adversarial Network (GAN) to generate
various visual features conditioned on class labels and maps each visual feature to its corresponding
semantic feature, then recognizes unseen objects by measuring the similarity between the visual
feature and textual feature.

3 APPROACH

3.1 PROBLEM FORMULATION

For unseen attribute-object pair recognition, the training set (seen pairs) is defined as S =
{xsi , (asi , osi )}

ns
i=1, where xsi is the ith image, and (asi , o

s
i ) ∈ Ls is its corresponding attribute la-

bel and object label. The testing set (unseen pairs) is defined as U = {xuj , (auj , ouj )}
nu
j=1, where xuj is

the jth image, and (auj , o
u
j ) ∈ Lu is its corresponding attribute label and object label. The seen pairs

and unseen pairs are disjoint, i.e., Ls ∩ Lu = ∅. During the testing, we identify the attribute-object
pair label of a given image from all possible pairs {(auj , ouj )}

nu
j=1, where nu is the number of all

possible pairs.

3.2 NETWORK ARCHITECTURE AND DATA TRANSITIONS

The overview of our network architecture is illustrated in Fig. 2. The model consists of the visual
pathway to process the visual data and the linguistic pathway to process the linguistic data. For
the visual pathway, given an input image, a Convolution Neural Network (CNN) is used to extract
the initial visual feature xV , which is further processed by the visual encoding module, obtaining
the visual encoder feature eV . eV serves as the input of an attractor network, which outputs the
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Figure 2: The overview of our network architecture. The network is composed of the visual pathway
and the linguistic pathway. In the visual pathway, an input image is processed by the Convolution
Neural Network (CNN), the visual encoding module and an attractor network, obtaining the visual
attractor featureAV . In the linguistic pathway, the data flows are different for the training procedure
and testing procedure. During the training, the linguistic attribute feature aL and the linguistic
object feature oL that correspond to the input image are firstly extracted, and then processed by
the linguistic encoding module and an attractor network, obtaining the linguistic attractor feature
AL. The loss measuring the similarity between AV and AL as well as other losses are computed to
train the neural network. During the testing, the linguistic attractor features of all possible unseen
attribute-object pairs are computed (for simplicity, only one pair is illustrated in the figure) and
compared with the visual attractor feature of the input image to predict the most likely attribute-
object pair.

visual attractor feature AV . eV also serves as the input of the decoding module, which outputs the
reconstruction visual feature x̂V .

For the linguistic pathway, the attribute word and the object word are embedded as the linguistic
attribute feature aL and the linguistic object feature oL, respectively. aL and oL are processed by
the linguistic encoding module, obtaining the linguistic encoder feature eL. eL serves as the input
of an attractor network, which outputs the linguistic attractor feature AL.

Visual Encoding Module Given the initial visual feature xV , the visual encoder feature eV is
computed as:

eV = fVpair(concat[f
V
a (xV), fVo (xV)]) (1)

where concat represents the concatenation operation, fVa (·), fVo (·), and fVpair(·) are three linear
functions.

Visual Attractor Network As mentioned above, an attractor network consists of a set of mutually-
connected nodes. Given the initial value of all nodes, the attractor network evolves over time to
update the value of each node and finally reaches a stable state. We use the visual encoder feature
eV to initialize all nodes, and follow the same update equations described in the work of Devereux
et al. (2018) to iteratively update their values.

In detail, for a node n, let qn(t) be the input of the node n at time t and an(t) be the activation value
of the node n at time t. an(t) is computed by a sigmoid function σ(·) which takes qn(t) as the input:
an(t) = σ(qn(t)). qn(t) is composed of two parts, the inner input and the external input. The inner
input is the input of the node n at time t− 1, denoted as qn(t− 1). The external input at time t is a
weighted sum of the activation values of other nodes connected to the node n, denoted as pn(t).

The external input pVn (t) of the node n at time t in the visual pathway is defined as:

pVn (t) =
∑
i 6=n

wina
V
i (t− 1) + bn (2)
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where win represents the connection weight from node i to node n, aVi (t− 1) represents activation
value of node i at time t− 1 in the visual pathway, and bn represents the bias of node n.

The input qVn (t) of the node n at time t in the visual pathway is calculated as a linear combination:

qVn (t) = cvp
V
n (t) + (1− cv)qVn (t− 1) (3)

where qVn (t − 1) represents the input of the node n at time t − 1 in the visual pathway, and cv is a
proportion parameter.

The activation value aVn (t) of the node n at time t in the visual pathway is calculated as a sigmoid
function σ(·) of its input qVn (t):

aVn (t) = σ(qVn (t)) (4)

Using QV(0) and AV(0) to represent the initial input and the initial activation value of all nodes
of the attractor network in the visual pathway, we initialize the attractor network’s states by setting
QV(0) = eV ,AV(0) = σ(eV). Once initialized, the attractor network iterates recurrently according
to the update equations defined in Eq. 2, Eq.3 and Eq.4 to the time-tick Tv , and outputs the final
activation value, which is denoted as AV .

Visual Decoding Module For the decoding module, we reconstruct the original visual feature xV
by a linear function:

x̂V = fVde(e
V) (5)

Linguistic Encoding Module Given the linguistic attribute feature aL and the linguistic object
feature oL, the linguistic encoder feature eL is computed as:

eL = fLpair(concat[f
L
a (a

L), fLo (o
L)]) (6)

where concat represents the concatenation operation, fLa (·), fLo (·), and fLpair(·) are three linear
functions.

Linguistic Attractor Network Similar with the visual attractor network, we initialize the linguis-
tic attractor network by setting QL(0) = eL,AL(0) = σ(eL), where QL(0),AL(0) represent the
initial input and the initial activation value of all nodes of the linguistic attractor network. For a node
n, its external input pLn(t) at time t is a weighted sum:

pLn(t) =
∑
i 6=n

wina
L
i (t− 1) + bn (7)

where win represents the connect weight from node i to node n, aLi (t− 1) represents the activation
value of node i at time t− 1, and bn represents the bias of node n.

The input qLn (t) of the node n at time t is calculated as:

qLn (t) = clp
L
n(t) + (1− cl)qLn (t− 1) (8)

where qLn (t− 1) represents the input of node n at time t− 1 and cl is a proportion parameter.

The activation value aLn(t) of the node n at time t is calculated as:

aLn(t) = σ(qLn (t) (9)

Given the initial values of all nodes, the attractor network recurrently iterates according to update
equations defined in Eq. 7, Eq.8 and Eq.9 to the time-tick Tl, and outputs the final activation value,
which is denoted as AL.

3.3 LOSS FUNCTIONS

Attractor Loss Let W be the matrix that represents the connection weights of all nodes in an
attractor network and wij be the connection weight from the node i to the node j. The connection
weight from the node i to the node j is required to be the same with the weight from j to i (i.e.,
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wij = wji). In addition, any node in an attractor network does not connect with itself (i.e., wii = 0).
Therefore, the attractor loss is defined as:

Lat = ||W −WT ||2 + ||diag(W)||2 (10)

where diag(·) is a function to extract the diagonal elements in the matrix W , and || · ||2 is the L2
norm.

Conditional Loss The attractor network recurrently iterates over time, and small differences in
initial conditions may yield notable fluctuation of the output. Hence, we define the conditional loss
Lcd to constrain eV and eL to be close to each other:

Lcd = ||eV − eL||2 (11)

Fusion Loss To fuse the information in the visual pathway and linguistic pathway, we design the
fusion loss to minimize the L2 distance between the visual attractor feature AV and the linguistic
attractor feature AL:

Lfus = ||AV −AL||2 (12)

Decoding Loss Inspired by recent works for unseen attribute-object pair recognition (Nan et al.,
2019) and zero-shot learning (Kodirov et al., 2017), we introduce the decoding loss to minimize the
L2 distance between the initial visual feature xV and the reconstruction visual feature x̂V defined in
Eq. 5:

Lde = ||xV − x̂V ||2 (13)

The motivation of designing the decoding loss is to learn better visual encoder feature eV .

Discriminative Loss For some pairs, either the attribute or the object feature is dominant to
represent the whole pair. Therefore, to preserve the individual property of the attribute and object,
we design the discriminative loss, which is defined as a cross entropy loss:

Ldis = −Y a log(yVa )− Y o log(yVo ) (14)

where Y a denotes the attribute ground truth, yVa denotes the attribute prediction, Y o denotes the
object ground truth, and yVo denotes the object prediction. yVa and yVo are computed as:

yVa = fVs a(f
V
a (xV)) (15)

yVo = fVs o(f
V
o (xV)) (16)

where fVs a(·) and fVs o(·) are two softmax functions, and fVa (·) and fVo (·) are two linear functions.

3.4 LEARNING AND INFERENCE

Let W be all parameters of our proposed model. During the training, we learn the parameters by
minimizing the loss functions:

W ∗ = argmin
W

αLat + ηLfus + γLde + λLdis + βLcd (17)

We use the ADAM algorithm (Kingma & Ba, 2014) to learn the parameters.

During the inference, we propose a voting inference method. For an input image, its visual attractor
feature AV is computed, at the same time, the linguistic attractor features of all nu possible unseen
attribute-object pairs are computed, which are denoted as {ALj }

nu
j=1. By computing the L2 distance

between AV and each ALj , the pair that corresponds to the minimum distance is taken as the initial
attribute-object pair recognition for the input image. For the images belonging to the same pair, we
use the recognitions for all images to vote a pair label to be the final attribute-object pair recognition.

4 EXPERIMENTS

4.1 DATASETS

We evaluate the model on two public challenging datasets, the MIT-States dataset (Isola et al., 2015)
and the UT-Zappos50K dataset (Yu & Grauman, 2014). The MIT-States dataset is composed of
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63,440 images, covering 115 attribute classes, 245 object classes, and 1,962 attribute-object pairs.
Each image is annotated with an attribute-object pair label like “dirty kitchen”. Same with the
setting in previous works (Misra et al., 2017; Nagarajan & Grauman, 2018; Nan et al., 2019), 1262
pairs are used for the training and 700 pairs for the testing. UT-Zappos50K is a fine-grained shoes
dataset including 16 attribute classes and 12 object classes, totally with 50,025 images. Same with
the setting in previous works (Misra et al., 2017; Nagarajan & Grauman, 2018; Nan et al., 2019), 83
pairs are used for the training and 33 pairs for the testing.

4.2 BASELINES AND METRIC

Five baseline methods, including two conventional methods and three state-of-the-art methods, are
compared with our method. We briefly introduce the baselines as follows:

—ANALOG (Chen & Grauman, 2014) is a conventional method that recognizes unseen attribute-
object pairs using a set of seen object-specific attribute classifiers;

—REDWINE (Misra et al., 2017) is a conventional method that recognizes unseen attribute-object
pairs by composing attribute and object classifiers;

—SAE (Kodirov et al., 2017) is a state-of-the-art ZSL method. It firstly projects the input feature
into a semantic space where the auxiliary information of unseen pairs is known, and the recognition
is realized by finding the pair whose auxiliary information is closest with the input feature;

—ATTOPERATOR (Nagarajan & Grauman, 2018) is a state-of-the-art method that predicts unseen
pairs by comparing the visual feature of the given image with all possible attribute-object features
that are modeled as the object vectors transformed by attribute operators;

—GENERATE (Nan et al., 2019) is a state-of-the-art method that predicts unseen pairs by compar-
ing the visual feature of the given image with the linguistic features of all possible pairs in a latent
space.

We use the top-1 accuracy as evaluation metric, which is widely adopted by the state-of-the-art
methods (Nagarajan & Grauman, 2018; Nan et al., 2019).

4.3 IMPLEMENTATION DETAILS

We use the ResNet-18 (He et al., 2015) network pretrained on the ImageNet dataset (Deng et al.,
2009) to extract the 512-dimension visual feature xV . For fair comparison, neither the fine-tuning
operation nor data augmentation is applied to our method and baseline methods. We use the GloVe
model (Pennington et al., 2014) to extract the 300-dimension linguistic attribute feature aL and
linguistic object feature oL. In the visual encoding module and linguistic encoding module, the
attribute feature and object feature are enlarged as 1024-dimension features to improve the repre-
sentation potentiality, which are then concatenated as 2048-dimension features to represent attribute-
object pairs. To relieve the computation burden of attractor networks, eV and eL are transformed as
512-dimension features to serve as the input of attractor networks, which output the 512-dimension
attractor features AV and AL.

Our model is implemented using TensorFlow (Abadi et al., 2016). Every linear function involved
in Eq. 1, Eq. 5, Eq. 6, and Eq. 16 is implemented by one fully connected layer. During the
training, the initial learning rate is 0.002, which decays by 0.95 every epoch. The batch size is
128 using a Nvidia 2080 GPU. Using the grid-search method, we set parameters α, η, γ, λ, β in
Eq.17 to be 1.0, 2.0, 6.0, 3.0, 2.0 for the MIT-States dataset and 1.0, 3.0, 6.0, 1.0, 2.0 for the UT-
Zappos50K dataset. Attractor parameters cv, cl, Tv, Tl are set as 0.1, 0.2, 20, 10 for the MIT-States
dataset and 0.08, 0.16, 25, 15 for the UT-Zappos50K dataset. The training is terminated (80 epochs
on the MIT-States dataset and 120 epochs on the UT-Zappos50K dataset) when the sum of losses
slightly decreases. The weight connections and biases of all nodes in an attractor are randomly
initialized.

4.4 EXPERIMENT DESIGN AND RESULT ANALYSIS

Compare with Baselines The comparative results with baselines are summarized in Tab. 1. We
can observe that our method outperforms the baseline methods by large margins, achieving 114.6%
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Table 1: Top-1 unseen attribute-object recognition accuracies of baseline methods and our method
on the MIT-States dataset and UT-Zappos50k dataset.

Methods MIT-States(%) UT-Zappos(%)
CHANCE 0.14 3.0

ANALOG(Chen & Grauman, 2014) 1.4 18.3
SAE (Kodirov et al., 2017) 14.0 31.0

REDWINE (Misra et al., 2017) 12.5 40.3
OPERATOR (Nagarajan & Grauman, 2018) 14.2 46.2

GENERATE (Nan et al., 2019) 17.8 48.3
our 38.2 73.7

Table 2: Top-1 unseen attribute-object recognition accuracies of the “Base” model and “Base +
Attractor” model on the MIT-States dataset and UT-Zappos50K dataset. “Base” denotes the model
without attractor networks, and “Base + Attractor” denotes the model with attractor networks.

Models MIT-States(%) UT-Zappos(%)
Base 36.1 51.8

Base + Attractor (our) 38.2 73.7

Table 3: Top-1 accuracies of different loss function compositions on the MIT-States dataset and
UT-Zappos50k dataset. “at”, “fus”, “de”, “dis”, and “cd” represent the attractor loss Lat, fusion loss
Lfus, decoding loss Lde, discriminative loss Ldis, and conditional loss Lcd, respectively.

Losses MIT-States(%) UT-Zappos(%)
at+fus (basic loss) 0.14 7.8

+dis 0.20 11.2
+cd 0.21 12.3
+de 35.0 68.0

+dis+cd 0.3 15.1
+dis+de 36.4 68.9
+cd+de 36.8 72.4

+dis+cd+de (our) 38.2 73.7

and 52.6% accuracy improvements over the second best method on the MIT-States dataset and on
the UT-Zappos50K dataset. The reasons are two-fold: 1) the attractor networks recurrently learn
the intrinsic and stable feature representations, allowing the deep understanding of an image; 2) the
encoder-decoder mechanism improves the robustness of feature representations, which is significant
for alleviating the “domain shift” problem.

Attractor Significance This experiment is targeted to validate the effectiveness of attractor net-
works by comparing the recognition accuracies of the base model (without attractor networks) and
our model (with attractor networks). The results are shown in Tab. 2, we can observe that the attrac-
tor network is vital for the accuracy improvements. Our model achieves 5.8% accuracy improve-
ment over the base model on the MIT-States dataset and 42.3% improvement on the UT-Zappos50K
dataset, demonstrating the significance of attractor networks.

Loss Compositions In this experiment, we evaluate the effects of different loss compositions, and
the results are shown in Tab. 3. Since the attractor loss Lat is indispensable for the attractor net-
work and the fusion loss Lfus is indispensable for the vision-language fusion mechanism, the sum
of these two losses (al+fus) is taken as the basic loss. If only the basic loss is used, the accuracy is
only 0.14% on the MIT-States dataset and 7.8% on the UT-Zappos50K dataset. When the discrimi-
native loss (+dis) or conditional loss (+cd) is added to the basic loss, the accuracy slightly improves.
When the decoding loss (+de) is added to the basic loss, our model achieves the striking accuracy
improvements on both datasets, demonstrating that the encoder-decoder mechanism in our model is
effective. We can also observe that the model tends to achieve higher accuracy when adding more
losses, and the model obtains the highest accuracy when all losses are used, which further validates
the effectiveness of the individual loss.
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Table 4: Top-1 accuracies of three parameter sharing settings and our setting on the MIT-States
dataset and UT-Zappos50k dataset. fVa = fVo represents the parameter sharing in the visual en-
coding module, fLa = fLo represents the parameter sharing in the linguistic encoding module, and
AttV = AttL represents the parameter sharing in the visual attractor network and linguistic attractor
network.

Parameter Sharing MIT-States(%) UT-Zappos(%)

fVa = fVo 37.8 60.1
fLa = fLo 36.1 50.6

AttV = AttL 2.4 1.6
no sharing (our) 38.2 73.7
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Figure 3: Samples of unseen attribute-object pair recognition on the MIT-States dataset (left) and
UT-Zappos50k dataset (right).

Parameter Sharing The attribute and object are fundamentally different entities, thus they should
not be equally processed. Motivated by this idea, as illustrated in Fig. 2, we use different projection
functions (fVa and fVo ) to obtain the attribute feature and the object feature in the visual encoding
module, and we also use different projection functions (fLa and fLo ) to process the attribute feature
and the object feature in the linguistic encoding module. In addition, the vision information differs
from the language information in data structure, thus we use two attractor networks to separately
process the visual feature and the linguistic feature. To validate our ideas, three parameter sharing
experiments are conducted: 1) the attribute projection function fVa in the visual encoding module
shares parameter with the object projection function fVo in the visual encoding module (i.e., let
fVa = fVo ), 2) the attribute projection function fLa in the linguistic encoding module shares parameter
with the object projection function fLo in the linguistic encoding module (i.e., let fLa = fLo ) , and
3) the attractor network in the visual pathway AttV shares the same parameter with the attractor
network in the linguistic pathway AttL (i.e., let AttV = AttL). The experiment results are shown
in Tab. 4, and we can observe that our setting corresponds to the highest accuracies on two datasets,
validating our ideas.

Qualitative Result Analysis Fig. 3 shows some samples of recognitions on the MIT-States dataset
(left) and UT-Zappos50k dataset (right). In the figure, the black texts on the top of images represent
the ground truth, the green texts represent true recognitions, and the red texts represent false recogni-
tions. We can observe that our model can correctly recognize some pairs with abstract attributes such
as “tight shirt” and “satin sandal”. However, as shown in the second row, some images are falsely
recognized. One reason for false recognitions is that some attributes or objects present similar visual
features. For example, the “rusty truck” is recognized as “old car” and “barren creek” is recognized
as “barren lake”. Actually, “rusty” and “old” exhibit the similar visual feature and “creek” shares
the similar visual feature with “lake”. Another reason is that one object type may be a subclass of
another object type. For example, “ancient jewelry” is recognized as “thick necklace”. Actually, the
necklace is one kind of jewelry. In addition, one object having multiple attributes may also leads
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to false recognitions. For example, “clean kitchen” is recognized as “huge kitchen”. Actually, the
kitchen indeed is huge and clean.

5 CONCLUSION

This paper studies a challenging and meaningful problem termed as unseen attribute-object pair
recognition. To handle the problem, we propose a vision-language fusion generative model that
involves attractor networks and the encoder-decoder mechanism. The proposed model presents
impressive performance.

Our main conclusions are as follows: 1) Unseen attribute-object pair recognition is a complex prob-
lem that asks a model to learn the intrinsic feature representation and overcome the “domain shift”
problem. 2) The attractor network presents the notable potentiality to learn an intrinsic feature
representation and the encoder-decoder mechanism is significant for alleviating the “domain shift”
problem. 3) During the testing, the voting inference method contributes to the accuracy improve-
ments.

Unseen attribute-object pair recognition is a high-level vision problem, asking a model to be smart
as humans. Therefore, we will further explore this problem using cognition-inspired methods in the
future.
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