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ABSTRACT

Global solutions to high-dimensional sparse estimation problems with a folded
concave penalty (FCP) have been shown to be statistically desirable but are
strongly NP-hard to compute, which implies the non-existence of a pseudo-
polynomial time global optimization schemes in the worst case. This paper shows
that, with high probability, a global solution to the formulation for a FCP-based
high-dimensional generalized linear model coincides with a stationary point char-
acterized by the significant subspace second order necessary conditions (S3ONC).
Since the desired S3ONC solution admits a fully polynomial-time approximation
schemes (FPTAS), we thus have shown the existence of fully polynomial-time
randomized approximation scheme (FPRAS) for a strongly NP-hard problem. We
further demonstrate two versions of the FPRAS for generating the desired S3ONC
solutions. One follows the paradigm of an interior point trust region algorithm and
the other is the well-studied local linear approximation (LLA). Our analysis thus
provides new techniques for global optimization of certain NP-Hard problems and
new insights on the effectiveness of LLA.

1 INTRODUCTION

This paper concerns global optimization of a folded concave penalized learning formulation for
high-dimensional learning generalized linear models, which belong to statistical/machine learning
problems such that the number of dimensions (or number of fitting parameters) p is (much) larger
than the number of samples n. This type of problems have recently become very common in en-
gineering and scientific applications (Fan et al., 2014a; Fan & Li, 2006). Minimal solutions to a
nonconvex learning formulation have been shown effective to guarantee desirable statistical perfor-
mance in order to address high dimensionality (Zhang et al., 2012). Nonetheless, generating a global
solution admits no pseudo polynomial-time algorithm, unless “P = NP”; Indeed, global optimality
is shown strongly NP-hard to achieve by Chen et al. (2017). In contrast to the existing pessimistic
result, we derive herein a fully polynomial-time randomized approximation scheme (FPRAS) that
theoretically ensure global minimality to at high probability.

More specifically, we consider a high-dimensional generalized linear model (GLM) as below. Let
X = (x1, ..., xn)ᵀ be the n × p design matrix with xi = (xi1, ..., xip)

ᵀ, i = 1, ..., n, and Y =
(y1, ..., yn)ᵀ be the n-dimensional response vector. We will assume the design matrix X is fixed,
while the mean of the response is given by E[yi] = ψ′(x>i β

true) for some known link function
ψ : Θ→ <, where Θ ⊆ < and βtrue = (βtrue1 , ..., βtruep ) is the unknown vector of true parameters
of the model. GLMs are an extension of linear regression models, allowing for a flexible approach to
model estimation. The high-dimensional regression problem is to estimate βtrue given knowledge
of X , Y , and ψ in the undesirable scenario where p � n > 0. To that end, traditional statistical
learning schemes often resort to the following formulation:

L(β) =

n∑
i=1

`(yi, xi, β) =
1

n

n∑
i=1

[ψ(xᵀi β)− yixᵀi β]. (1)
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which, according to traditional statistical theories, would result in overfitting in general under the
high-dimensional setting.

To resolve overfitting, modern statistical theories favor a modified formulation as below:

min
β

Q(β) := L(β) +

p∑
j=1

Pλ(|βj |)

 , (2)

where Pλ(| · |) is sparsity-inducing regularization term that penalizes any nonzero dimensions in
the minimizer, and λ > 0 is a tuning parameter. Under the assumption that the true regression
parameter βtrue is sparse, a global optimizer to equation 2 has been shown effective to address over-
fitting for many choices of specific regularization functions Pλ. Indeed, one of the most successful
choice of Pλ is the much studied Lasso-based regularized (Tibshirani, 1996), aka, the `1(-norm)
penalty, which has been demonstrated to entail desirable statistical properties (Bickel et al., 2009;
Negahban et al., 2012). Another admirable property of the Lasso is that, especially when applied to
least squares linear regression, it yields an extremely tractable problem via a variety of algorithms
(Friedman et al., 2008; 2010). However, per Zhao & Yu (2006); Fan & Li (2001), Lasso is not selec-
tion consistent without a strong irrepresentable condition and may sometimes introduce non-trivial
estimation bias.

As a popular alternative to Lasso, the folded concave penalty (FCP) is first introduced by Fan &
Li (2001). There are mainstream examples of FCP functions, including the SCAD by Fan & Li
(2001) and MCP by Zhang et al. (2010). This paper will focus on MCP, defined as Pλ(|t|) =∫ |t|

0
(aλ−s)+

a ds for some fixed parameter a > 0. In contrast to the Lasso, the FCP achieves variable
selection consistency non-contingent on an irrepresentable condition and is demonstrated to be un-
biased (Fan & Li, 2001). Furthermore, Zhang et al. (2012) demonstrated that the global solution the
FCP-regularized formulation leads to desirable recovery of the oracle solution.

Nonetheless, FCP problems are significantly harder to solve than Lasso, the new penalty term moves
the problem outside the realm of convex optimization, Chen et al. (2017) even showed that any
estimation problem with convex loss and folded concave regularization to be strongly NP-hard,
ruling out the possibility of a pseudo-polynomial-time global optimization algorithm. Liu et al.
(2016) were seemingly the first to propose a global approach to the problem called MIPGO which
reformulates the problem into a mixed integer program. Yet, the worst-case complexity of MIPGO
is in exponential time.

Alternatively, recent literature focuses on local algorithms for the FCP-regularized learning prob-
lems. The local quadratic approximation algorithm by Fan & Li (2001) is an example of a ma-
jorization minimization algorithm, an approach which is also related to the local linear approxi-
mation (LLA) algorithm proposed by Zou & Li (2008). LLA was further explored by Fan et al.
(2014b) showing the oracle property can be obtained with high probability despite the local ap-
proach. Mazumder et al. (2011); Fan & Lv (2011) demonstrate coordinate optimization approaches
for FCP while Wang et al. (2014) used an approximate regularization path-following algorithm to
obtain the optimal convergence rate to statistically desirable local solution. Wang et al. (2013) an-
alyzed the CCCP algorithm and showed under certain conditions that it asymptotically finds the
oracle estimator. Liu et al. (2017) took an algorithm agnostic approach by analyzing local solutions
satisfying second order KKT conditions and showed desirable statistical properties like recovering
the oracle solution and sparisty. The above approaches have mainly focused on linear regression, a
special case of GLM where ψ is specifically the identity function. For analyses which encompass
GLM’s with FCP regularizers, Fan & Lv (2011) showed that GLM’s, even in ultra high dimensional
variable selection problems, have oracle properties when using FCP regularization and demonstrated
a coordinate optimization algorithm for finding local solutions. In the area of M-estimators, which
is a further generalization of our estimation method beyond even GLMs, Loh & Wainwright (2013);
Loh et al. (2017a) showed that under certain conditions all local solutions must be within statisti-
cal precision of the true parameter and its support while Loh et al. (2017b) demonstrate a two-step
algorithm involving composite gradient descent to find a local solution.

From the numerous results pertaining local solution schemes above, our research question is why lo-
cal solutions are repetitively successful. In other words, are there certain geometric properties of the
learning formulation equation 2 with FCP that allow all local schemes to perform well independent
of the specific designs of the algorithmic procedures? Our answer to this question is affirmative;
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we show herein that all local solutions within an efficiently achievable sub-level set are actually
globally optimal. Those local solutions are characterized by the significant subspace second-order
necessary conditions (S3ONC) and are provably computable within pseudo-polynomial time. The
S3ONC are weaker conditions than the standard second-order KKT conditions. As per this result, all
S3ONC-guaranteeing algorithms (which include a large spectrum of local algorithms) belong to the
class of FPRAS’s for global optimization of the strongly NP-hard FCP-based learning problem. We
subsequently develop theories for two specific algorithms of this type: one gradient-based method
and the other is the same as the LLA.

It is worth noting that Zhang et al. (2010) provides conditions to establish the uniqueness of lo-
cal solutions to FCP-based learning. When local solutions are unique, then any local optimization
algorithms would ensure global optimality. However, a few critical assumptions are necessary to
achieve the uniqueness result and, furthermore, many report numerical experiments, e.g., those in
Fan et al. (2014b); Liu et al. (2017; 2016); Fan & Li (2001) indicate the non-uniqueness of local so-
lutions, instead. In contrast, our results in this paper imposes only standard assumptions commonly
shared by a flexible set of high-dimensional GLMs and are applicable even if the local solutions are
non-unique. To our knowledge, this is the first geometric proof that global solutions coincides with
pseudo-polynomial-time computable local solutions in an FCP-based regression formulation with
high probability, despite that local solution are not necessarily unique. The resulting algorithms are
the first few FPRAS’s to this problem.

The rest of this paper is organized as follows. Section 2 goes through specific problem assumptions
and explains the S3ONC. Section 3 contains our main result for global optimality and uses it to make
additional claims for LLA. Section 4 contains numerical results to verify our theoretical results.
Section 5 provides concluding remarks.

In this paper we will use ‖·‖0 to denote the number of nonzero entries, | · | to denote the `1-norm
if the argument is a vector or cardinality if the argument is a set, ‖·‖ to denote the `2-norm, ‖·‖max
to denote the maximum norm and ‖·‖min to denote the absolute value of the entry with the smallest
magnitude. (·)+ is used equivalently to max(0, ·). For any vector v, vQ is intended as (vj : j ∈ Q).
For any set Q, we denote the complement as Qc. In particular, let S be the true support set, that
is, S := {j : βtruej 6= 0} and its complement is Sc. We occasionally use the term the “oracle
solution” to refer to the solution βoracle defined as βoracle ∈ arg min

β: βj=0, ∀j /∈S
L(β). The oracle solution

is a hypothetical assumes the prior knowledge on the true support set S and thus can be considered
a theoretical benchmark.

2 SETUPS, PRELIMINARIES, AND ASSUMPTIONS

2.1 SETUPS AND ASSUMPTIONS

Our analysis will focus on GLMs that have a fixed design matrix and satisfy the following assump-
tions:

(A1) Assume that

(i) bu ≥ ψ′′(xᵀi β) ≥ bl > 0 for all xᵀi β ∈ Θ;

(ii) There exists K > 0 such that the design matrix satisfies 1
n ‖Xj‖2 < K for all j ∈ [p].

Let the tuning parameter a in Pλ satisfy K < (bua)−1.

(A2) The vector of residuals W ∈ <n is subgaussian(σ) which means it satisfies that
P [|〈W, v〉| ≥ t] ≤ 2exp(−t2/2σ2), for all v : ‖v‖ = 1 and any t > 0;

(A3) There exists a sequence {rd ≥ 0 : d = 1, 2, ..., p} such that the following are satisfied:
(i) For any d1, d2 : 1 ≤ d1 ≤ d2 ≤ p, we have rd1 ≥ rd2 ;
(ii) There exists some p̃∗ : 2|S| ≤ p̃∗ ≤ p such that rp̃∗ > 0;

(iii) For all d : 1 ≤ d ≤ p, it holds that n−1 ‖Xβ‖2 ≥ rd ‖β‖2 for any β ∈ <p : ‖β‖0 ≤ d.

Remark 1. Part (i) of (A1) states that our link function is both strongly convex and continuously
differentiable; that is, the gradient gradient being Lipschitz continuous. Several distributions found
in traditional GLM problems satisfy this constraint including normal, gamma, Poisson, categorical
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and multinomial distributions, although in some cases the mild assumption on the boundedness of Θ
has to be made additionally. Even though the original domain of the link function can be unbounded,
one may still consider its bounded subset given that it contains the vector of true parameters. Part
(ii) of (A1) can be assumed without loss of generality by normalizing the design matrix columns.

Remark 2. (A2) is a common assumption Negahban et al. (2012) Wang et al. (2013) which applies
to a variety of traditional GLM problems including normal, categorical and multinomial distribu-
tions.

Remark 3. Assumption (A3) can be understood to be a lower bound on the eigenvalues for principal
sub-matrices of XᵀX of dimension d × d for all d ∈ [p]. For every d : d ≤ p̃∗, the lower bounds
are positive, meaning that the smallest eigenvalues of the d× d principal sub-matrices are assumed
positive.

According to Liu et al. (2017), Assumption (A3), for certain parameters, is provably a weaker con-
dition than the restricted eigenvalue (RE) condition, as defined in Definition 1 below and first intro-
duced by Bickel et al. (2009) as a plausible assumption to allow for the desired recovery quality of
Lasso. The RE is a common assumption in the high-dimensional learning literature, such as Zhang
et al. (2014) and Fan et al. (2014b).

Definition 1. (RE condition Zhang et al. (2010)) The matrix X ∈ <n×p is said to satisfy the RE
condition if, for some re > 0, it holds that 1

n ‖Xδ‖
2 ≥ re ‖δ‖2 for all β ∈

⋃
|Ŝ|=s C(Ŝ) where

C(Ŝ) := {δ := (δi) ∈ <p : |δŜc | ≤ 3|δŜ |}, δŜc := (δj : j ∈ Ŝc), and δŜ := (δj : j ∈ Ŝ).
Furthermore, the largest possible re is said to be the restricted eigenvalue constant of X .

Random design matrices generated following subgaussian distributions under some independence
assumptions have been shown to satisfy the RE condition with high probability by Zhou (2009). Thus
(A3) is also satisfied with high probability under the same setting.

2.2 PRELIMINARIES ON S3ONC

Our results focus on the S3ONC solutions, which has been formerly introduced by Liu et al. (2017)
in the special case of high-dimensional linear regression as a relaxation of the standard second-order
KKT conditions. The definition of S3ONC depends on the notion of first order necessary conditions
(FONC) as below.

Definition 2 (FONC). A solution β∗ satisfies the first order necessary conditions (FONC) if

∃D(β∗) ∈ 1/n

n∑
i=1

[ψ′(xᵀi β
∗)− yi]xi +

(
P ′λ(|β∗j |)∂(|β∗j |), 1 ≤ j ≤ p

)
s.t. D(β∗) = 0 (3)

where ∂(| · |) denotes the subdifferential of | · |.
Definition 3 (S3ONC). A solution β∗ satisfies the significant subspace second-order necessary con-
dition (S3ONC) if it satisfies FONC and for all j ∈ {j : β∗j 6= 0},

∂2Q(β)

(∂βj)2

∣∣∣∣
β=β∗

≥ 0 (4)

if the second derivative exists.

Remark 4. The S3ONC can be intuited as the second order necessary condition applied only to the
dimensions where βj 6= 0, i.e., the significant dimensions. Since the S3ONC is weaker than the stan-
dard second-order KKT conditions, any algorithm that guarantees the second-order KKT conditions
can be used to obtain an S3ONC solution, by requiring a more stringent optimality condition, may
be slower than necessary. One specifically S3ONC guaranteeing approach, presented in Liu & Ye
(2019), utilizes an interior point trust region algorithm in order to guarantee an S3ONC solution
in polynomial time. This is the scheme which will be used later in Section 4.
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3 MAIN RESULTS

We now present our theoretical results for global optimization of FCP penalized GLMs. All proofs
can be found in the appendix. We will make use of a short-hand notation:

βLasso ∈ arg minL(β) + λ|β|. (5)

Theorem 1. Suppose assumptions (A1), (A2), and (A3) with any p̃∗ : p̃∗ ≥ 2|S|. Let β∗ be
an arbitrary S3ONC solution to equation 2 with Pλ specified as the MCP. Assume that Q(β∗) ≤
Q(βtrue) + Γ for an arbitrary Γ ≥ 0. (i) Let the sub-optimality gap satisfy Γ < Pλ(aλ) −
σ2

bln

(
p̃∗ + 2

√
p̃∗t+ 2t

)
; (ii) choose Pλ(aλ) > σ2

2nbl
(1 + 2

√
t′ + 2t′) +

σ2

n |S|(1+2
√
t′+2t′)+Γbl

bl(p̃∗−2|S|+1) and
(iii) assume that the minimal signal strength satisfy

∥∥βtrueS
∥∥

min
>

√
8σ2

rp̃b2l n

(
p̃∗ + 2

√
p̃∗t+ 2t

)
+

8

rp̃bl
min

{
λ2

rp̃
|S|, Pλ(aλ)|S|+ Γ

}
then the following two statements hold

(a) β∗ is an oracle solution with probability at least 1− exp(−t+ p̃∗ ln( pep̃∗ ))− exp(−(p̃∗ +

1)(t′ − ln p)) · 1−exp(−(p−p̃∗)(t′−ln p))
1−exp(−t′+ln p) .

(b) β∗ is both an oracle solution and an globally optimal solution to equation 2 with probability
1− 2 exp(−t+ p̃∗ ln( pep̃∗ ))− 2 exp(−(p̃∗ + 1)(t′ − ln p)) · 1−exp(−(p−p̃∗)(t′−ln p))

1−exp(−t′+ln p) .

Remark 5. Theorem 1 (especially in the second statement) is perhaps the first result that establishes
a set of conditions for any S3ONC solution to be globally optimal with high probability. Further,
this result is algorithm independent which allows for greater flexibility compared to most existing
results as in Loh et al. (2017b) and Fan & Lv (2011) which rely on a specific algorithm choice.

Remark 6. The second part follows quite easily from the first due to the uniqueness of βoracle as
well as the fact that βopt must also be an S3ONC solution. Thus by applying the first part of the
Theorem to βopt we are able to show that both our arbitrary β∗ and βopt coincide with the unique
βoracle.

Remark 7. The above constraints on Γ, Pλ(aλ) and ‖βtrueS ‖min may initially seem disparate but
can all be converted to constraints on the sample size n as is shown in Corollary 1 below.

Corollary 1. Assume ln p ≥ 1, bl ≤ 1, and s ≥ 1. Let β∗ be an S3ONC solution to equation 2.
Let assumptions (A1), (A2), and the RE condition as defined in Definition 1 hold. Assume that
Q(β∗) ≤ Q(βLasso) almost surely, where βLasso is the optimal solution to the Lasso problem with

penalty coefficient λLasso = σ
√

lnp
n1−γ/2 where γ ∈ [0, 1] is an arbitrary scalar. Let λ = σ

re

√
ln p
nγ/2

and a ∈ [.8, 1). There exist problem independent constants C1 > 0,C2 > 0 and C2 > 0 such that if

n > max

C1

bl
,

[
C2

s

bl

] 2
1−γ

,

[
C3

sσ2 ln p

‖βtrueS ‖2min b
2
l r

4
e

]2/γ
 (6)

Then β∗ is the global solution to 2 with probability at least 1 − C4 exp(−C5sn
γ/2 ln p) −

C6 exp(−C7bun
γ/2 ln(p)) for problem independent constants C4, C5, C6 and C7

Remark 8. Corollary 1 indicates that for γ > 0, the global optimal solution coincides with com-
putable S3ONC solution with overwhelming probability given that the sample size meets certain
requirements. It should specifically be noted that the relationship between n and p require only
ln p
nγ/2

= O(1), which ensures the applicability to the high-dimensional setting even if n� p.

Remark 9. Liu & Ye (2019) has derived a gradient-based algorithm that provably ensures an
S3ONC solution at pseudo-polynomial-time complexity. When n is properly large, this pseudo-
polynomial-time algorithm enables a straightforward design of an FPRAS for generating the global
optimal solution as follows.
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FPRAS: A pseudo-polynomial-time algorithm that generates global optimal at high probability

Step 1. Initialize the algorithm with βLasso by solving equation 5
Step 2. Invoke the gradient-based algorithm (Algorithm 1 in Liu & Ye (2019)) with initializer

βLasso.

Remark 10. The stipulation thatQ(β∗) ≤ Q(βLasso) can generally be obtained by initializing any
S3ONC guaranteeing algorithm with βLasso in a similar fashion to Fan et al. (2014b) for LLA. The
FPRAS above follows the same initialization scheme.
Remark 11. The above specification of values for a, λ and λLasso can be thought of as examples
rather than strict requirements. A closer examination of the proof for Corollary 1 will reveal that the
values for λ and λLasso can be chosen in a much more flexible fashion, though the corresponding
values of C1 through C7 may be different for different combinations of λ and λLasso.

The techniques used in the proof of Theorem 1 can be used to provide insights into other optimiza-
tion schemes. As an example, we can apply the same analysis to the state-of-the-art FCP-based
algorithm, LLA, using the framework in Fan et al. (2014b) as a starting point.

LLA: local linear approximation.
Step 1. Set k = 0. Initialize the algorithm with β0 = βLasso, where βLasso is generated by solving

equation 5. Let N be the maximal iteration number.
Step 2. For all k = 1, ..., N , solve the following convex program to generate βk+1:

βk+1 ∈ arg minL(β) +
∑
j∈[p]

P ′λ(|βkj |) · |βj |,

where P ′λ is the first derivative of Pλ. Let k := k + 1.

We can show that in fact the LLA is another FPRAS that achieves the global optimal solution. The
proof of this can be found in the appendix.
Corollary 2. For problem equation 2. If ‖βtrueS ‖min > (a + 1)λ, λ >

max{ 3λLassos1/2

blre
,

4σ
√
s+2
√
st1+2t1

bl(an/bu)1/2
,

2σ
√
s+2
√
st2+2t2

bl
√
nre

} and the RE condition in Definition 1
holds, the following holds.

(a) The LLA algorithm initialized with βLasso converges to the oracle solution in two iterations
with probability 1− φ0 − φ1 − φ2, where

φ0 := P (
∥∥βLasso − βtrue∥∥

max
> λ) ≤ 2p exp(−(λLasso)2nbua

8σ2 ),

φ1 := P (
∥∥∥OScp̃`n(βoracle)

∥∥∥
max
≥ λ) ≤ (pes )s exp(−t1) + 2 exp(−λ

2abun
8σ2 ),

φ2 := P (
∥∥βoracleS

∥∥
min
≤ aλ) ≤ (pes )s exp(−t2),

(b) If in addition (A1) and (A2) holds, while the parameters of (a, λ) satisfy that

Pλ(aλ) > σ2

2nbl
(1 + 2

√
t4 + 2t4) +

σ2

n |S|(1+2
√
t4+2t4)bl

bl(p̃∗−2|S|+1) and the and Pλ(aλ) >
σ2

bln

(
p̃∗ + 2

√
p̃∗t3 + 2t3

)
and let the minimal signal strength satisfy ‖βtrueS ‖min >√

8σ2

rp̃b2l n

(
p̃∗ + 2

√
p̃∗t3 + 2t3

)
+ 8

rp̃bl
min{λ2

rp̃
|S|, Pλ(aλ)|S|} then the LLA algorithm ini-

tialized by βLasso converges to the global solution in two iterations with probability at least
1− φ0 − φ1 − φ2 − φ3

where

φ3 := P (Boracle 6= Bopt) ≤ exp(−t3 + p̃∗ ln(
pe

p̃∗
))

+ exp(−(p̃∗ + 1)(t4 − ln p)) · 1− exp(−(p− p̃∗)(t4 − ln p))

1− exp(−t4 + ln p)
, (7)

and a0, a1 are defined as in Fan et al. (2014b) and t1, t2, t3, t4 > 0 are arbitrary constants.
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Remark 12. Since each iteration of the LLA solves a convex program, which can be done within
polynomial-time. When n is properly large, the above theorem then indicates that the LLA is another
FPRAS in globally optimizing the FCP-based nonconvex formulation.

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We focus our tests on sparse logistic regression. Our problem and data are implemented in a similar
way as Fan et al. (2014b). We construct βtrue as below: Firstly, βtrueS is constructed randomly by
choosing 10 elements of β and choosing the magnitude of each to be a uniform value within [1, 2].
Each value is chosen to be negative with probability .5. Then, the remaining entries βtrueSc are set
to be 0. The design matrix X ∈ <n×p is constructed by generating n iterations of xi ∼ Np(0,Σ)

where Σ = (.5|j−j
′|)p×p. We then generate Y using a Bernoulli distribution where P (yi = 1) =

(1 + e−x
ᵀ
i β

true

)−1. Utilizing this process, we generate two sets of data, both with 100 samples. One
set is for training the model, and the other is the test set for out-of-sample tests. We repeat the above
process for 100 times to generate 100 training-and-test instances, each with 100 samples.

We train a logistic regression model by invoking Algorithm 1 in solving equation 2 with FCP for
S3ONC solutions initialized with Lasso. For comparison, we also involve Lasso solutions generated
by the global minimizer to equation 5 and an estimator generated by solving equation 2 when Pλ
is substantiated by an `2 penalty. The tuning parameters λ and a (if applicable) of the penalties for
the estimators are obtained by cross validation following Fan et al. (2014b). The MCP classifier
is solved using the FPRAS from Liu & Ye (2019) implemented in Python 3. The Lasso and `2
classifiers are solved using the scikit learn python library.

We compare the above estimators on the statistical performance. We use both `1 loss: |β∗ − βtrue|
and `2 loss: ‖β∗ − βtrue‖.
Finally, we try to ascertain whether our FCP classifier, obtained using S3ONC methods is actually
the global optimal solution. We do this by taking each element of the FCP classifier and perturbing
each element. Each element’s perturbation is independent and generate by a N(0, 1/p1/2))-random
variable. We then check if this perturbed classifier has better FCP penalized performance on the
training data than the FCP classifier. If not, we repeat until either a better solution is found, or until
2000 perturbations have been tried.

4.2 NUMERICAL RESULTS

Table 1: Statistical performance of the four classifiers.

n = 100, p = 1000 n = 100, p = 1500 n = 100, p = 2000
Classifier Measure Mean Std. dev Mean Std. dev Mean Std. dev

FCP `1 loss 13.909907 1.471911 14.818059 1.698191 14.506226 1.480686
`2 loss 4.108019 0.320061 4.304993 0.374453 4.489184 0.399441

Lasso `1 loss 15.015975 1.039529 15.882654 1.29422 17.079414 1.545309
`2 loss 4.3255 0.25996 4.397969 0.326336 4.433467 0.362707

`2 penalty `1 loss 22.211963 0.791955 26.026067 0.966091 28.485075 0.993699
`2 loss 4.734209 0.241683 4.738025 0.296726 4.755959 0.296746

Table 2: Percent of time FCP beat all perturbations
n = 100 n = 100 n = 100 n = 100
p = 500 n = 1000 n = 1500 n = 2000

% Best FCP 100% 100% 100% 100%
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Table 1 shows the numerical results for the statistical performance measurements. We show the two
performance measures for each of the three classifiers for tphree different problem types.

As expected, the FCP classifier generally outperformed the lasso and `2 classifiers. The margins are
fairly thin between FCP and lasso, especially compared to the standard deviation. Other values of n
and p were tried but the results generally followed the same pattern.

Table 2 contains the numbers from optimality analysis. This technique did not yield a single per-
turbed solution that could beat the FCP classifier obtained from the FPTRAS in any of our thousands
of iterations.

As a result we tentatively conclude that our numerical results align with our theoretical results
though further testing of the global optimality probability would be valuable.

5 CONCLUSIONS

This paper investigates both the theoretical and empirical performance of pseudo-polynomial time
algorithms on FCP regularized GLMs. Despite such a problem being strongly NP-Hard, we have
shown two FPTRAS that achieve global optimality. To our knowledge this is the first probability
bound for pseudo-polynomial time global optimization of FCP regularized GLMs. Further, the same
technique can be used to extend other results in order to obtain global optimization bounds for a wide
variety of problems.

Though this paper focuses on GLMs, further exploration will focus on the question whether similar
results can be found for more general problem classes under weaker assumptions. High-dimensional
M-estimation problems could potentially be a future avenue of investigation.
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A APPENDIX

The Appendix is organized as below: Section A.1 presents the proofs for the main results, Sections
A.2 and A.3 present central lemmata to be useful in Section A.1.
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A.1 PROOF OF MAIN RESULTS

A useful relationship in our proofs is that, for an S3ONC solution β∗ within {β∗ : Q(β∗) ≤
Q(βtrue) + Γ} for any Γ ≥ 0, we have the following useful inequality under Assumption (A1):

bl
2n
‖Xδ∗‖2 − 1

n
W ᵀXδ∗ +

∑
j∈S

Pλ(|β∗j |) ≤
∑
j∈S

Pλ(|βtruej |) + Γ, (8)

where δ∗ = β∗ − βtrue. This is obtained by invoking the strong convexity of ψ, which leads to
ψ(xᵀi β

∗) ≥ ψ(xᵀi β
true) + ψ′(xᵀi β

true)(xᵀi β
∗ − xᵀi βtrue) + 0.5 · bl(xᵀi β∗ − x

ᵀ
i β

true)2.

Proof of Theorem 1. First, given our assumption that (A1) holds, that (i) p̃∗ ≥ 2|S|, (ii) β∗ is
S3ONC satisfying Q(β∗) ≤ Q(βtrue) + Γ for some Γ ≥ 0, and (iii) Pλ(aλ) > σ2

2nbl
(1 + 2

√
t′ +

2t′)+
σ2

n |S|(1+2
√
t′+2t′)+Γbl

bl(p̃∗+1−2|S|) , we can apply Lemma 5 with p̃ = p̃∗. This means that ‖β∗ − βtrue‖ ≤
p̃∗ with probability at least 1− exp(−(p̃∗+ 1)(t′− ln p)) · 1−exp(−(p−p̃∗)(t′−ln p))

1−exp(−t′+ln p) . From this, given
the additional assumption that (A3) holds, we can apply the second part of Lemma 4 with p̃ = p̃∗

to get that for any t > 0, 1
n ‖X(β∗ − βtrue)‖2 ≤ 8σ2

b2l n

(
p̃∗ + 2

√
p̃∗t+ 2t

)
+ 8

bl
min{λ2(|S| −

‖β∗‖0)r−1
p̃∗ , Pλ(aλ)(̇|S| − ‖β∗‖0) + Γ} holds with probability at least 1 − exp(−t + p̃∗ ln( pep̃∗ )).

Given that for 2 arbitrary sets A and B

P (A ∩B) = P (B)P (A|B) = (1− P (Bc))(1− P (Ac|B))

= 1− P (Ac|B)− P (Bc) + P (Bc)P (Ac|B)

= 1− P (Ac|B)− P (Bc)(1− P (Ac|B)) ≥ 1− P (Ac|B)− P (Bc)
(9)

Therefor they hold simultaneous with probability at least 1 − exp(−t + p̃ ln( pep̃∗ )) − exp(−(p̃∗ +

1)(t′ − ln p)) · 1−exp(−(p−p̃∗)(t′−ln p))
1−exp(−t′+ln p) .

The same sequence of arguments can be used to show that βopt also satisfies ‖βopt − βtrue‖ ≤ p̃∗

and 1
n ‖X(βopt − βtrue)‖2 ≤ 8σ2

b2l n

(
p̃∗ + 2

√
p̃∗t+ 2t

)
+ 8
bl

min{λ2(|S|−‖β∗‖0)r−1
p̃∗ , Pλ(aλ)(̇|S|−

‖β∗‖0)+Γ}with the same probability. Using again the union bound and DeMorgan’s law, we say β∗
and βopt satisfy the above conditions simultaneously with probability 1− 2 exp(−t+ p̃∗ ln( pep̃∗ ))−
2 exp(−(p̃∗ + 1)(t′ − ln p)) · 1−exp(−(p−p̃∗)(t′−ln p))

1−exp(−t′+ln p) . With this, our Γ assumption and our minimal
signal strength assumption, we can apply Lemma 6 to show that β∗ = βopt with probability at least
1− 2 exp(−t+ p̃∗ ln( pep̃∗ ))− 2 exp(−(p̃∗ + 1)(t′ − ln p)) · 1−exp(−(p−p̃∗)(t′−ln p))

1−exp(−t′+ln p) .

Proof of Corollary 1. First we need to bound Γ. In order to do this we use the lasso problem
Qlasso(β) =

∑
i∈N `(β, xi, yi) +

∑
j∈P

λlasso|βj | as well as the concavity of MCP over positive

values to get the following 2 inequalities

Qlasso(βlasso) ≤ Qlasso(βtrue)∑
i∈N

`(βlassoj , xi, yi)− `(βtruej , xi, yi)

≤
∑
j∈P

λlasso(|βtruej | − |βlassoj |) ≤
∑
j∈P

λlasso|βlassoj − βtruej |

(10)

and

10
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∑
j∈P

P ′λ(βtruej )−
∑
j∈P

P ′λ(βlassoj ) ≤
∑
j∈P

P ′λ(βlassoj )(|βtruej | − |βlassoj |) ≤
∑
j∈P

λ|βlassoj − βtruej |

(11)

We also need 2 results from the proof for φ0 in Corollary 2 which shows that both |δ`Sc | ≤ 3|δ`S |
and bl

n

∥∥Xδ`∥∥2 ≤ 3λlasso|δ`S | conditional on A where δ` = βlasso − βtrue. Given our restricted

eigenvalue assumption ‖Xδ
`‖2

n‖δ`‖2 ≥ re, this can be used to show

|δ`| ≤ 4|δ`S | ≤ 4
√
s

∥∥δ`S∥∥2∥∥δ`S∥∥ ≤ 4
√
s

∥∥δ`∥∥2∥∥δ`S∥∥
≤ 4
√
s

ren

∥∥Xδ`∥∥2∥∥δ`S∥∥ ≤ 4
√
s

re

3λlasso|δ`S |
bl
∥∥δ`S∥∥ ≤ 4

√
s

re

3λlasso
√
s
∥∥δ`S∥∥

bl
∥∥δ`S∥∥

(12)

which means |δ`| ≤ 12λlassos
blre

with conditional on A which occurs with probability at least 1 −
2p exp(−(λlasso)2nbua

8σ2 )

Finally we are able to bound gamma by combining the above

Γ ≤ Q(β∗)−Q(βtrue) ≤ Q(βlasso)−Q(βtrue) (13)

≤
∑
i∈N

`(βlassoj , xi, yi)−
∑
j∈P

Pλ(βlassoj )− [
∑
i∈N

`(βtruej , xi, yi)−
∑
j∈P

Pλ(βtruej )] (14)

≤
∑
j∈P

(λlasso|βlassoj − βtruej |+ λ|βlassoj − βtruej |) (15)

≤ (λlasso + λ)|δ`| ≤ (λlasso + λ)
12λlassos

blre
(16)

Next consider the conditions necessary to apply Theorem 1. We have assumptions (A1) and (A2)
and (A3) per our assumption that the RE condition holds combined with 7. That leaves the 3 re-
quirements on Γ, Pλ(aλ) and ‖βtrueS ‖min. We will convert each of these to inequalities on n

Utilizing 16 and substituting λ = Qσ
re

√
ln p
nγ/2

and λlasso = εσ
√

ln p
n1−γ/2 , whereQ, ε > 0 are arbitrary

constants, and setting p̃∗ = 4s, t = p̃∗nγ/2 ln p, t′ = nγ/2 ln p we get the following

Pλ(aλ) >
σ2

2nbl
(1 + 2

√
t′ + 2t′) +

σ2

2 s(1 + 2
√
t′ + 2t′) + Γbl

bl(p̃∗ − 2s+ 1)
(17)

n >
8 + 12ε2 + 12εQ

blaQ2
= C1/bl (18)

Γ < Pλ(aλ)− σ2

bln

(
p̃∗ + 2

√
p̃∗t+ 2t

)
(19)

n >

[(
12ε

aQ
+

√
20 + 12ε2

aQ2

)
s

bl

] 2
1−γ

=

[
C2

s

bl

] 2
1−γ

(20)

11
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∥∥βtrueS
∥∥

min
>

√
8σ2

rp̃b2l n

(
p̃∗ + 2

√
p̃∗t+ 2t

)
+

8

rp̃bl
min{λ

2

rp̃
|S|, Pλ(aλ)|S|+ Γ} (21)

n >

[
(160 + 8Q2)

sσ2 ln p

(‖βtrueS ‖min r4sblre)2

]2/γ

=

[
C3

sσ2 ln p

(‖βtrueS ‖min r4sblre)2

]2/γ

(22)

For some constants C1, C2 and C3

We can then apply Theorem 1 (conditional onA) substitute our values and simplify to get that β∗ is
the global solution with probability at least

1− 2 exp(−t+ p̃∗ ln(
pe

p̃∗
))− 2 exp(−(p̃∗ + 1)(t′ − ln p)) ·

[
1− exp(−(p− p̃∗)(t′ − ln p))

1− exp(−t′ + ln p)

]

≥1− 2 exp(−(nγ/2 − 1)4s ln p)− 2

p−p̃∗∑
k=1

exp(−(p̃∗ + k)(nγ/2 − 1) ln p)


≥1− 2 exp(−(nγ/2 − 1)4s ln p)− 2 exp(−[(4s+ 1)(nγ/2 − 1)− 1] ln p)

≥1− C4 exp(−C5sn
γ/2 ln p)

(23)

We then use the same technique as in Theorem 1 to combine this number with the probability of A
to get the final non-conditional probability that β∗ is the global solution with probability at least

≥ 1− C4 exp(−C5sn
γ/2 ln p)−2p exp(

−(λlasso)2nbua

8σ2
)

≥ 1− C4 exp(−C5sn
γ/2 ln p)−2 exp(

−(ε2buan
γ/2 − 8) ln p

8
)

≥ 1− C4 exp(−C5sn
γ/2 ln p)−C6 exp(−C7bun

γ/2 ln(p))

(24)

For some constants C4, C5 C6 and C7.

Note that these constants, as well as C1, C2 and C3, are dependent only on the value of a Q and ε, as
far as problem dependencies are concerned. Thus given that a Q and ε are chosen to be any positive
constant value, as in the statement of Corollary 1, C1 through C7 are problem independent, which
is the desired result.

Proof of Corollary 2. The first result goes with the proof of Corollary 2 in Fan et al. (2014b). If
we initialize the LLA algorithm with βlasso, the solution to LASSO using λlasso as the LASSO
constant, then the LLA algorithm converges to the oracle solution in 2 iterations with probability
1− φ0 − φ1 − φ2. The actual values of φ0, φ1, φ2 are as follows.

First consider φ0 = P (
∥∥βlasso − βtrue∥∥

max
> a0λ). To bound this we will start by noticing that

for the lasso penalized loss function Qlasso(β) =
∑
i∈N l(β, xi, yi) + λlasso

∑
j∈P |βj | we have

thatQlasso(βlasso) ≤ Qlasso(βtrue). If we then let δ` = βlasso − βtrue we can use the same tactic
as in the derivation of 8 to get bl

2n

∥∥Xδ`∥∥2 − 1
nW

ᵀXδ` ≤ λlasso
∑
j∈P |βtruej | − |βlassoj |, which

can then be rearranged to get.

bl
2n

∥∥Xδ`∥∥2 − 1

n

∑
j∈P
|W ᵀXj ||δ′j | ≤ λlasso

∑
j∈P
|βtruej | − |βlassoj |. (25)

Next letA =
⋂
j∈P{|

1
nW

ᵀXj | ≤ λlasso/2}. We can combine this with 25 to get that bl
2n

∥∥Xδ`∥∥2
+

λlasso/2
∑
j∈P |βlassoj − βtruej | ≤ λlasso

∑
j∈P |βlassoj − βtruej |+ λlasso

∑
j∈P |βtruej | − |βlassoj |

conditional on A. From this notice that the right term goes to zero when βtruej = 0 so we then have

12



Under review as a conference paper at ICLR 2020

that bl
2n

∥∥Xδ`∥∥2
+ λlasso/2

∑
j∈P |βlassoj − βtruej | ≤ λlasso

∑
j∈S |βlassoj − βtruej | + |βtruej | −

|βlassoj |. Using the triangle inequality and the definition of δ` we can simplify this to

bl
2n

∥∥Xδ`∥∥2
+
λlasso

2
|δ`| ≤ 2λlasso|δ`S | (26)

conditional on A. By relaxing different parts of the equation, this can be further simplified to both
bl
n

∥∥Xδ`∥∥2 ≤ 3λlasso|δ`S | ≤ 3λlassos1/2||δ`S ||2 and |δ`Sc | ≤ 3|δ`S |. Note that the second of these

shows that δ` satisfies the constraint for the RE condition 1. Therefor we have that ‖Xδ
`‖2

n‖δ`‖2 ≥ re.

If this is combined with the first of the two equations, we can get that 1
n1/2

∥∥Xδ`∥∥ ≤ 3λlassos1/2

bl(re)1/2

conditional on A.

Next, using this we can show that conditional on A we have that
∥∥δ`∥∥

max
≤

∥∥δ`∥∥ ≤∥∥Xδ`∥∥2

2
/(
∥∥δ`∥∥nre) ≤ 3λlassos1/2

blre
< a0λ if λ > 3λlassos1/2

bla0re
. This is the inverse of the con-

dition that defines φ0. Thus, we can bound φ0 with φ0 ≤ P (Ac) = P (
⋃
j∈P |

1
nW

ᵀXj | >
λlasso/2) = P (

⋃
j∈P |W ᵀXj |/ ‖Xj‖ > nλlasso/(2 ‖Xj‖)) ≤ pP (|〈W, v〉| > λlasson

2‖Xj‖ ) ≤

pP (|〈W, v〉| > λlasso(nbua)1/2

2 ) ≤ 2p exp −(λlasso)2nbua
8σ2 which uses both (A1)(ii) and (A2) as long

as λ > 3λlassos1/2

bla0(re)
per (A2).

Next consider φ1 = P (
∥∥∥OScp̃`n(βoracle

∥∥∥
max
≥ a1λ)

φ1 =P (
∥∥∥OScp̃`n(βoracle

∥∥∥
max
≥ a1λ) (27)

=P (∃j ∈ P : |Oj`n(βoracle)| ≥ a1λ) (28)

=P (∃j ∈ P : | 1
n

∑
i∈N

[ψ′(xᵀi β
oracle)xi,j − yixi,j ]| ≥ a1λ) (29)

=P (∃j ∈ P : | 1
n

∑
i∈N

[ψ′(xᵀi β
oracle)xi,j − ψ′(xᵀi β

true)xi,j +Wixi,j ]| ≥ a1λ) (30)

≤P (
1

n
|Xᵀ

j (ψ′(Xβoracle)− ψ′(Xβtrue) +W )| ≥ a1λ) (31)

≤P (
1

n
|Xᵀ

j (ψ′(Xβoracle)− ψ′(Xβtrue))|+ |W ᵀXj | ≥ a1λ) (32)

≤P (
1

n
‖Xj‖

∥∥ψ′(Xβoracle)− ψ′(Xβtrue)∥∥+ |W ᵀXj | ≥ a1λ) (33)

≤P (
1

n

∥∥ψ′(Xβoracle)− ψ′(Xβtrue)∥∥+ |W ᵀXj |/ ‖Xj‖ ≥ a1λ ‖Xj‖−1
) (34)

≤P (
∥∥ψ′(Xβoracle)− ψ′(Xβtrue)∥∥+ |W ᵀXj |/ ‖Xj‖ ≥ (abun)1/2a1λ) (35)

≤P (bu
∥∥Xβoracle −Xβtrue∥∥+ |W ᵀv| ≥ (abun)1/2a1λ) (36)

≤P (bu ‖Xδo‖+ |W ᵀv| ≥ (abun)1/2a1λ) (37)

where v ∈ <n is some vector with ‖v‖ = 1 as indicated in (A2) and δo = βoracle − βtrue.
From this, using Demorgan’s law and the union bound, we notice that P (A + B ≥ C) ≤ P (A ≥
C/2) + P (B ≥ C/2) which can be used to further simplify

φ1 ≤ P (bu ‖Xδo‖+ |W ᵀv| ≥ a1λ(abun)1/2) (38)

≤ P (‖Xδo‖ ≥ (1/2)a1λ(an/bu)1/2) + P (|W ᵀv| ≥ (1/2)a1λ(abun)1/2) (39)

13
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We can then simplify both terms individually. For the first term, P (bu ‖Xδo‖ ≥
(1/2)a1λ(abun)1/2), given the fact that the oracle solution and true solution have the same sup-
port, the oracle solution must be in the Γ = 0 level set of the true solution. Using simi-
lar arguments to Lemma 5, we have that bl

2n ‖Xδ
o‖2 ≤ 1

nW
ᵀXδo From here Lemma 2 can

be applied since we know
∥∥βoracle − βtrue∥∥

0
≤ s. With some simplification this gives that

‖Xδo‖ ≤ 2
bl

(maxSp̃:|Sp̃|=s

∥∥∥Ũᵀ
Sp̃
W
∥∥∥) Utilizing Lemma 3 with s in place of p̃ shows that

P
[
maxSp̃:|Sp̃|=s

2
bl

∥∥∥Ũᵀ
Sp̃
W
∥∥∥ ≥ 2

bl
σ
√
s+ 2

√
st1 + 2t1

]
≤ (pes )s exp(−t1). This is the first half

of φ1 as long as (1/2)a1λ(an/bu)1/2 ≥ 2
bl
σ
√
s+ 2

√
st+ 2t which is equivalent to the as-

sumed condition λ ≥ 4σ
√
s+2
√
st1+2t1

bla1(an/bu)1/2
Next, the second term can be easily bounded using (A2):

P (|W ᵀv| ≥ (1/2)a1λ(abun)1/2) ≤ 2 exp(−a
2
1λ

2abun
8σ2 )

Therefor φ1 ≤ (pes )s exp(−t1) + 2 exp(
−a21λ

2abun
8σ2 )

Next consider φ2 = P (
∥∥βoracleS

∥∥
min
≤ aλ) First, given the assumption

∥∥βtrue]∥∥
min

> (a +

1)λ we can see that φ2 = P (
∥∥βoracleS

∥∥
min

≤ aλ) ≤ P (
∥∥βoracleS − βtrueS

∥∥
max

> λ) ≤
P (
∥∥βoracle − βtrue∥∥

2
> λ) = P (‖δo‖2 > λ). Next, since we know that the support of βoracle

and βtrue is S, we know that |δoSc | = 0 ≤ 3|δoS | which is the constraint for the RE condition.

Therefor we know that ‖Xδ
o‖2

n‖δo‖2 ≥ re. With this and a similar line of argument as in φ1 we get

that φ2 ≤ P (‖δo‖ > λ) ≤ P (‖Xδo‖ > λ
√
nre) ≤ P ( 2

bl
(maxSp̃:|Sp̃|=s

∥∥∥Ũᵀ
Sp̃
W
∥∥∥ > λ

√
nre) =

P (maxSp̃:|Sp̃|=s

∥∥∥Ũᵀ
Sp̃
W
∥∥∥ > λ

bl
√
nre
2 ≥ σ

√
s+ 2

√
st2 + 2t2) ≤ (pes )s exp(−t2) assuming that

λ
bl
√
nre
2 ≥ σ

√
s+ 2

√
st+ 2t which is equivalent to the condition λ ≥ 2σ

√
s+2
√
st2+2t2

bl
√
nre

This, combined with the fact that for MCP, a0 = a1 = a2 = 1 shows the first result.

The second result can be seen by first noting all assumptions of Theorem 1 part 2 are satisfied,
where (A3) with r4s is implied by 7. Thus by using the same arguments as in Theorem 1 part 2
which shows that the oracle solution is unique and that the global solution is the oracle solution
with some probability, since the global solution is almost surely S3ONC with Γ = 0. If we use
t = t3 and t′ = t4 we get that the probability that the global solution is not the oracle solution as
φ3 ≤ exp(−t3 + p̃ ln(pep̃ )) + exp(−(p̃∗ + 1)(t4 − ln p)) · 1−exp(−(p−p̃∗)(t4−ln p))

1−exp(−t4+ln p) This combined
with the first result shows that the LLA algorithm converges to the global solution in 2 iterations
with probability 1− φ0 − φ1 − φ2 − φ3 which is the second result.

A.2 CENTRAL LEMMAS AND THEIR PROOFS

Lemma 1. Let β∗ be a S3ONC solution to 2. If assumption (A1) holds, then
P [|β∗j | /∈ (0, aλ),∀j ∈ {1, 2, ..., p}] = 1.

Proof of Lemma 1. First, define events γj and δj as

γj :=

{
∂2Q(β)

(∂βj)2

∣∣∣∣
β=β∗

≥ 0

}
(40)

δj :=
{
|β∗j | ∈ (0, aλ)

}
. (41)

First, for any given j ∈ P , we solve for P [γj ∩ δj ] given our assumptions. We can start with
∂2Q(β)
(∂βj)2

∣∣∣
β=β∗

≥ 0 which gives us 1/n
n∑
i=1

ψ′′ (xᵀi β
∗)x2

i,j + P ′′λ (|β∗j |) ≥ 0. We can rearrange this

to get bu
n∑
i=1

x2
i,j ≥

n∑
i=1

ψ′′(xᵀi β
∗)x2

i,j ≥ −nP ′′λ (|β∗|) = n/a where we get the leftmost inequality

from assumption (A1) part (i) and the rightmost equality from the definition of MCP. More concisely
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we have that bu ‖Xj‖2 ≥ n/a which contradicts (A1) part (ii). Therefor we know P [γj ∩ δj ] = 0.
It should also be noted that P [γcj ] = 0 since β∗ satisfies S3ONC conditions. Thus, by applying
Demorgan’s law and then the union bound, it can be obtained that

0 = P [γj ∩ δj ] = 1− P [γcj ∪ δcj ] ≥ 1− P [γcj ]− P [δcj ] = 1− P [δcj ] = P [δj ]. (42)

We can then apply this result to all indices to get that P [δj ] = 0 for all j ∈ {1, 2, ..., p}, which is the
desired result.

Lemma 2. Consider an arbitrary S3ONC solution β∗ to 2 with MCP. Given the event that for some
integer p̃ : ‖β∗ − βtrue‖0 ≤ p̃, then |W ᵀXδ∗| ≤

(
maxSp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥) ‖Xδ∗‖ , a.s.

Where

(ŨSp̃)i,j :=

{
USp̃ , if j ∈ Sp̃
0, else

and USp̃ ∈ <n×p̃ is defined as in the following Thin SVD: XSp̃ = USp̃DSp̃VSp̃ .

Proof. Denote δ∗ := (δ∗j ) = β∗ − βtrue, Sp̃ := (j : δ∗j 6= 0) ⊆ P , δ∗Sp̃ := (δ∗j : j ∈ Sp̃) and
XSp̃ := (xij : i ∈ N , j ∈ Sp̃). By assumption, we know that ‖δ∗‖0 ≤ |Sp̃| = p̃.

First decompose XSp̃ using Thin SVD to get XSp̃ = USp̃DSp̃VSp̃ where USp̃ ∈ <n×p̃.
Note that since and Uᵀ

Sp̃
USp̃ = I we have that for any υ ∈ <p̃ we have

∥∥DSp̃VSp̃υ
∥∥2

=

(DSp̃VSp̃υ)ᵀI(DSp̃VSp̃υ) = υᵀV ᵀ
Sp̃
Dᵀ
Sp̃
Uᵀ
Sp̃
USp̃DSp̃VSp̃υ = υᵀXᵀ

Sp̃
XSp̃υ =

∥∥XSp̃υ
∥∥2

. therefor
we can obtain that

|W ᵀXδ∗| = |W ᵀXSp̃δ
∗
Sp̃ | ≤

∥∥W ᵀUSp̃
∥∥∥∥∥DSp̃VSp̃δ

∗
Sp̃

∥∥∥
=
∥∥∥Uᵀ

Sp̃
W
∥∥∥∥∥∥XSp̃δ

∗
Sp̃

∥∥∥ ≤ ( max
Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥) ‖Xδ∗‖ , a.s.

(43)

Where

(ŨSp̃)i,j :=

{
USp̃ , if j ∈ Sp̃
0, else

.

Lemma 3. Consider an arbitrary S3ONC solution β∗ to 2 with MCP. If (A2) holds, then for some
integer p̃ ≤ p, P

[
maxSp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥ ≤ σ√p̃+ 2

√
p̃t+ 2t

]
≥ 1− (pep̃ )p̃ exp(−t). Where

(ŨSp̃)i,j :=

{
USp̃ , if j ∈ Sp̃
0, else

and USp̃ ∈ <n×p̃ is defined as in the following Thin SVD: XSp̃ = USp̃DSp̃VSp̃ .

Proof. We attempt to bound
(

maxSp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥). Given that we now have W multiplied by a

square matrix, we can apply Lemma 9. In the Lemma, let Σu = ŨSp̃Ũ
ᵀ
Sp̃

. The fact that ΣuΣu = Σu

means that Σu is an idempotent matrix with ‖Σu‖ ≤ 1 and Tr(Σu) = rank(Σu) ≤ rank(ŨSp̃) ≤
rank(USp̃) ≤ p̃. Lemma 9 then states that that P

[∥∥∥Ũᵀ
Sp̃
W
∥∥∥ ≤ σ√p̃+ 2

√
p̃t+ 2t

]
≥ 1−exp(−t).

From this we can show that

P

[
max

Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥ ≤ σ√p̃+ 2

√
p̃t+ 2t

]
≥ 1−

(
p

p̃

)
exp(−t) ≥ 1− (

pe

p̃
)p̃ exp(−t). (44)

15



Under review as a conference paper at ICLR 2020

Where the first inequality can seen by noting that if ηk ∈ <k is a sequence of i.i.d random variables
and θ ∈ < is a scalar, by applying De Morgan’s Law and then using the union bound, it can be
obtained that P [maxk∈K ηk ≤ θ] = P [

⋂
k∈K ηk ≤ θ] = 1−P [

⋃
k∈K ηs ≥ θ] ≥ 1−

∑
k∈K P [ηk ≥

θ] = 1− |K|(1− P [ηk ≤ θ]) which yields the same inequality as in 44.

This is the desired result.

Lemma 4. Consider an arbitrary S3ONC solution β∗ to 2 with MCP. Let Assumptions (A1) and
(A2) hold. Given the simultaneous occurrence of (i) the event that Q(β∗) ≤ Q(βtrue) + Γ holds
for some Γ ≥ 0; (ii) the event that for some integer p̃ : ‖β∗ − βtrue‖0 ≤ p̃. Then for any t > 0,
1
n ‖X(β∗ − βtrue)‖2 ≤ 4σ2

b2l n
(p̃+2

√
p̃t+2t)+ 8

bl
min{

∑
j∈S P

′
λ(|β∗j |)|β∗j |, Pλ(aλ)(|S|−‖β∗‖0)+

Γ} holds with probability at least 1− exp(−t+ p̃ ln(pep̃ )).

If in addition (A3) holds with p̃∗ ≥ p̃, then 1
n ‖X(β∗ − βtrue)‖2 ≤ 8σ2

b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+

8
bl

min{λ2(|S| − ‖β∗‖0)r−1
p̃ , Pλ(aλ)(̇|S| − ‖β∗‖0) + Γ} holds where rp̃ > 0 for any t > 0 with

probability at least 1− exp(−t+ p̃ ln(pep̃ )).

Proof. First, denote δ∗ := (δ∗j ) = β∗ − βtrue, Sp̃ := (j : δ∗j 6= 0) ⊆ P , δ∗Sp̃ := (δ∗j : j ∈ Sp̃) and
XSp̃ := (xij : i ∈ N , j ∈ Sp̃). By assumption, we know that ‖δ∗‖0 ≤ |Sp̃| = p̃. Further, let us
denote

T1 := min

∑
j∈S

P ′λ(|β∗j |)|βtruej |,
∑
j∈S

P ′λ(|β∗j |)|β∗j − βtruej |, Pλ(aλ)(|S| − ‖β∗‖0) + Γ

 . (45)

We now start to define the desired bound by applying the second part of Lemma 8. The result
simplified using the above definitions becomes

bl
2n
‖Xδ∗‖2 ≤ 1

n
W ᵀXδ∗ + T1, a.s. (46)

Next, since all assumptions for Lemma 1 are satisfied, we can apply it to get

bl
2n
‖Xδ∗‖2 ≤ 1

n

(
max

Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥) ‖Xδ∗‖+ T1. (47)

We can then complete the square, solving for 1√
n
‖Xδ∗‖ to get

1√
n
‖Xδ∗‖ ≤ 1

bl
√
n

max
Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥+

√(
1

bl
√
n

max
Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥)2

+
2

bl
T1 (48)

≤2

√(
1

bl
√
n

max
Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥)2

+
2

bl
T1, (49)

where the last inequality holds due to the value inside the square root being larger than the term
outside. From here, squaring both sides gives us

1

n
‖Xδ∗‖2 ≤ 4

b2l n

(
max

Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥)2

+
8

bl
T1. (50)

Finally, by applying the second part of Lemma 1 we get

1

n
‖Xδ∗‖2 ≤ 4σ2

b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+

8

bl
T1. (51)
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With probability at least 1 − (pep̃ )p̃ exp(−t). Thus by the definition of T1, the first result of the
lemma has been shown.

For the second part we look to bound the central term of T1. We first notice (a) that since assumption
(A1) holds, Corollary 4 indicates that if β∗j 6= 0 ⇒ |β∗j | ≥ aλ for all j ∈ P; (b) that for this range
of β∗j , P ′λ(|β∗j |) = 0; (c) that per the definition of MCP 0 ≤ P ′λ(|β∗j |) ≤ λ for any β∗j ∈ <. If we
combine these observations with 45 and the definition of δ∗, we can see that T1 ≤

∑
j∈S

P ′λ(|β∗j |)|δ∗|

≤ λ
√
|S| − ‖β∗S‖0 · ‖δ

∗‖. From this, given that assumption that, for this second result (A3) holds
with p̃∗ ≥ p̃, and rp̃ ≥ rp̃∗ ≥ 0 we can use (A3) part (iii) to show that T1 ≤ λ

√
|S| − ‖β∗S‖0 ·

‖Xδ∗‖√
nrp̃

.
Since this holds almost surely, it can then be combined with 47 to get

bl
2n
‖Xδ∗‖2 ≤ 1

n

(
max

Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥) ‖Xδ∗‖+ λ

√
|S| − ‖x∗S‖0 ·

‖Xδ∗‖
√
nrp̃

. (52)

We can then multiply by 2
√
n/bl ‖Xδ∗‖ to get

1√
n
‖Xδ∗‖ ≤ 2

bl
√
n

max
Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥+

2λ

bl
√
rp̃

√
|S| − ‖x∗S‖0. (53)

We then square both sides and use the rule that (A+B)2 ≤ 2A2 + 2B2 to get

1

n
‖Xδ∗‖2 ≤

[
2

bl
√
n

max
Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥+

2λ

bl
√
rp̃

√
|S| − ‖x∗S‖0

]2

(54)

≤ 8

b2l n
max

Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥2

+
8λ2

b2l rp̃
(|S| − ‖x∗S‖0). (55)

Combining this with 50 yields that

1

n
‖Xδ∗‖2 ≤ 8

b2l n
max

Sp̃:|Sp̃|=p̃

∥∥∥Ũᵀ
Sp̃
W
∥∥∥2

+
8

bl
min

{
λ2

rp̃
(|S| − ‖x∗S‖0), T1

}
. (56)

Finally, by applying the second part of Lemma 1 and noting from (45) that T1 ≤ Pλ(aλ)(|S| −
‖β∗‖0) + Γ we see that

1

n
‖Xδ∗‖2 ≤ 8

b2l n
σ2(p̃+ 2

√
p̃t+ 2t) +

8

bl
min

{
λ2

rp̃
(|S| − ‖x∗S‖0), Pλ(aλ)(|S| − ‖β∗‖0) + Γ

}
.

(57)

With probability at least 1− (pep̃ )p̃ exp(−t) which is the desired result.

Lemma 5. Let Assumptions (A1) and (A2) hold. Consider a solution β∗ satisfying S3ONC of 2.
Assume thatQ(β∗) ≤ Q(βtrue) + Γ holds for an arbitrary Γ > 0. For any integer p̃ : 2|S| ≤ p̃ ≤ p
if the penalty parameters (a, λ) satisfy that Pλ(aλ) > σ2

2nbl
(1 + 2

√
t+ 2t) +

σ2

n |S|(1+2
√
t+2t)+Γbl

bl(p̃+1−2|S|) ,
for an arbitrary t > 0, then ‖β∗ − βtrue‖0 ≤ p̃ with probability at least 1 − exp(−(p̃ + 1)(t −
ln p)) · 1−exp(−(p−p̃)(t−ln p))

1−exp(−t+ln p) .

Proof. We start from the useful inequality defined in 8

bl
2n
‖Xδ∗‖2 − 1

n
W ᵀXδ∗ +

∑
j∈S

Pλ(|β∗j |) ≤
∑
j∈S

Pλ(|βtruej |) + Γ, (58)
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where δ∗ = β∗ − βtrue. Next, conditioning on the fact (i) that β∗ is S3ONC, (ii) that all as-
sumptions for Corollary 4 are satisfied (which implies that Pλ(|β∗j |) ∈ {0, Pλ(aλ)}) and (iii) that
Pλ(|βtruej |) ≤ Pλ(aλ) we have that

bl
2n
‖Xδ∗‖2 − 1

n
W ᵀXδ∗ + ‖β∗‖0 · Pλ(aλ) ≤ |S| · Pλ(aλ) + Γ (59)

Now consider an event E1 := {‖β∗ − βtrue‖0 = p̃+ k} for an arbitrary integer k : 1 ≤ k ≤ p− p̃
Conditioning on this event, we may denote and Sp̃+k ⊆ P such that δ∗j 6= 0 for all j ∈ Sp̃+k. By
assumption we can ensure that |Sp̃+k| = p̃+ k. Also denote by XSp̃+k = (xij : i ∈ N , j ∈ Sp̃+k)
and let δ∗Sp̃+k := (δ∗j : j ∈ Sp̃+k). Note that conditional on E1, the first part of Lemma 1 (using
p̃ + k in place of p̃ in Lemma 1) can be used to bound W ᵀXδ∗ in 59. Additionally, by definition
‖βtrue‖0 = |S| and conditional on E1 we can apply the substitution ‖β∗‖0 ≥ p̃ + k − |S|. This
gives us

bl
2

∥∥∥∥Xδ∗√n
∥∥∥∥2

− 1√
n

(
max

Sp̃+k:|Sp̃+k|=p̃+k

∥∥∥Ũᵀ
Sp̃+k

W
∥∥∥)∥∥∥∥Xδ∗√n

∥∥∥∥ ≤ −(p̃+k− 2|S|) ·Pλ(aλ) + Γ (60)

In order for this equation to be feasible, we know that the quadratic formula must have real roots.
Therefor

(
max

Sp̃+k:|Sp̃+k|=p̃+k

∥∥∥∥∥ Ũ
ᵀ
Sp̃+k

W
√
n

∥∥∥∥∥
)2

− 4[bl/2][(p̃+ k − 2|S|) · Pλ(aλ)− Γ] ≥ 0 (61)

Now consier another event E2(t) := {max|Sp̃+k|=p̃+k ||U
ᵀ
Sp̃+k

W || ≤ σ
√
p̃+ k ·

√
1 + 2

√
t+ 2t}

for an arbitrary t > 0. Conditioning on the occurence of E1 ∩ E2(t) we can show, using first

E2(t) and then 61, that σ
2(p̃+k)
n · (1 + 2

√
t + 2t) ≥

(
max|Sp̃+k|=p̃+k

∥∥∥Ũᵀ
Sp̃+k

W
∥∥∥

√
n

)2

≥ 2bl[(p̃ +

k − 2|S|) · Pλ(aλ) − Γ] almost surely, which contradicts with the assumption on the parameters
(a, λ). This can be seen starting from our original assumption that Pλ(aλ) > σ2

2nbl
(1 + 2

√
t +

2t)+
σ2

n |S|(1+2
√
t+2t)+Γbl

bl(p̃+1−2|S|) ≥ σ2

2nbl
(1+2

√
t+2t)+

σ2

n |S|(1+2
√
t+2t)+Γbl

bl(p̃+k−2|S|) We can then multiply both

(outer) sides by 2bl(p̃+k−2|S|) and rearrange to get σ
2

n (p̃+k) · (1 + 2
√
t+ 2t) < 2bl[(p̃−2|S|+

k) ·Pλ(aλ)−Γ]. Given this contradiction, we know that P [E1 ∩ E2(t)] = 0. Therefore, again using
the union bound combined with DeMorgan’s law we get that P [E1∩E2(t)] ≥ 1−P [Ec1 ]−P [E2(t)c]
move to intro somehwere? which, can be simplified to

P [E2(t)c] ≥ P [E1] (62)

Since all assumptions of the Lemma 3 are satisfied, we can next use it to bound
P [E2(t)c]. By taking the compliment of the result in the second half of Lemma 1, we get,

for some t′, that P
[
maxSp̃+k:|Sp̃+k|=(p̃+k)

∥∥∥Ũᵀ
Sp̃+k

W
∥∥∥ ≥ σ√(p̃+ k) + 2

√
(p̃+ k)t′ + 2t′

]
≤

( pe
p̃+k )p̃+k exp(−t′) ≤ pp̃+k exp(−t′). If we then let t′ = (p̃ + k)t we get

P
[
maxSp̃+k:|Sp̃+k|=(p̃+k)

∥∥∥Ũᵀ
Sp̃+k

W
∥∥∥ ≥ σ√p̃+ k ·

√
1 + 2

√
t+ 2t

]
≤ pp̃+k exp(−(p̃ + k)t).

Thus we have that pp̃+k exp(−(p̃+ k)t) ≥ P [E2(t)c] which can be combined with 62 to show

pp̃+k exp(−(p̃+ k)t ≥ P [
∥∥β∗ − βtrue∥∥

0
= p̃+ k] ∀k ∈ Z : 1 ≤ k ≤ p− p̃. (63)

With this, we can solve for our desired value
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P
[∥∥β∗ − βtrue∥∥

0
≤ p̃
]

= 1− P
[∥∥β∗ − βtrue∥∥

0
≥ p̃+ 1

]
= 1−

p−p̃∑
k=1

P
[∥∥β∗ − βtrue∥∥

0
= p̃+ k

]
≥ 1−

p−p̃∑
k=1

exp((p̃+ k)(ln p− t))

= 1− exp(−(p̃+ 1)(t− ln p)) · 1− exp(−(p− p̃)(t− ln p))

1− exp(−t+ ln p)
(64)

Which is the desired result.

Lemma 6. Consider an arbitrary S3ONC solution β∗ to 2 with MCP. Let Assumptions (A1)
and (A3) with p̃∗ ≥ p̃ hold. Assume the satisfaction of ‖β∗ − βtrue‖ ≤ p̃ and Event Ea(p̃) :=

{ 1
n ‖X(β∗ − βtrue)‖2 ≤ 8σ2

b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+ 8
bl

min{λ
2

rp̃
(|S|−‖β∗‖0), Pλ(aλ)·(|S|−‖β∗‖0)+

Γ}. If the sub-optimality gap satisfies Γ < Pλ(aλ) − σ2

bln

(
p̃+ 2

√
p̃t+ 2t

)
. If the minimum signal

strength satisfies ‖βtrueS ‖min >
√

8σ2

rp̃b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+ 8

rp̃bl
min{λ2

rp̃
|S|, Pλ(aλ)|S|+ Γ} then

β∗ is the oracle solution to 2.

If in addition we have the satisfaction of ‖βopt − βtrue‖ ≤ p̃ and the event Eb(p̃) :=

{ 1
n ‖X(βopt − βtrue)‖2 ≤ 8σ2

b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+ 8

bl
min{λ

2

rp̃
(|S| − ‖β∗‖0), Pλ(aλ) · (|S| −

‖β∗‖0) + Γ} then β∗ is both the oracle solution and the global solution to 2.

Proof. First, let us denote β∗ − βtrue = δ∗. We start by combining Eα(p̃) and (A3)iii, which is
possible due to our assumption ‖β∗ − βtrue‖0 ≤ p̃. This gives us

8σ2

b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+

8

bl
min{λ

2

rp̃
(|S| − ‖β∗‖0), Pλ(aλ) · (|S| − ‖β∗‖0) + Γ}

≥ 1

n
‖Xδ∗‖2 ≥ rp̃ ‖δ∗‖2 a.s.

(65)

From here if we relax |S| − ‖β∗S‖0 to just |S|, the definition of δ∗ and note that ‖δ∗‖ ≥
∥∥δ∗j∥∥, we

can obtain the following

√
8σ2

rp̃b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+

8

rp̃bl
min{λ

2

rp̃
|S|, Pλ(aλ)|S|+ Γ}

≥
∥∥β∗j − βtruej

∥∥ ≥ |βtruej | − |β∗j |,
(66)

almost surely. From this we can bound |β∗j | using the square root term and |βtruej |, so we know that

if |βtruej |−
√

8σ2

rp̃b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+ 8

rp̃bl
min{λ2

rp̃
|S|, Pλ(aλ)|S|+ Γ} > 0 then |β∗j | > 0. From

this we can obtain the inequality

‖β∗S‖0 ≥
∑
j∈S

I

(
|βtruej | −

√
8σ2

rp̃b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+

8

rp̃bl
min{λ

2

rp̃
|S|, Pλ(aλ)|S|+ Γ} > 0

)
(67)

almost surely. We can then combine this with our minimum signal strength assumption to get that

‖β∗S‖0 = |S| a.s. (68)
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We can combine this with equation 65, by focusing on the second part of the minimum term and
noting the right side is always positive to get

8σ2

b2l n

(
p̃+ 2

√
p̃t+ 2t

)
+

8

bl
(−Pλ(aλ) ‖β∗Sc‖0 + Γ) ≥ 0 a.s. (69)

which can be simplified into

σ2

bln

(
p̃+ 2

√
p̃t+ 2t

)
+ Γ ≥ Pλ(aλ) ‖β∗Sc‖0 a.s. (70)

thus, it can be seen that if Pλ(aλ) > σ2

bln

(
p̃+ 2

√
p̃t+ 2t

)
+ Γ then 1 > ‖β∗Sc‖0 = 0. This is

satisfied by the assumption that Pλ(aλ)− σ2

bln

(
p̃+ 2

√
p̃t+ 2t

)
> Γ.

Finally, because β∗ is an S3ONC solution, it has to satisfy FONC. Per 2, this means that β∗ ∈
arg inf{ 1

n

∑
i∈N `(β, xi, yi) +

∑
j∈P P

′
λ(|β∗j |)|βj | : β ∈ <p}. Due to Corollary 4, we know that

the penalty term goes to 0 since either β∗j = 0 or P ′(|β∗j |) = P ′(|aλ|) = 0. Further we know that
β∗j = 0 for all j ∈ Sc. Threfore we know that

β∗ ∈ arg inf{ 1

n

∑
i∈N

`(β, xi, yi) : β ∈ <p, βj = 0,∀j ∈ Sc} a.s. (71)

Given that the expression on the right is the definition of the oracle solution, we have shown the first
result.

Next, Consider βopt which is the global optimal solution to 2. Given that the S3ONC conditions
are necessary, βopt must be an S3ONC solution. With this fact and the assumption of Eb(p̃), we
have the same set of assumptions for βopt as we had for β∗. Thus the same sequence of arguments
can be used to show that

βopt ∈ arg inf{ 1

n

∑
i∈N

`(β, xi, yi) : β ∈ <p, βj = 0,∀j ∈ Sc} a.s. (72)

Finally, per the strict convexity of our loss function as implied by (A1) we can see that the infimum
of the above problem is unique. Therefor

β∗ = arg inf{ 1

n

∑
i∈N

`(β, xi, yi) : β ∈ <p, βj = 0,∀j ∈ Sc} = βopt a.s. (73)

Which is the second result.

A.3 ADDITIONAL LEMMAS

Lemma 7. The RE condition in 1 implies (A3) with r4s ≥ re > 0 and p̃∗ ≥ 4s.

Proof. As in Lemma 1 in Liu et al. (2017).

Lemma 8. Let β∗ be a S3ONC solution to 2 Given (A1) and that Q(β∗) ≤ Q(βtrue) + Γ holds
for some Γ ≥ 0 then
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bl
2n
‖Xδ∗‖2 − 1

n
W ᵀXδ∗

≤ min

∑
j∈S

P ′λ(|β∗j |)|βtruej |,
∑
j∈S

P ′λ(|β∗j |)|β∗j − βtruej |, Pλ(aλ)(|S| − ‖β∗‖0) + Γ

 , a.s.

(74)

Proof. First, we know that β∗ ∈ arg min
β
{
n∑
i=1

`(β, xi, yi) +
p∑
j=1

P ′λ(|β∗|)|βj |} because the KKT

conditions are the same as FONC which β∗ satisfies. This gives us that
n∑
i=1

`(β∗, xi, yi) +

p∑
j=1

P ′λ(|β∗|)|β∗j | ≤
n∑
i=1

`(βtrue, xi, yi) +
p∑
j=1

P ′λ(|β∗|)|βtruej |. This can be used along the

same lines as the level set inequality in the derivation for 8 to get bl
2n ‖Xδ

∗‖2 − 1
nW

ᵀXδ∗ ≤
p∑
j=1

P ′λ(β∗j )(|βtruej | − |β∗j |)

The first two terms of the min function are easily obtained from this. The last term can be obtained
from 8 by noting that due to Corollary 4, β∗ /∈ (0, aλ) and that Pλ(aλ) = Pλ(β) ∀β ≥ aλ. This
gives us that bl

2n ‖Xδ
∗‖2− 1

nW
ᵀXδ∗ ≤ Pλ(aλ)(S−‖β∗‖0)+Γ Which is the final term to complete

the desired result.

Lemma 9. Consider a subgaussian ñ-dimensional random vector W̃ ∈ <ñ as defined in (A2).

Then for any V ∈ <ñ×ñ and Σv = V ᵀV then P [
∥∥∥V W̃∥∥∥2

≤ σ2Tr(Σv)+2
√

Tr(Σ2
v)t+2 ‖Σv‖ t] ≥

1− exp(−t) for any t > 0 where Tr(·) denotes the trace of a matrix.

Proof. As in Theorem 2.1 in Hsu et al. (2012).
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