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Abstract

Consider a set of latent factors whose observable effect of activation is caught on a measure

space that appears as a grid of bits tacking value in {0, 1}. This paper intend to deliver a

theoretical and practical answer to the question: Given that we have access to a perfect

indicator of the activation of latent factors that label a finite dataset of grid’s activity, can

we imagine a procedure to build a generic identificator of factor’s activations ?

1 Introduction

This paper starts by introducing a mathematical framework for our solution. Then it describes

a procedure to build the generic factor’s activations identificator. Finally it presents the result of

the procedure for two particular statistical modelling of the measure grid’s activity. This paper

has been influenced by modern machine learning techniques, reviewed in [?], especially algorithm

that perform automated feature engineering such as neural network and deep learning [?] as well

as tree learning techniques [?] and improvements [?] and [?]. Finally, modern signal processing

techniques, that I have been taught at the Ecole Polytechnique Fédérale De Lausanne, reviewed

in [?], and recent work in statistics in large dimensions, to which I have been introduced during

my stay in the Laboratoire d’Informatique Gaspard Monge, reviewed in [?], has been more than

determinant for the conception of this paper. In order to make the core subject of this report

more consistent, we introduce the following notations:

• n the size of the measure grid.

• G the measure grid, composed of bits, G = {b1, . . . bn}.

• S(G) the set of all possible permutations of G, |S(G)|= 2n.

• S(G, l) the set of all permutations of G of size l.

• K the number of latent factors.

• F the set of latent factors, F = {f1, . . . fK}.
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Figure 1: Measure grid model

• S(F) the set of all possible permutations of F , |S(F)|= 2K .

• S(F , l) the set of all permutations of F of size l.

• G(f) the set of bits activated by factor f , G(f) ∈ S(G) and f ∈ F .

• G−1(b) the set of factors that activate grid’s bit b, G−1(b) ∈ S(F) and b ∈ G.

• F (2) the field with elements {0, 1}, equipped with the logical XOR and logical AND

respectively as the addition and multiplication.

2 Definitions And Properties

2.1 Statistical definitions

In this section we provide formalism for the statistical description of factors’s activity and their

signature on the measure grid.

Activation of factors

Each factor takes value in {0, 1} at each instant of time. A factor with value 1 at some instant

is active, otherwise it has value 0. At this stage of the paper we assume no particular statistical

model for factors. Nevertheless, if we consider the set of all possible combination of active and

unactive factors (F (2)K), we assume that there is a well defined distribution d′ such that

d′ : F (2)K → [0, 1]

d′x = P (f1 = x1, . . . , fK = xK)
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The statistical signature of a factor on the measure grid describes how the factor is linked to

measure grid’s bits. At this stage we simply assume that there is a well defined probability

measure so that for any I ∈ S(G)

P(G(f) = I) ∈ [0, 1]∑
I∈S(G)

P(G(f) = I) = 1

Latent factors’s activations and signatures on the measure grid induce activations of measure

grid’s bits. We refer to this distribution over all possible combinations of activations of bits as

d, and define it as

d : F (2)n → [0, 1]

dx = P (b1 = x1, . . . , bn = xn)

Finally, we can also modelize the connection between factors and a measure grid’s bit as a

signature of the grid’s bit on factor space. That is, for I ∈ S(F), there is a well defined

probability measure so that

P(G−1(b) = I) ∈ [0, 1]∑
I∈S(F)

P(G−1(b) = I) = 1

Characteristic polynome

The activity of factors and grid’s bits may be modelized using a set of multivariate polynomials

whose fiber and image domain is respectively F (2)n and F (2). The set of polynome associated

with a set I ∈ S(F) and I ′ ∈ S(G) is denoted respectively {PI,l}l∈N and {PI′,l}l∈N. It represents

a segmentation of states of respectively factors of I and measure grid’s bits of I ′.

PI,l : F (2)K → F (2)

PI,l[x] =


∑

π∈S(I′,l) xπ1 · . . . · xπl , if l ∈ {1, . . . , |I|}

0, otherwise

and

PI′,l : F (2)n → F (2)

PI′,l[x′] =


∑

π∈S(I′,l) x
′
π1 · . . . · x

′
πl
, if l ∈ {1, . . . , |I|}

0, otherwise
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Where S(I, l) and S(I ′, l) are the set of all permutations of size l of respectively I and I ′,

x = [xf1 , . . . , xfK ] and x′ = [xb1 , . . . , xbn ]. Furthermore we define the characteristic polynomial

of a set I ∈ S(F) and I ′ ∈ S(G) at level l0 ∈ {0, . . . , |I|} and l′0 ∈ {0, . . . , |I ′|} as

P l0I : F (2)K → F (2)

P l0I =

|I|∑
l=l0

PI,l

P l
′
0
I′ : F (2)n → F (2)

P l
′
0
I′ =

|I′|∑
l=l′0

PI′,l

So far, the addition is set to be the logical XOR in the definition of fields F (2). However, in

the rest of this report, we will use symbol + and
∑

as representation of a logical OR in F (2).

This notation enables us to save a lot of time in writing complex polynomials. Denoting ⊕ the

logical XOR and x̄ the opposite of x, one have

(x · ȳ)⊕ (x̄ · y) = x+ y

Operators on polynome

In order to qualify a set of factors and grid’s bits, we define some basic operator. First, let IG

be a subset of S(G), we denote by F2(IG ,G) the operator that transforms IG into a set of |IG |
vector in F (2)|G|.

F2(IG ,G) : S(G)→ F (2)|G|×|IG |

For each vector X ∈ F2({I},G) such that I ∈ IG , an entry takes value 1 if the associated index

belongs to I, 0 otherwise. This operator is convenient to evaluate the characteristic polynome.

As an example, let (I, I ′) ∈ S(G)2 and l0 ∈ {1, . . . |I|} then

∑
x∈F2({I′},G)

P l0I [x] =

1, if |I ′ ∩ I|≥ l0
0, otherwise

Furthermore, given the distribution over measure grid’s bits activation d, we define the norm of

a characteristic Polynome P l0I with respect to d as

‖.‖d : PF2(S(G),G) → [0, 1]

‖P l0I ‖d =
∑

x∈F2(S(G),G)

P l0I [x]× dx

Where PF2(S(G),G) the space of all polynomials with domain F2(S(G),G) and × is the simple

multiplication in R. Finally, keeping previous notations, let {P liIi}i=1,...,k a set of characteristic

polynome for some integer k ≥ 2, we define the product operator with respect to d as
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〈., . . . , .〉d : PkF2(S(G),G) → [0, 1]

〈P l1I1 , . . . ,P
lk
Ik
〉d =

∑
x∈F2(S(G),G)

(
P l1I1 [x] · . . . · P lkIk [x]

)
× dx

Where · denotes the usual multiplication in F (2) and × is the simple multiplication in R. Finally,

each operator specified above can also be defined in the factor space, using the characteristic

polynomial in factor space and the distribution over factors’s activations d′.

Stochastic processus induced by factor’s activation

Factors’s activations are observed as a strictly stationnary stochastic processus. That is for a

couple (I, l) ∈ F × {1, . . . , |I|}, we associate a stochastic process xlI [t] defined as

xlI [t] =

1, with probability ‖P lI‖d′

0, Otherwise

with {xlI [t]}t∈N 2-by-2 independant. Factors’s signatures and their activations lead to bits’s

activations that are also observed as striclty stationary stochastic processus. Again for a couple

(I, l) ∈ G × {1, . . . , |I|}, we associate a stochastic process xlI [t] defined as

xlI [t] =

1, with probability ‖P lI‖d
0, Otherwise

with {xlI [t]}t∈N 2-by-2 independant.

2.2 Firing Graph

The firing graph is the main data structure used in our solution. In this section we propose a

definition of it, as well as basic tools to support its analysis.

Graph specification

The algorithm presented in this report use a particular data structure that we refer as firing

graph and that we denote G(V,Dw).

• V is the set of vertices V = {v1, . . . , v|V |}

• Dw is the weighted direct link matrix, Dw ∈ N|V |×|V | and [Dw]i,j = w indicate an edge of

weight w from vertex vi to vertex vj if w > 0

G is a directed weighted graph whose vertices are organized in layer. A vertex v of some layer

i ∈ N must have at least one incoming edge from a vertex of layer i − 1. It may also have

incoming edges from any vertices of layer k ∈ N, k < i. Such a set of vertices will be referred as

the input domain of v. Vertices of layer 0 have empty input domains, they correspond to bits

of the measure grid G. Each vertex stores the tuple (I, l0)
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• I the set of vertices at the tail of incoming edge of the vertex, referred as input set

• l0 the firing rate’s lower bound of the vertex, referred as level, l0 ∈ {1, . . . , |I|}

Figure 2: Firing graph

Graph Polynomials

As for bits of the measure grid and factors, a vertex v(I, l0) of a firing graph is assiociated

with the set of polynomes {PI,l}l∈{l0,...,|I| }. Each polynome is a segment of its characteristic

polynome Pv that describes activation, at instant t, of v, given its input domain’s activations at

instant t− 1. If we denote by n, I and l0 respectively the size of the input domain of v, the set

of vertex that has a link toward v and the level of v, then

Pv,l : F (2)n → F (2)

Pv,l[x] =


∑

π∈S(I,l) xπ1 · xπ2 · . . . · xπl , if l ∈ {l0, . . . , |I|}

0, otherwise

Pv : F (2)n → F (2)

Pv[x] =

|I|∑
l=l0

Pv,l[x]

Where S(I, l) is the set of all permutations of size l of elements of I and x ∈ F2({I}, Dv), where

Dv is the input domain of v. Furthermore, all operators on polynome defined previously is

applicable. Let v, v1, . . . , vk be some vertices of the firing graph with the same input domain

and d a distribution over activations of their input domain’s vertices. Then the norm and the

product with respect to distribution d are defined as

‖Pv‖d=
∑

x∈F2(S(G),G)

Pv [x]× dx 〈Pv1 , . . . ,Pvk〉d =
∑

x∈F2(S(G),G)

(Pv1 [x] · . . . · Pvk [x])× dx

Finally, activations of vertices are observed as stochastic processus. Given a vertex v(I, l) we
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define

xv[t] =

1, with probability ‖Pv‖d
0, Otherwise

The stochastic process that takes value 1 if the vertex v actvivates and 0 otherwise, at each

instant of time. If measure grid’s bits compound layer 0 of the firing graph, then, from definition

of bit’s stochastic processus and linearity of state’s propagations, xv[t] is strictly stationary.

Connection to grid’s bit

The firing graph is a convenient data structure to measure activity of a complex group of measure

grid’s bits. When the firing graph’s layer 0 is composed of measure grid’s bits, the characteristic

polynome of each vertex can be represented as a characteristic polynome in the measure grid’s

space, without consideration of time and delay. Let G be such a firing graph, then for any vertex

of layer 1, v(I, |I|), the characteristic polynome v is equal to the characteristic polynome of the

set of bits I ∈ G with level |I|.

Pv = PI,|I|
xv[t] = x

|I|
I [t− 1]

Furthermore if we set the level of v to 1 its characteristic polynome become the logical or-sum

of the characteristic polynome of each bits of I

Pv =
∑
b∈I
P{b},1

xv[t] =

1, if
∑

b∈I x
1
{b}[t− 1] > 0

0, Otherwise

Besides, one can design more complexe arrangements of vertices that enable to model activations

of multiple sets of measure grid’s bits. Let G be a firing graph with its layer 0 composed of G,

let u(I, |I|) and v(I ′, 1), such that I ∩ I ′ = ∅, be vertices of layer 1 and w({u, v}, 2) a vertex of

layer 2. Then one can see that that characteristic polynome of w verifies

Pw =
∑
b∈I′
PI∪{b},|I|+1

xw[t] =

1, if
∑

b∈I′ x
|I|+1
I∪{b}[t− 2] > 0

0, Otherwise

2.3 Evaluation of measure grid’s bits

A perfect indicator of the activation of a given factor f can be used to evaluate the possibility

of any set of bits to be part of f ’s signature on the measure grid.
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Factor’s signature

One way to describe the activity of a factor f on the measure grid is to associate it to a polynome

in the measure grid’s space

PG(f) : F (2)n → F (2)

PG(f) = PG(f),|G(f)|

PG(f) is refered as the polynomial signature of f on G. Anytime f is active then its polynomial

signature takes value 1. Yet under particular modelling of factor’s links to measure grid, the

polynomial signature of f can take value 1 while f is not active. More formally let f ∈ F ,

∀I ∈ S(F) such that x ∈ F2({I},F) and x′ ∈ F2({∪f∈IG(f)},G)

Pf [x] = 1⇒ PG(f)[x
′] = 1

Furthermore if ! ∃J ∈ S(F \ {f}) such that G(f) ⊂
⋃
f ′∈J G(f ′) then

Pf [x] = 1⇔ PG(f)[x
′] = 1

basic metrics

Let I ∈ S(G), l ∈ {1, . . . , |I|}, f ∈ F and e the event ”factor f is active”. Then we define the

recall coefficient of couple (I, l) with respect to f as

µI,l,f = 〈P lI ,PG(f)〉d|e + 〈P lI , P̄G(f)〉d|e

Where d|e is the distribution over bit’s activations given event e and P̄G(f) is the complement

of PG(f) in F (2). Furthermore we define the precision coefficient of couple (I, l) with respect to

f as

νI,l,f = 〈P lI ,PG(f)〉d|ē + 〈P lI , P̄G(f)〉d|ē

Where d|ē is the distribution over bit’s activations given not event e. Finally we define the

purity coefficient of couple (I, l) with respect to f as

ωI,l,f =
νI,l,f
µI,l,f

The lower ωI,l,f is, the purer is the couple (I, l) with respect to f . The recall, precision and

purity coefficient can be defined for any vertex v of a firing graph where vertices of layer 0 are

composed by measure grid’s bit and are denoted respectively µv,f , νv,f and ωv,f . The latter are

computed by using the representation of Pv as a characteristic polynomial in the measure grid’s

space.
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advanced metrics

Let I ∈ S(G), l ∈ {1, . . . , |I|}, f ∈ F and e the event ”factor f is active”. We define the precision

of the couple (I, l) with respect to factor f as

φI,l,f =
‖P lI‖d,e
‖P lI‖d

We also define the recall of the couple (I, l) with respect to factor f as

ψI,l,f =
‖P lI‖d,e
‖PG(f)‖d,e

Where d, e, the distribution over the combination of activations of measure grid’s bits that

intetersect with event e. The precision and the recall are defined for any vertex v of a firing graph

where vertices of layer 0 are composed by measure grid’s bit and are denoted respectively φv,f

and ψv,f . Again, The latter are computed by using the representation of Pv as a characteristic

polynomial in the measure grid’s space.

Advanced stochastic process induced by vertex

Given a firing graph with its layer 0 composed of measure grid’s bits, we have seen that the

propagation of activations induces a stochastic process at each vertex. Here we introduce some

more complex stochastic processus at each vertex of G. Given a vertex v at layer k ≥ 0, its

characteristic polynome Pv, a factor f ∈ F and e, the event ”factor f is active”, we define the

score process of v with respect to factor f as

sv,f [N,T, p, q] = N +
T∑
t=1

sv,p,q,t,f

Where (N,T, p, q) ∈ N4 and {sv,p,q,t,f}t∈N a set of i.i.d random variable. sv,p,q,t,f takes value q

if the event e was true at instant t − k and value −p if it was false, given that v activates at

instant t. That is, ∀ t < k, sv,p,q,t,f = 0 and ∀ t ≥ k

sv,p,q,t,f =

q, with probability qs

−p, with probability 1− qs

Where qs = qr
qr+qp

with qr = ‖Pv‖d,e and qp = ‖Pv‖d−qr. d, e is the distribution over measure

grid’s activations that intersect with the event e

2.4 Properties

This paragraph intend to deliver useful properties for the analysis of the algorithm. The proof

of every properties can be found in the appendix A at the end of this paper.
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Polynomial decomposition

Partition

Let v1(I, l0), v2(J, 0) and v3(K, 0), be three vertices at the layer 1 of some firing graph, with the

same input domain G. If I = J ∪K and J ∩K = ∅, then, ∀x ∈ F2(S(G),G)

P l0I [x] =

|I|∑
l=l0

|J |∑
j=0

PJ,j [x] · PK,l−j [x] (1)

In paticular for b ∈ I

PI,l [x] = PI\{b},l [x] · P{b},0 [x] + PI\{b},l−1 [x] · P{b},1 [x] (2)

Decomposition

Let G be a firing graph with layer 0 composed of G. Let u(I, lu), v(I ′, lv) such that I ∩ I ′ = ∅
as vertices of layer 1 and w({u, v}, 2) as vertex of layer 2. Let K ∈ ∪l∈{lv ,...,|I′|}S(I ′, l), x ∈
F2(S(G),G) and x′ =

[
Pu[x] Pv[x]

]
then

PK,|K| [x] · P{u,v},2
[
x′
]

=

|I|∑
l=lu

∑
J∈S(I,l)

PJ∪K,l+|K| [x] (3)

In particular if lu = |I| and lv = 1, then for any vertex of layer 0, b ∈ I ′

Pb,1 [x] · P{u,v},2
[
x′
]

= PI∪{b},|I|+1 [x] (4)

Metrics

Throughout this section, we consider G to be a firing graph with layer 0 composed by measure

grid’s bits G and f ∈ F denote some target factor that is linked to some bit of the measure

grid. The distribution of activation of latent factors and measure grid’s bits will be respectively

denoted d and d′ and e is the event ”factor f is active”. Furthermore we use v to denote some

vertex of G whose characteristic polynome respects Pv = P lI with (I, l) ∈ S(G), {1, . . . , |I|} and

f ∈ F some factor

Precision of vertex

The precision of v with respect to f is

φv,f =
‖Pf‖d′

‖Pf‖d′+(1− ‖Pf‖d′)× ωI,l,f
(5)

Furthermore, if µv,f = 1 we have

φv,f ≤
‖Pf‖d′

‖Pf‖d′+(1− ‖Pf‖d′)× ωG(f),|G(f)|,f
(6)
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Recall of vertex

The recall of v with respect to f is

ψv,f = µI,l,f (7)

Furthermore,

0 ≤ φv,f ≤ 1 (8)

Where right equality is reached whenever v is connected to a set of measure grid’s bit I ∈ G,

with level l0 = |I| such that I ⊂ G(f).

vertex’s score process

If sv,f [N,T, p, q] denotes the score process of v with respect to f , with N,T, p, q ∈ N4, then

E [sv,f [N,T, p, q]] = N + T × (φI,l,f × (p+ q)− p) (9)

Furthermore,

Var [sv,p,q,t,f ] = (q + p)2 × φI,l,f × (1− φI,l,f ) (10)

3 Identification of Latent Factor

In this section, we present a procedure to identify a latent factor’s activation. The procedure

consists of two steps:

• Sampling: Sample the measure grid and build a firing graph.

• Draining: Drain the firing graph to exclude high purity coefficient’s vertices.

Both processus will be described and the efficiency of the draining algorithm quantified.

3.1 Sampling

Sampling the measure grid consists in following a procedure to select some bits of it. This

procedure is usually designed to be the most efficient in the fullfilment of specific quantitative

objective. First, we assume that we have access to a determinist exact indicator of f ’s activations

with f ∈ F . Then, the objective of sampling is to maximize the probability that we sample

a bit whose purity coefficient with respect to f is lower or equal to some positive constant ω.

That is, if we denote s the random variable of the outcome of a single sampling, the objective

is to maximize

P(ω{s},1,f ≤ ω)
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Again, if we have a set I ⊂ G of bits, the objective of sampling is to maximize the probability

of selecting a bit b, for which the purity of I ∪ {b} at level |I|+1 is lower to a given positive

constant ω. That is, if we denote by s the random variable of the outcome of a single sampling,

the objective is to maximize

P(ωI∪{s},|I|,f ≤ ω)

We propose a very intuitive sampling method based on the indicator of activation of target

factor f . Given parameters ps ∈ [0, 1] and Sp respectively the probability of picking a bit and a

set of pre-selected measure grid’s bits, the sampling procedure writes

Algorithm 1 Sampling

Input: pS , Sp

Output: S

S ← {}, xf ← nextFactorState(), XG ← nextGridState()

while S is empty do

if xf = 1 and ∀b ∈ Sp XG [b] = 1 then

for all b ∈ G \ S ∪ Sp do

if XG [b] = 1 then

S ← S ∪ {b} with probability ps

end if

end for

end if

xf ← nextFactorState()

XG ← nextGridState()

end while

Where xf and XG are respectively a scalar that takes value 1 when factor f is active, 0 otherwise,

and a mapping with measure grid’s bits as keys and their states as values (0 or 1). The second

mean of the sampling procedure is to build a firing graph. The construction of the firing graph

requires to set a parameter N ∈ N that corresponds to the initial weigth of edges that will

be drained. In addition we set a mask matrix Gmask ∈ {0, 1}|V | that controls which vertex is

allowed to have their outcoming edges updated during draining. We consider two kind of firing

graphs.
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Figure 3: Single sampled firing graph

In figure ??, sampled bits {b1, . . . , bns} are used as vertices of the layer 0 of a firing graph G,

nS = |S|. Then vertex v({b1, . . . , bns}, 1) is added at the layer 1 of G. Furthermore, we set

Gmask so to allow only layer 0’s outcoming edges to be updated through draining.

Figure 4: Joint sampled firing graph

In figure ??, sampled bits {b1, . . . , bns} and pre-selected bits {b∗1, . . . , b∗k} for some k ∈ N∗ com-

pound the layer 0 of the firing graph G, nS = |S|. Then, vertices v({b1, . . . , bns}, 1) and
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u({b1, . . . , bk}, k) are added at layer 1 of G and vertex w({u, v}, 2) at layer 2 of G. Finally,

we set Gmask so that only b1, . . . , bns ’s outcoming edges are allowed to be updated through

draining.

3.2 Draining

Draining the firing graph consists in iterating a forward propagation of bits’s activations and

a backward propagation of feedback generated by factor’s activations through the firing graph.

Feedback are meant to increment or decrement the weight of unmasked vertices’s outcoming

edges. Given that an edge with a null or negative weigth vanishes, at the end of the routine,

connections of the graph differentiate between vertices’s purity. To ease understanding of the

algorithm, we split vertices of the firing graph into input and core vertices which are respectively

vertices of layer 0 and vertices of layers > 0. Furthermore, we introduce a new type of vertices

that can only have incoming edges from core vertices. We refer to those vertices as outputs.

Figure 5: Draining diagram

We use ni, nc and no to refer to the number of respectively input, core and output vertices.

Furthermore, we define Iw ∈ Nni×nc , Cw ∈ Nnc×nc and Ow ∈ Nnc×no that correspond to the

weighted direct link matrices respectively from input toward core vertices, core toward core

vertices and core toward output vertices. Furthermore we will use A = Aw > 0, A ∈ {I, C,O}
to denote the corresponding unweighted direct link matrices. Finally, in order to represent in a

more convenient way stochastic processus induced by measure grid’s activations, we define the

following stochastics vectors

• x(t)
i ∈ {0, 1}1×ni the vector of activations of input vertices at instant t

• x(t)
c ∈ {0, 1}1×nc the vector of activations of core vertices at instant t

• x(t)
o ∈ {0, 1}1×no the vector of activations of output vertices at instant t

The propagation of activations through the firing graph can be represented with two equations:
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Forward transmitting (FT)

x̃(t)
c = x

(t−1)
i · I + x(t−1)

c · C

x̃(t)
o = x(t−1)

c ·O

Forward processing (FP)

[x(t)
c ]i =

1, if [x̃
(t)
c ]i > li

0, Otherwise

[x(t)
o ]j =

1, if [x̃
(t)
o ]j > 1

0, Otherwise

Where · is the usual matrix multiplication, (i, j) ∈ {1, . . . nc} × {1, . . . no} and li is the level of

the ith core vertex. An output vertex of the firing graph is fed with the activation of a targeted

factor decayed in time by the number of layer - 1. That is, for single and joint sampled firing

graphs, the decay is respectively set to 1 and 2. Factor’s activations generate a feedback to the

output that is back propagated through the firing graph. Supposing that we set the factor’s

decay to d ≥ 1, the feedback is defined as

x
(t)
b,o = x(t)

o ◦
(

(p+ q)× x(t−d)
f − p

)
Where ◦ denotes the Hadamard product, x

(t−d)
f is the vector of states of factors at instant t− d

and p, q are pre-difined positive integers. A correct backpropagation of x
(t)
b,o up to the input

vertices is made possible by using time and space coherence of firing graph’s forward states. We

denote by Vi, i ∈ N the set of vertices that has a path, composed of i vertices, toward an output

vertex. Let G be a firing graph with k ∈ N∗ layers augmented with a layer of ouptut vertices.

Let Vo the set of output vertices, ∀v, o ∈ V0 × Vo, v is elligible to o’s feedback at instant t if and

only if

• v was active at instant t− 1

• v has an edge toward o

The same principle can be used to backpropagate the feedback from vetices of V0 towards

vertices of V1 and so on. Generally speaking, the back propagation from vertices of Vi towards

Vi+1 respects ∀v, v′ ∈ Vi × Vi−1, v is elligible to feedback of v′ at instant t if and only if

• v was active at instant t− (2× i+ 1)

• v has an edge toward v′

Finally we can encode the backpropagation equations as

Backward transmitting (BT)

X̃
(t)
b,c = (O ·X(t−1)

b,o + C ·X(t−1)
b,c ) ◦X(t)T

m,c

X
(t)
b,i = (I ·X(t−1)

b,c ) ◦X(t)T
m,i

Backward processing (BP)

X
(t)
b,o =

[
0no×1 x

(t)
b,o 0no×dmax−2

]
X

(t)
b,c =

[
0nc×2 [X̃

(t)
b,c ](:nc,:(dmax−2))

]
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Structure udpates (SU)

Ow = Ow +O ◦ (X
(t−1)
b,o ·X(t)

m,c)
T

Cw = Cw + C ◦ (X
(t−1)
b,c ·X(t)

m,c)
T

Iw = Iw + I ◦ (X
(t−1)
b,c ·X(t)

m,i)
T

WhereX
(t)
m,c =

[
x

(t)
c . . . x

(t−dmax)
c

]T
andX

(t)
m,i =

[
x

(t)
i . . . x

(t−dmax)
i

]T
, X

(t)
c,b ∈ {0, q,−p}

nc×dmax

for t ∈ N∗ and X
(0)
c,b = 0nc×dmax . Furthermore dmax ≥ (l − 1) × 2 + 1 where l is the number of

layers of the firing graph. Finally we provide a parameter T ∈ N to the draining algorithm. It

controls the targeted number of feedback that an edge should receive before disabling its up-

date. Maintaining update’s permissions for each edge requires an operation similar to structure

updates. Finally, the draining algorithm iterates forward and backward pass until either G is

composed of two distinct connexe components, no structure update is enabled or the maximum

number of iterations Tmax ∈ N has been reached.

Algorithm 2 Draining

Input: G, T, Tmax, p, q, decay

Output: G drained

i← 0 . Initialisation

Xb,c, xb,o, xi, xc, Xm,c, Xm,i ← InitSignals()

while i < Tmax do . Core loop

xi ← nextGridState()

xc, xo ← FT(G, xi, xc) . Forward pass

Xm,c, Xm,i, xc, xo ← FP(xc, xo)

if i ≥ decay then

xf ← nextFactoreState()

Xb,c, Xb,o ← BP(Xb,c, Xb,oxf , p, q) . Backward pass

G′ ← SU(T,G,Xb,c, Xb,o, Xm,c, Xm,i)

Xb,c, Xb,i ← BT(G,Xb,c, Xb,o, Xm,c, Xm,i, )

G← G′

end if

if G.cc == 2 or not Gmask.any() then . Stop conditions

break

end if

i← i+ 1

end while

Clearly, the complexity of the algorithm is dominated by the backward transmit and structure

updates operations. A standard worst case analysis of those operations gives O(n4 × d2
max),

where n is the total number of vertices in the firing graph. Yet this analysis relies on standard

complexity time for dense matrix operations, and does not take into account neither the sparsity
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of signals and direct link matrices nor the distribution of input vertices’s activations. In practice,

we have found that the forward and backward propagation of bits and factors’s activations is

time consuming, especially when both N and T are large numbers. Thus, to reduce running

time, batch size successive bits and factors’s states are forward and backward propagated with

an efficient vectorization of the equation. The decrease in time complexity of this practical trick

is impressive and worth the gain in space complexity of the algorithm. Finally this trick may

requires to dynamically change the batch size so that treshold for the number of updates at each

edges is respected.

3.3 Analysis of the algorithm

Theorem 3.1 Given a set of sampled bits S, a set of pre-selected bits I = {b∗1, . . . , b∗i } a target

factor f and G, the firing graph built after sampling algorithm. A 5-tuple (ω,N, T, p, q) exists

such that the probability of event E: ”no input vertices of G have outcoming edges at the end of

the draining” is upper bounded. More specifically

P (E) ≤
|S|∑
j=0

pj− × PS
(
|{s ∈ S \ ωI∪{s},|I|+1,f < ω}|= j

)
Where p− = P

(
sv,f [N,T, p, q] < 0|ωI∪{s},i+1,f < ω

)
. Where v(I ∪ {s}, i+ 1), for any s ∈ S, is a

vertex of layer 1 of a firing graph G of 2 layers. Furthermore

P
(
sv,f [N,T, p, q] < 0|ωI∪{s},i+1,f < ω

)
≤ C ×max

(
exp

(
−T ×

(
δfc

σ

)2
)
, exp (−T × δfc)

)

With δf , C and c are postitive constants that depends on ω and i and f . Var[sv,p,q,f,t] = σ2.

Proof. As a reminder, in the core of this proof, we refer to d and d′ respectively to the

distribution over bits’s activations and factors’s activations. Given the arrangement of vertices

of graph G and the forward equations of the draining algorithm, the activation of any vertices

b ∈ S that will be propagated toward an output vertex, is modelled by the following characteristic

polynomial

P{b},1 · P{u,v},2

With v(S, 1) and u({b∗1, . . . , b∗i }, i). Thus, using (??), the activity of b that is propagated to the

ouptut vertex is the same than the activity of a vertex v({b∗1, . . . , b∗i , b}, i + 1) at the layer 1 of

a firing graph G′ where b∗1, . . . , b
∗
i and b compound its layer 0. Furtermore, given the time and

space consistency of the backpropagation of the feedback from the output vertex, the weight of

the outcoming edge of b, at the convergence of the draining algorithm, is either 0 or equal to

the score process of vertex v in G′ with respect to f , sv,f [N,T, p, q]. Then, the first inequality

is obtained by developping
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P (E) =

|S|∑
j=0

pj− × p
|S|−j
+ × PS

(
|{s ∈ S \ ωI∪{s},i+1,f < ω}|= j

)
≤
|S|∑
j=0

pj− × PS
(
|{s ∈ S \ ωI∪{s},i+1,f < ω}|= j

)
Where

• I = {b∗1, . . . , b∗i }

• p− = P
(
sv,f (N,T, p, q) < 0|ωI∪{s},i+1,f < ω

)
• p+ = P

(
sv,f (N,T, p, q) < 0|ωI∪{s},i+1,f ≥ ω

)
Then, we choose the value of the postive real ω such that a measure grid’s bit b+ verifies

b+ = arg min
b∈G

|ω − ωI∪{b},i+1,f |

such that ω − ωI∪{b},i+1,f > 0

And we define the vertex v+(I ∪ {b+}, i + 1) and δ+ = |ω − ωv+,f |. If vertex v is such that

ωv,f < ω then using (??) one gets

‖Pf‖d′
‖Pf‖d′+(ω − δ)× (1− ‖Pf‖d′)︸ ︷︷ ︸

φv,f

≥
‖Pf‖d′

‖Pf‖d′+(ω − δ+)× (1− ‖Pf‖d′)︸ ︷︷ ︸
φv+,f

>
‖Pf‖d′

‖Pf‖d′+ω × (1− ‖Pf‖d′)︸ ︷︷ ︸
φ

For some real δ ≥ δ+ > 0. Then, We choose the 4-tuple (N,T, p, q) as follow:

(p, q) ∈ N2 such that φ× (p+ q)− p < 0

N = −T × (φ× (p+ q)− p)

T ∈ N such that N large enough

Thus, given ωv,f < ω one can write

P (sv,f [N,T, p, q] < 0) = P

(
N +

T∑
t=1

sv,p,q,T,f < 0

)

= P

(
T∑
t=1

sv,p,q,t,f − T × E [sv,p,q,1,f ] < −N − T × E [sv,p,q,1,f ]

)
Furthermore from the definition of φ and φv,f we have

φv,f = φ+ δ × φ× φv,f ×
1− ‖Pf‖d′
‖Pf‖d′︸ ︷︷ ︸

δv,f
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Yet using equation (??) one have

E [sv,p,q,1,f ] = φv,f × (p+ q)− p

= (φ+ δv,f )× (p+ q)− p

Using N = −T × (φ× (p+ q)− p) and the definition of φ one have

−N − T × E [sv,p,q,1,f ] = −T × (p+ q)× δv,f

Thus

P (sv,f [N,T, p, q] < 0) = P

(
T∑
t=1

sv,p,q,t,f − E [sv,p,q,t,f ] < −T × (p+ q)× δv,f

)

≤ P

(
|
T∑
t=1

sv,p,q,t,f − E [sv,p,q,t,f ] |> T × (p+ q)× δv,f

)

≤ P

(
|
T∑
t=1

sv,p,q,t,f − E [sv,p,q,t,f ] |> T × δf

)

With δf = (p+ q)× δ+ × φ2 × 1−‖Pf‖d′
‖Pf‖d′

.

At this point we have to notice that {sv,p,q,t,f}t=1,...,T is a sequence of i.i.d random variables with

mean µ and variance σ2 that verifies |sv,p,q,t,f |≤ max(p, q). Thus one can apply the Chernoff

inequality as formulated in [?]. In particular, taking λ = σ−1δf we obtain

P

(
|
T∑
t=1

sv,p,q,tnf − E [sv,p,q,t,f ] |> Tδf

)
= P

(
|
T∑
t=1

sv,p,q,t − E [sv,p,q,t] |> λσ
√
T

)

≤ C ×max

(
exp

(
−T ×

(
δfc

σ

)2
)
, exp (−T × δfc)

)
With C, c some positive constant and Var[sv,p,q,t,f ] = σ2 for t ∈ {1, . . . , T}. Q.E.D.

Theorem 3.2 Given a set of sampled bits S, a set of pre-selected bits I = {b∗1, . . . , b∗i } a

target factor f and G the firing graph built after sampling algorithm. A sequence of 5-tuple

(ω,N, T, p, q) exists such that for each input vertex v of G, from which the output is reachable,

we have

P (ωv,f > ω) ≤ C ×max

(
exp

(
−T ×

(
δfc

σ

)2
)
, exp (−T × δfc)

)
(11)

Where v(I ∪ {s}, i+ 1), for any s ∈ S, is a vertex of layer 1 of a firing graph G of 2 layers and

δf , C and c are postitive constants that depends on ω and i and Var[sv,p,q,f,t] = σ2.
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Proof. As in the proof of the previous theorem, using the arrangement of vertices of G, the

property (??) and the forward and backward equations of the draining algorithm, one can show

that the weight of the outcoming edge of any vertices b ∈ S of G is either equal to 0 or to

the score process sv,f [N,T, p, q] where v({b∗1, . . . , b∗i , b}, i + 1) is a vertex at the layer 1 of a

firing graph G′ where b∗1, . . . , b
∗
i and b compound its layer 0. Furthermore, if sample b still have

outcoming edges after draining, then

P (ωv,f > ω) = PS
(
ωI∪{b},i+1,f > ω

)
× P

(
sv,f (N,T, p, q) > 0|ωI∪{b},i+1,f > ω

)
Then, we choose the value of the postive real ω such that a bit b− verifies

b− = arg min
b∈G

|ω − ωI∪{b},f |

such that ω − ωI∪{b},f < 0

And we define the vertex v−(I ∪ {b−}, i + 1) and δ− = |ω − ωv−,f |. If v is such that ωv,f < ω

then using (??) we have

‖Pf‖d′
‖Pf‖d′+(ω + δ)× (1− ‖Pf‖d′)︸ ︷︷ ︸

φv,f

≤
‖Pf‖d′

‖Pf‖d′+(ω + δ−)× (1− ‖Pf‖d′)︸ ︷︷ ︸
φv−,f

<
‖Pf‖d′

‖Pf‖d′+ω × (1− ‖Pf‖d′)︸ ︷︷ ︸
φ

for some δ ≥ δ− > 0. Then defining the 4-tuple (N,T, p, q) as

(p, q) ∈ N2 such that φ× (p+ q)− p < 0

N = −T × (φ× (p+ q)− p)

T ∈ N such that N large enough

Then, reproducing the same development as it was done in the proof of previous theorem, one

can derive a convenient form to easily apply the Chernoff inequality.

P (sv,f (N,T, p, q) > 0|ωv,f > ω) ≤ P

(
|
Ti−1∑
t=0

sv,p,q,t,f − E [sv,p,q,t,f ] |> T × δf

)
With δf = (p + q) × δ− × φ2 × 1−‖Pf‖d′

‖Pf‖d′
. Then using the Chernoff inequality as written in [?]

using λ = σ−1δf we obtain

P

(
|
T−1∑
t=0

sv,p,q,t,f − E [sv,p,q,t,f ] |> T × δf

)
= P

(
|
T−1∑
t=0

sv,p,q,t,f − E [sv,p,q,t,f ] |> λσ
√
T

)

≤ C ×max

(
exp

(
−T ×

(
δfc

σ

)2
)
, exp (−T × δfc)

)
With C, c some positive constant and Var[sv,p,q,t,f ] = σ2. Q.E.D
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3.4 Limit of the generic case

The combination of theorems shows that the association of sampling and draining with the right

choice of 5-tuple (ω,N, T, p, q) gives a convenient tool to select measure grid’s bits with purity

coefficient lower than a target ω. Furthermore, when T → +∞, the correct selction is almost

certain, which highlights the trade-off between efficiency and complexity of the algorithm that

is embedded in the choice of ω and T , on which depends N, p and q. This generic procedure

and its analysis deliver a strong framework that eases the derivation of more specific results

that may be obtained under specific modelling of latent factors’s activations and measure grid

signatures. Nevertheless, it leaves two fundamental points clueless

• No possibility to quantify further the effectiveness of the sampling strategy

• No specific procedure or heuristics to choose positive real value ω

In the rest of this paper, we present two particular cases of factor’s and measure grid’s modelling

that enables a better quantification of the sampling strategy and stronger heuristics for the choice

of ω.

4 Case of signal plus noise

This particular case is designed to be easy to analyze. We first define the statistical modelling of

factors and bits’s activations. Then, we quantify the sampling strategy and justify a choice for

the 5-tuple (ω, T,N, p, q). Finally, we present simulations and provide discussion of the results

obtained with this special case.

4.1 Statistical modelling

In this particular case, we assume that the target factor f is linked to some |G(f)|= k measure

grid’s bits and activates with probability pf . We also assume that bits of the measure grid are

identically and independently subject to a noisy activation with probability pN . We may see

noisy activations as the result of n noisy latent factors, linked to exactly 1 bit of the measure

grid, that is K = n+ 1. Under this model, the probability for a bit b ∈ G to activate is defined

as

P (”b active”) =

pf + pN × (1− pf ), if b ∈ G(f∗)

pN , Otherwise

As a consequence, for any I ∈ S(G) such that |I∩G(f)|= i and j = |I|−i if we set x ∈ F2({I},G),

the distribution over measure grid bits’s activations is defined as

dx =

p
i+j
N × (1− pN )n−i−j × (1− pf ) + pjN × (1− pN )n−k−j × pf , if i = k

pi+jN × (1− pN )n−i−j × (1− pf ), Otherwise

In the rest of the section, we will always refer to this distribution as d.
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4.2 Evaluation of bits

Let G be a firing graph with a layer 0 composed of measure grid’s bits. Then, the precision of

a vertex v(I, |I|) of layer 1 of G, with respect to f , depends only on |I| and |I ∩ G(f)|. Indeed,

if |I ∩ G(f)|= i then

φv,f =
pf

pf + (1− pf )× piN
With identification of terms using (??) we have ωv,f = piN and using previously defined distri-

bution, one finds that µv,f = p
|I|−i
N , νv,f = p

|I|
N . Besides, given a set of bits I such that I ⊂ G(f),

if b ∈ G(f) \ I, the precision of vertex v(I ∪ {b}, |I|+1) with respect to f is

φv =
pf

pf + (1− pf )× p|I|+1
N

if b /∈ G(f)

φv =
pf

pf + (1− pf )× p|I|N

4.3 Sampling Strategy

In this particular case we follow the generic sampling procedure S with parameter pS . Thus,

using the previously defined statistical distribution of bits’s activations, if we denote S, the set

of sampled bits using S, the distribution of the cardinal of S is

P (|S|= s) =


n− k
s− k

× ps−kN × (1− pN )n−k−s × pS , if s ≥ k

0, otherwise

Thus its expected size is E [|S|] = k+ (n− k)× pN × pS . Furthermore if I = {b∗1, . . . , b∗i } ∈ S(G)

is some set of pre-selected bits and S is a set of bits sampled using S, a positive real ωi exists

such that

PS
(
|{s ∈ S \ ωI∪{s},|I|+1,f < ωi}|= j

)
= PS (|{s ∈ S \ s ∈ G(f)|= j)

=

(
|G(f)|−i

j

)
× pjS × (1− pS)|G(f)|−i−j

4.4 Identification of factors

First, in the case of a single sampled firing graph, one can see that bits’s purity coefficients take

only two values with respect to f

ω{b},1,f =

pN , if b ∈ G(f)

1, otherwise
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Thus if we choose

ω0 =
(1 + pN )

2

It maximizes the purity margin defined as

δ0 =
(ω0 − ω{b},1,f ) + (ω{b′},1,f − ω0)

2
=

(1− pN )

2

Where b ∈ G(f) and b′ /∈ G(f). In the case of a joint sampled firing graph in which a set

I = {b∗1, . . . , b∗i } of i ∈ N∗ pre-selected bits that verify ∀b ∈ I, b ∈ G(f), remaining bit’s purity

coefficients with respect to f can take again two values

ωI∪{b},i+1,f =

pi+1
N , if b ∈ G(f)

piN , otherwise

Thus if we choose

ωi =
(1 + pN )× piN

2

it maximizes the purity margin defined as

δi =
(ωi − ωI∪{b},i+1,f ) + (ωI∪{b′},i+1,f − ωi)

2
=

(1− pN )× piN
2

Where b ∈ G(f) and b′ /∈ G(f). Finally we define the 5-tuple (Ni, Ti, p, q) as

(p, q) ∈ N2 such that φi × (p+ q)− p ≤ 0 and φ′i × (p+ q)− p > 0

N = −T × (φ× (p+ q)− p)

T ∈ N such that N large enough

Where t ∈ N, φi =
pf

pf+ωi×(1−pf ) and φ′i =
pf

pf+(ωi−δi)×(1−pf ) .

4.5 Simulation

The signal plus noise model is implemented in python and mainly uses standard numpy and

scipy modules to generate random signal that fit its probabilistic model. More details about the

implementation can be found in appendix B. We generate n = 1000 bits that randomly activate

with probability pN and we choose randomly |G(f)|= 50 bits that are linked to a latent factor

that activates with probability pf = 0.3. Finally we build the single sampled firing graph using

pS = 1.
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(a) pN = 0.3, (p, q) = (1, 1) (b) pN = 0.5, (p, q) = (2, 3)

(c) pN = 0.7, (p, q) = (3, 5) (d) pN = 0.9, (p, q) = (5, 11)

Figure 6: Observation of the score process for different SNR models T = 500

Each subplot of figure ?? shows the weight of outcoming edges of sampled vertices. Blue lines

show the weight of edges outcoming from sampled bit b ∈ G(f) and red lines correspond to

the weight of edges outcoming from sampled bit b /∈ G(f). Finally the black horizontal line

represents the theoretical mean value of sv,f [N,T, p, q] of a vertex with characteristic polynome

Pv = P{b},1, with b ∈ G(f). As theory suggests, we can see two distinct phenomenons, blues

lines converge around theoretical mean for process of bits linked to the target factor and red

lines converge to 0. However, the higher is pN , the less noticeable is the distinction between

each process. This is explained by the fact that the higher is pN , the closer are the precision of

bits linked to target factor f and the precision of noisy bits. Futhermore the later observation

induces a high value of p + q which result in a more volatile score process. For the second

simulation we use n = 1000, |G(f)|= 50, pf = 0.3, T = 200 and pS = 0.5. Yet at the end of the

draining we choose all the input vertices of the firing graph that still have an outcoming edge

and use their combined activation as an estimator of the target factor’s activation. We then

measure their precision and recall over 100 repetion for each SNR ratio
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PN Mean φ Standard deviation φ Mean ψ Standard deviation ψ Number of fails

0.3 1.0 0.00 0.87 0.30 0

0.5 1.0 0.03 0.66 0.42 0

0.7 0.97 0.13 0.43 0.46 4

0.9 0.75 0.14 0.13 0.25 19

Table 1: Evaluation of naive factor’s activation estimation, T = 200, 100 repetitions

Table ?? shows quality indicators of the estimator for different SNR ratio. The two first columns

give respectively the mean and standard deviation of the precision of the estimator. The two

following columns are respectively the mean and the standard deviation of the recall of the

estimator. Finally the last column is the number of experiments that ended without any input

vertices having a path towards the output, so that the construction of an estimator is not possible.

Again, we see that the quality of the estimator drops as the theoretical precision between noisy

bits and factor’s bits are close to each other. Yet it reveals that this naive estimator, for a

reasonable SNR ratio, is still efficient to predict the activation of target latent factor. Finally,

we simulate the signal plus noise model in the settings of joint sampled firing graph. We use a

measure grid of n = 1000 bits from which we sampled randomly |G(f)|= 50 bits linked to target

factor f that activates with probability pf = 0.3 and we set pN = 0.6. Finally we built the

joint sampled firing graph by pre-selecting randomly 5 bits linked to the factor and running the

sampling algorithm described previously using pS = 1.

Figure 7: Observation of the score process in a joint sampled firing graph with T = 500 and

(p, q) = (7, 1)
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In this case, we obtain N = 7 and ω5 ' 0.062 when following the procedure described in previous

section. As for the first experiment, blue lines show the weight of edges outcoming from sampled

bit b ∈ G(f) and red lines correspond to the weight of edges outcoming from sampled bit b /∈ G(f).

The black horizontal line represents the theoretical mean value of sv,f [N,T, p, q], where v has

characteristic polynome Pv = P{b1,...,b5,b},5, with {b1, . . . , b5} the set of pre-selected bits and

b ∈ G(f). The simulation validate the expectation from theory and the high value of p + q

explains the high volatility of score processus.

5 Case of sparse measure grid

This particular case is more complex than the previous one. We first define the statistical

signature of factors and bits’s activations. Then we quantify the sampling strategy and justify

a choice for the 5-tuple (ω, T,N, p, q). Finally, we present simulations and provide discussion of

results obtained with this particular case.

5.1 Statistical modelling

Latent factor activation

We assume that each of the K latent factors activates independantly with probability pf . As

a consequence, for any I ∈ S(F), if we define x such that x ∈ F2({I},F), we can define the

distribution of factor’s activation as

d′x =

(
|I|
K

)
× p|I|f × (1− pf )K−|I|

Measure grid activation

We assume two major properties of activations of measure grid’s bits.

• For each factor f ∈ F , each bit b ∈ G has equal probability pg to belong to G(f).

• For each factor f ∈ F , for each couple b1, b2 ∈ G2, events ”b1 ∈ G(f)” and ”b2 ∈ G(f)” are

independent.

As a consequence the probability for a bit b to activate, given that every factor of some set

{f1, . . . , fk} ⊂ F is active, writes

P (b active |f1, . . . , fk active) =
k∑
i=1

(
k

i

)
× pig × (1− pg)k−i

= 1− (1− pg)k

The above quantity depends only on the number of active latent factors. Thus, for any I ∈ S(G),

if we define x ∈ F2(S(G),G), we can define the distribution of bits’s activations as
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dx =
K∑
k=1

[(
K

k

)
× pkf × (1− pf )K−k

]
×
[
pig|k × (1− pg|k)n−i

]
With i = |I| and pg|k = P (b active |f1, . . . , fk active).

5.2 Evaluation of bits

Let G be a firing graph whose layer 0 is composed of measure grid’s bits. Given a target factor

f , the precision with respect to f of a vertex v({b}, 1) of the layer 1 of G depends on wether

b ∈ G(f) and on |G−1(b)|. Indeed, if b ∈ G(f) and |G−1(b)|= l, l ∈ {1, . . . ,K}, it will be said to

have a purity rank of l and its precision with respect to f writes

φv,f =
pf

pf + (1− pf )× ωl
where ωl = 1− (1− pf )l−1. If b′ /∈ G(f) the precision of v′({b′}, 1) with respect to f writes

φv′,f = pf

Futhermore, if we have a vertex v(I, |I|) such that ∀b ∈ I, b ∈ G(f) and minb∈I |G−1(b)|= l, then

the precision of v with respect to f verifies

φv,f ≤
pf

pf + ω−l × (1− pf)

With

ω−l =
K∑

k=K−l−1

(
K

k

)
pkf × (1− pf )K−k

The minimum purity coefficient one can obtained with bits that verifies b ∈ G(f) and |G−1(b)|= l.

That is, the case of a vertex v(I, |I|) with I composed of every possible

(
K

l

)
such bits.

5.3 Sampling Strategy

We follow the generic sampling procedure S with parameter pS . Although it is not hard to

derive key quantification such as E [|S|] or probabilities to sample bits linked to a target factor

f under this modelling, generic formulas are not elegant and present not much interest in this

simulation.

5.4 Identification of factors

First, in the case of a single sampled firing graph, for any grid’s bits linked to factor f , there

is only K different purity coefficients possible. Thus we may set ω to ωl, using l reasonably

small to differentiate lower purity rank from greater purity rank samples. In the case of a joint

sampled graph, where a set of I = {b∗1, . . . b∗i } were pre-selected then the choice of ω is not

trivial and is hard to be efficiently and generically derived. Let ωI,|I|,f the purity coefficient of
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the pre-selected set of bits we set ω = ωI,|I|,f − δ where δ ∈ R should be chosen with caution.

Finally we choose the 5-tuple {(ω,N, T, p, q) as

(p, q) ∈ N2 such that φ× (p+ q)− p < 0

N = −T × (φ× (p+ q)− p)

T ∈ N such that N large enough

Where φ =
pf

pf+ω×(1−pf ) .

5.5 Simulation

The sparse measure grid model is implemented using python and the standard python numpy

and scipy modules to generate random signal that fit its probabilistic model. In our case we

generate n = 1000 bits with K = 10 latent factors that activate with probability pf = 0.3

and we link measure grid’s bits independently with probability pg = 0.3. Finally we built the

single sampled firing graph running the sampling algorithm described previously, using pS = 1.

Finally, we set ω = ω10, the higher purity coefficient for bits linked to the target factor f .

Figure 8: Observation of the score process in a single sampled firing graph with T = 1000 and

(p, q) = (1, 1)

We clearly see a rapid differentiation of score processus according to their purity rank. We can

also observe that, at the end of draining, the higher the purity coefficient is, the closer are weights
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of corresponding edges. Finally, the behaviour of score processus validates the efficiency of the

draining algorithm to rank bits of the measure grids blindly, in an attempt to identify latent

factors. The second experiment with the sparse measure grid model aims to give intuition on

the choice of δ used for draining a joint sampled firing graph. As for the previous simulation, we

generate n = 1000, bits with K = 10 latent factors that activate with probability pf = 0.3 and

we link measure grid’s bits independently with probability pg = 0.3. Then we choose randomly

i = 5 bits, denoted by I = {b∗1, . . . , b∗i }, with purity rank 4 with respect to the target factor

f . Finally we sampled and built the joint sampled firing graph using pS = 1 and the set of

pre-selected bits I. The procedure described in the previous section to choose the target purity

coefficient consists in estimating the purity coefficient ω̂I,|I|,f and to set δ so that ω = ω̂I,|I|,f −δ.

(a) δ = 0. (b) δ = 10−2

(c) δ = 5× 10−2 (d) δ = 10−1

Figure 9: Observation of sampled bit’s score processus in a joint sampled firing graph i = 5,

T = 500 and (p, q) = (1, 1)

In each simulation, ω̂I,|I|,f has been estimated using 1000 samples and we use T = 500. Fur-

thermore, each figure corresponds to a different value of δ that induces different values of ω, set

as ω = ω̂I,|I|,f − δ. As for the first experiment, the different colored lines in each subfigure show

the weight of edges outcoming from sampled bits with different purity ranks. As expected, we
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can see that the higher δ is, the more discriminative the draining procedure is. If δ is set to 0,

then every sampled bits will remain connected in the firing graph after draining, which is not of

great interest. Yet, if δ is set too high we may end with two connexe components, which is not

desirable neither. Thus, the experiment confirms the difficulties that we may face choosing the

right value for δ.

6 Discussion

This paper has presented an algorithm that consists in a generic optimisation of a firing graph,

in an attempt to solve the abstract task of identifying latent factor’s activations. Furthermore

it has provided theoretical certitude on the effectivness of the procedure. However, the iterative

optimisation method associated with the diversity and flexibility of the architecture of a firing

graph opens doors to further applications, notably in the field of inverse problem and in the

very hype field of machine learning. Indeed in supervised classification, we are given a dataset

composed of features that may be numerical or categorical description of samples and targets

that specify the class of samples. If we assume that the activation of a target is a combination

of latent factors’s activations and that we operate the minimum transformation of features so

that they take the form of a measure grid, a light layer of procedures could turn our solution

into a supervised classificator. The specificity of such a learner would give it an interesting

position in the supervised learning landscape. Indeed, its iterative optimisation and flexible

architecture could make it an adaptative learner, that scale to large dataset, with minimum

processing work on raw data, in the manner of a neural network. Yet unlike neural network the

algorithm handle very efficiently categorical or sparse feature space. Furthermore, compared to

the most advanced tree based classification, its flexible architecture is more suitable to learning

update and on-the-fly evaluation or addition of new features. Finally, given the hype granted to

the field of machine learning nowaday, both in the scientific comunity and civil society, it would

be common sense to orient this piece of research to this field.
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Appendices

A Properties

Partition

Let v1(I, l0), v2(J, 0) and v3(K, 0), be three vertices at the layer 1 of some firing graph, with

the same input domain G such that I = J ∪ K and J ∩ K = ∅. result (??) stands that

∀x ∈ F2(S(G),G)

P l0I [x] =

|I|∑
l=l0

|J |∑
j=0

PJ,j [x] · PK,l−j [x]

Proof. The statement above can also be written

PI,l [x] =

|J |∑
j=0

PJ,j [x] · PK,l−j [x]

∀ l ∈ {l0, . . . , |I|}, now we propose a simple proof by contradiction. Let l ∈ {l0, . . . , |I|},
X ∈ S(G) and x ∈ F2({X},G) such that

PI,l [x] = 1

|J |∑
j=0

PJ,j [x] · PK,l−j [x] = 0

Yet, if J and K is a partition of I and |I ∩X|= l, then (j∗, k∗) ∈ {0, . . . |J |} × {0, . . . |K|} exists

such taht

|X ∩ J | = j∗

|X ∩K| = k∗

j∗ + k∗ = l

Thus for x ∈ F2({X},G)

PJ,j∗ [x] · PK,k∗ [x] = 1

which contradicts our first assumption. Let l ∈ {l0, . . . , |I|}, X ∈ S(G) and x ∈ F2({X},G) such

that
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PI,l [x] = 0

|J |∑
j=0

PJ,j [x] · PK,l−j [x] = 1

Thus above statement implies that j∗ ∈ {0, . . . ,min(l, |J |)} exists such that

PJ,j∗ [x] · PK,l−j∗ [x] = 1

Thus |X ∩ J |= j∗ and |X ∩K|= l − j∗. Since J and K is a partion of I we must have

|X ∩ I|= |X ∩ J |+|X ∩K|= l

As a consequence for x ∈ F2({X},G), PI,l [x] = 1 and give us the contradiction.

Result (??) is a particular case of result (??)

Decomposition

Let G be a firing graph with layer 0 composed of G. Let u(I, lu), v(I ′, lv) such that I ∩ I ′ = ∅
be vertices of layer 1 and w({u, v}, 2) be a vertex of layer 2. Let K ∈ ∪l∈{lv ,...,|I′|}S(I ′, l),

x ∈ F2(S(G),G) and x′ =
[
Pu[x] Pv[x]

]
, the result (??) stands that

PK,|K| [x] · P{u,v},2
[
x′
]

=

|I|∑
l=lu

∑
J∈S(I,l)

PJ∪K,l+|K| [x]

Proof. The proof the above statement is derived by a straight forward development of the

equation, first using result (??) and the fact that K and I ′ \K is a partition of I ′ we can write

P{u,v},2
[
x′
]

=

 |I|∑
l=lu

PI,l [x]

 ·
 |I′|∑
l=lv

PI′,l [x]


=

 |I|∑
l=lu

PI,l [x]

 ·
 |I′|∑
l=lv

|K|∑
k=0

PK,k [x] · PI′\K,l−k [x]



Thus
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PK,|K| [x] · P{u,v},2
[
x′
]

= PK,|K| [x] ·

 |I|∑
l=lu

PI,l [x]

 ·
 |I′|∑
l=lv

|K|∑
k=0

PK,k [x] · PI′\K,l−k [x]


=

 |I|∑
l=lu

PI,l [x]

 ·
 |I′|∑
l=lv

PK,|K| [x] · PI′\K,l−|K| [x]


=

 |I|∑
l=lu

PI,l [x] · PK,|K| [x]

 · |I′|−|K|∑
l=0

PI′\K,l [x]︸ ︷︷ ︸
=1

=

|I|∑
l=lu

PI,l [x] · PK,|K| [x]

The last line is equal to
∑|I|

l=lu

∑
J∈S(I,l) PJ∪K,l+|K| [x] and thus the proof is achieved.

Result (??) is a particular case of result (??)

Let G be a firing graph with layer 0 composed by measure grid’s bits G and f ∈ F denote some

target factor that is linked to some bit of the measure grid. The distribution of activation of

latent factors and measure grid’s bits will be denoted d and d′ and the event ”factor f is active”

will be denoted by e. Furthermore, let v be some vertex of G whose characteristic polynome

respects Pv = P lI with (I, l) ∈ S(G), {1, . . . , |I|} and f ∈ F some factor.

Precision of vertex

The result (??) stands that the precision of v with respect to f writes

φv,f =
‖Pf‖d′

‖Pf‖d′+(1− ‖Pf‖d′)× ωI,l,f
Proof. First, starting from the defintion of φv,f

φv,f = φI,l,f =
‖P lI‖d,e
‖P lI‖d

Thus using P∗ = PG(f),|G(f)| one have

φv,f =
〈P lI ,P∗〉d,e + 〈P lI , P̄∗〉d,e

〈P lI ,P∗〉d,e + 〈P lI , P̄∗〉d,e + 〈P lI ,P∗〉d,ē + 〈P lI , P̄∗〉d,ē
Yet 〈P lI , P̄∗〉d,e = 0

φv,f =
〈P lI ,P∗〉d|e × ‖Pf‖d′

〈P lI ,P∗〉d|e × ‖Pf‖d′+
(
〈P lI ,P∗〉d|ē + 〈P lI , P̄∗〉d|ē

)
× ‖P̄f‖d′

Finally by identification of term
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φv,f =
µI,l,f × ‖Pf‖d′

µI,l,f × ‖Pf‖d′+νI,l,f × (1− ‖Pf‖d′)
Which gives the expected result.

The result (??) stands that if µv,f = 1 we have

φv,f ≤
‖Pf‖d′

‖Pf‖d′+(1− ‖Pf‖d′)× ωG(f),|G(f)|,f

Proof. The result (??) can be proven by simple contradiction, suppose there is a tuple (I, l0) 6=
(G(f), |G(f)|) such that

µI,l0,f = 1

νI,l0,f < νG(f),|G(f)|,f

First, denoting PG(f),|G(f)| = P∗ and using (??) we have

〈P l0I ,P∗〉d =

|I|∑
l=l0

I∩G(f)∑
k=0

〈PI∩G(f),k · PI\G(f),l−k,P∗〉d

=

|I|∑
l=l0

I∩G(f)∑
k=0

∑
x∈F2(S(G),G)

PI∩G(f),k[x] · PI\G(f),l−k[x] · P∗[x]× dx

=
∑

x∈F2(S(G),G)

P∗[x] ·

 |I|∑
l=l0

PI\G(f),l−|I∩G(f)|[x]

× dx
Where d is any well defined ditribution on F2(S(G),G). Thus, we have

µI,l0,f =
∑

x∈F2(S(G),G)

P∗[x] ·

 |I|∑
l=l0

PI\G(f),l−|I∩G(f)|[x]

× dx|e
As a consequence, in order to have µI,l0,f = 1 we most have {PI\G(f),l−|I∩G(f)|}l∈{l0,...,|I|} to be

a partion of F2(S(G),G). Thus l0 ≤ |I \ G(f)|. On the other end the precision coefficient writes

νI,l0,f =
∑

x∈F2(S(G),G)

P∗[x] ·

 |I|∑
l=l0

PI\G(f),l−|I∩G(f)|[x]

× dx|ē + 〈P l0I , P̄∗〉d|ē

so if l0 ≤ |I \ G(f)|

νI,l0,f = νG(f),|G(f)|,f + 〈P l0I , P̄∗〉d|ē
≥ νG(f),|G(f)|,f

Since 〈P l0I , P̄∗〉d|ē ≥ 0, which lead to a contradiction.
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Recall of vertex

The result (??) stands that the recall of v with respect to f is

ψv,f = µI,l,f

Furthermore, the result (??) stands that

0 ≤ φv,f ≤ 1

Where right equality is reached whenever v is connected to a set of measure grid’s bit I ∈ G,

with level l0 = |I| such that I ⊂ G(f).

Proof. From the definition of ψv,f we have

ψvf = ψI,l,f =
‖P lI‖d,e
‖PG(f)‖d,e

Thus using P∗ = PG(f),|G(f)| one have

ψvf =
〈P lI ,P∗〉d,e + 〈P lI , P̄∗〉d,e

‖Pf‖d′

Yet 〈P lI , P̄∗〉d,e = 0, thus

ψvf =
〈P lI ,P∗〉d,e
‖Pf‖d′

=
〈P lI ,P∗〉d|e × ‖Pf‖d′

‖Pf‖d′
= µI,l,f

Finally the result (??) directly comes with the definition.

vertex’s score process

Let sv,f [N,T, p, q] be the score process of v with respect to f , for some N,T, p, q ∈ N4. The

result (??) stands that

E [sv,f [N,T, p, q]] = N + T × (qs × (p+ q)− p) = N + T × (φI,l,f × (p+ q)− p)

Proof. From the definition of the score process we have

sv,f [N,T, p, q] = N +
T∑
t=1

sv,p,q,f,t

with {sv,p,q,f,t}t=1,...,T a sequence of i.i.d such that
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sv,p,q,t,f =

q, with probability qs = qr
qr+qp

−p, with probability 1− qs

Thus we can write

E [sv,f [N,T, p, q] = N +
T∑
t=1

E [sv,p,q,t,f ]

= N +
T∑
t=1

q × qs − p× (1− qs)

= N +
T∑
t=1

qs × (p+ q)− p

= N + T × (qs × (p+ q)− p)

Yet qs = qr
qr+qp

, with qr = ‖Pv‖d,e and qp = ‖Pv‖d,ē, thus

qs =
‖Pv‖d,e

‖Pv‖d,e+‖Pv‖d,ē
=
‖Pv‖d,e
‖Pv‖d

Which is the definition of φv,f that is equal to φI,l,f by definition.

Furthermore the result (??) stands that,

Var [sv,p,q,t,f ] = (p+ q)2 × φI,,l,f × (1− φI,l,f )

Proof. Using the result of previous proof we first compute E
[
s2
v,p,q,t,f

]

E
[
s2
v,p,q,t,f

]
= q2 × qs + p2 × (1− qs)

= q2 × φv,f + p2 × (1− φv,f )

= φv,f × (q + p)× (q − p) + p2

Furthermore we have seen previously that E [sv,p,q,t,f ] = φv,f × (p+ q)− p, thus

E [sv,p,q,t,f ]2 = φv,f × (p+ q)× (φv,f × (p+ q)− 2× p) + p2

Finally

Var [sv,p,q,t,f ] = E
[
s2
v,q,p,t,f

]
− E [sv,p,q,t,f ]2 = (q + p)2 × φv,f × (1− φv,f )

Which gives the expected result since φv,f = φI,l,f by definition.
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B Implementation

The code that has been used to obtain results of simulations can be found on github at ht-

tps://github.com/pierreGouedard/deyep under the branch publi 1. The code is exclusively writ-

ten in python, is compatible with interpreter python2.7 and python3 and requires python mod-

ules numpy and scipy. Code for simulation can be found under

• tests/signal plus noise 1.py

• tests/signal plus noise 2.py

• tests/signal plus noise 3.py

• tests/sparse identification.py

• tests/sparse identification 2.py

where the list below are relative to the root directory of the project. The code in the branch

publi 1 has not changed since the submision of this paper, however, the code in other branch,

notably master, may have been optimised, augmented or refactored.
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