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ABSTRACT

Despite the eminent successes of deep neural networks, many architectures are
often hard to transfer to irregularly-sampled and asynchronous time series that
occur in many real-world datasets, such as healthcare applications. This paper
proposes a novel framework for classifying irregularly sampled time series with
unaligned measurements, focusing on high scalability and data efficiency. Our
method SEFT (Set Functions for Time Series) is based on recent advances in
differentiable set function learning, extremely parallelizable, and scales well to
very large datasets and online monitoring scenarios. We extensively compare our
method to competitors on multiple healthcare time series datasets and show that it
performs competitively whilst significantly reducing runtime.

1 INTRODUCTION

With the increasing digitalization, measurements over extensive time periods are becoming ubiq-
uitous. Nevertheless, in many application domains, in particular healthcare (Yadav et al., 2018),
measurements might not necessarily be observed at a regular rate or could be misaligned. Moreover,
the presence or absence of a measurement and its observation frequency may carry information of
its own (Little & Rubin, 2014), such that imputing the missing values is not always desired.

While some algorithms can be readily applied to datasets with varying length, these methods usu-
ally assume regular sampling of the data and/or require the measurements across modalities to
be aligned/synchronized, preventing their application to the aforementioned settings. Existing ap-
proaches for unaligned measurements, by contrast, typically rely on imputation to obtain a regularly-
sampled version of a data set for classification. Learning a suitable imputation scheme, however,
requires understanding the underlying dynamics of a system; this task is significantly more compli-
cated and not necessarily required when classification is the main goal. Furthermore, even though
a decoupled imputation scheme followed by classification is generally more scalable, it may lose
information that is relevant for prediction tasks. Approaches that jointly optimize both tasks add a
large computational overhead, thus suffering from poor scalability or high memory requirements.

Our method is motivated by the understanding that, while RNNs and similar architectures are well
suited for capturing and modelling the dynamics of a time series and thus excel at tasks such as
forecasting, retaining the order of an input sequence can even be a disadvantage in classification
scenarios (Vinyals et al., 2015). We show that by relaxing the condition that a sequence must be
processed in order, we can naturally derive an architecture that directly accounts for (i) irregular
sampling, and (ii) unsynchronized measurements. Our method SEFT: Set Functions for Time Se-
ries, extends recent advances in set function learning to irregular sampled time series classification
tasks, yields state-of-the-art performance, is highly scalable and improves over current approaches
by almost an order of magnitude in terms of runtime.

With SEFT, we propose to rephrase the problem of classifying time series as classifying a set of
observations. We show how set functions can be exploited to learn classifiers that are naturally ap-
plicable to unaligned and irregularly sampled time series, leading to state-of-the-art performance in
irregularly-sampled time series classification tasks. More precisely, SEFT can classify irregular and
unaligned time series in time linear in the number of observationsm, as compared to theO(m logm)
runtime of competitor methods that rely on imputation strategies (Li & Marlin, 2016). Furthermore,
our approach is highly parallelizable and can be readily extended to an online monitoring setup with
up to thousands of patients.
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2 RELATED WORK

This paper focuses on classifying time series with irregular sampling and potentially unaligned mea-
surements. We briefly discuss recent work in this field; all approaches can be broadly grouped into
the following three categories.

Irregular sampling as missing data While the problem of supervised classification in the presence
of missing data is closely related to irregular sampling on time series, there are some core differ-
ences. Missing data is usually defined with respect to a number of features that could be observed,
whereas time series themselves can have different lengths and a “typical” number of observed val-
ues might not exist. Generally, an irregularly-sampled time series can be converted into a missing
data problem by discretizing the time axis into non-overlapping intervals, and declaring intervals in
which no data was sampled as missing. This approach is followed by Marlin et al. (2012), where
a Gaussian Mixture Model was used to do semi-supervised clustering on electronic health records.
Similarly, Lipton et al. (2016) discretize the time series into intervals, aggregate multiple measure-
ments within an interval, and add missingness indicators to the input of a Recurrent Neural Network.
By contrast, Che et al. (2018) present several variants of the Gated Recurrent Unit (GRU) combined
with imputation schemes. Most prominently, the GRU-model was extended to include a decay
term (GRU-D), such that the last observed value is decayed to the empirical mean of the time series
via a learnable decay term. While these approaches are applicable to irregularly-sampled data, they
either rely on imputation schemes or empirical global estimates on the data distribution (our method,
by contrast, requires neither), without directly exploiting the global structure of the time series.

Frameworks supporting irregular sampling Some frameworks support missing data. For exam-
ple, Lu et al. (2008) directly defined a kernel on irregularly-sampled time series, permitting sub-
sequent classification and regression with kernel-based classifiers or regression schemes. Further-
more, Gaussian Processes (Williams & Rasmussen, 2006) constitute a common probabilistic model
for time series; they directly permit modelling of continuous time data using mean and covariance
functions. Along these lines, Li & Marlin (2015) derived a kernel on Gaussian Process Posteriors,
allowing the comparison and classification of irregularly-sampled time series using kernel-based
classifiers. Nevertheless, all of these approaches still rely on separate tuning/training of the impu-
tation method and the classifier so that structures supporting the classification could be potentially
missed in the imputation step.

End-to-end learning of imputation schemes The following methods are composed of two modules
with separate responsibilities, namely an imputation scheme and a classifier, where both components
are trained discriminatively and end-to-end using gradient-based training. Recently, Li & Marlin
(2016) proposed the Gaussian Process Adapters (GP Adapters) framework, where the parameters
of a Gaussian Process Kernel are trained alongside a classifier. The Gaussian Process gives rise to
a fixed-size representation of the irregularly-sampled time series, making it possible to apply any
differentiable classification architecture. This approach was further extended to multivariate time
series by Futoma et al. (2017) using Multi-task Gaussian Processes (MGPs) (Bonilla et al., 2008),
which allow correlations between the imputed channels. Moreover, Futoma et al. (2017) made the
approach more compatible with time series of different lengths by applying a Long Short Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) classifier. Motivated by the limited scalability
of approaches based on GP Adapters, Shukla & Marlin (2019) suggest an alternative imputation
scheme, the interpolation prediction networks. It applies multiple semi-parametric interpolation
schemes to obtain a regularly-sampled time series representation. The parameters of the interpola-
tion network are trained with the classifier in an end-to-end setup.

3 PROPOSED METHOD

Our paper focuses on the problem of time series classification of irregularly sampled and unaligned
time series. We first define the required terms before describing our models

3.1 NOTATION & REQUIREMENTS

Definition 1 (Time series). We describe a time series of an instance i as a set Si of M := len(Si)
observations sj such that Si := {s1, . . . , sM}. We assume each observation sj to be represented

2



Under review as a conference paper at ICLR 2020

m1

m2

t1 t5 t10

m3

Multivariate Time Series





(t3, z3,m1),
(t5, z5,m1), . . .
(t1, z1,m2),
(t4, z4,m2), . . .
(t2, z2,m3), . . .
(t11, z11,m3)





Set Encoding

f′
f′

f′
agg

attn

Embedding, Aggregation,

and Attention

Classification

Figure 1: Schematic overview of SEFT’s architecture. The first panel exemplifies a potential in-
put, namely a multivariate time series, consisting of 3 modalities m1,m2,m3. We treat the jth

observation as a tuple (tj , zj ,mj), comprising a time tj , a value zj , and a modality indicator mj .
All observations are summarized as a set of such tuples. Each set of tuples belonging to the same
modality is then separately embedded (f ′) and subsequently aggregated (agg). An attention mech-
anism (attn) as described in Section 3.3 is then applied to learn the importance of individual and
consecutive observations. Respective query matrices for 2 attentions head are illustrated in purple
and orange blocks. The results of each attention head are then concatenated and used as the input
for final classification layers.

as a tuple (tj , zj ,mj), consisting of a time tj ∈ R+, an observed value zj ∈ R, and a modality
indicator mj ∈ {1 . . . D}, where D represents the dimensionality of the time series. We write
Ω ⊆ R+ × R × N+ to denote the domain of observations. An entire time series can thus be
represented as

Si := {(t1, z1,m1) , . . . , (tM , zM ,mM )} , (1)

where for notational convenience we omitted the index i.

We leave this definition very general on purpose, allowing the length of each time series (comprising
all channels of one instance) to differ, since our models are capable of handling this. Likewise, we
neither enforce nor expect all time series to be synchronized, i.e. being sampled at the same time, but
rather we permit unaligned or non-synchronized observations in the sense of not having to observe
all modalities at each time point. Time series are collected in a dataset D.

Definition 2 (Dataset). We consider a dataset D to contain n time series. Elements of D are tuples,
i.e. D := {(S1, y1), . . . , (SN , yN )}, where Si denotes the ith time series and yi ∈ {1, . . . , C} its
associated class label.

Figure 1 gives a high-level overview of our method, including the individual steps required to per-
form classification. To get a more intuitive grasp of these definitions, we briefly illustrate our time
series notation with an example. Let instance i be an in-hospital patient, while the time series
represent measurements of two channels of vital parameters during a hospital stay, namely heart
rate (HR) and mean arterial blood pressure (MAP). We enumerate those channels as modalities 1
and 2. Counting from admission time, a HR of 60 and 65 beats per minute was measured af-
ter 0.5 h and 3.0 h, respectively, whereas MAP values of 80, 85, and 87 mmHg were observed
after 0.5 h, 1.7 h, and 2.5 h. According to Definition 1, the time series is thus represented as
Si = {(0.5, 60, 1) , (3, 65, 1) , (0.5, 80, 2) , (1.7, 85, 2) , (3, 87, 2)}. In this example, observations
are ordered by modality to increase readability; in practice, we are dealing with unordered sets.

Definition 3 (Non-synchronized time series). We call a D-dimensional time series non-
synchronized if there is at least one time point tj ∈ R+ at which at least one modality is not
observed, i.e. if there exists tj ∈ R+ such that |{(tk, zk,mk) | tk = tj}| 6= D.

Furthermore, we assume that no two measurements of the same modalitymk occur at the same time,
i.e. ti 6= tj for i 6= j has to be satisfied for all measurements in mk. This assumption is not required
for technical reasons but for consistency. It also makes it possible to interpret the results later on.

To summarize our generic setup, we do not requireM , the number of observations per time series, to
be the same, i.e. len(Si) 6= len(Sj) for i 6= j is permitted, nor do we assume that the time points and
modalities of the observations are the same across time series. This setting is common in biomedical
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time series, for example. Since typical machine learning algorithms are designed to operate on data
of a fixed dimension, novel approaches to this non-trivial problem are required.

3.2 OUR MODEL

In the following, we describe an approach inspired by differentiable learning of functions that oper-
ate on sets (Zaheer et al., 2017; Wagstaff et al., 2019). We phrase the problem of classifying time
series on irregular grids as learning a function f on a set of arbitrarily many time series observations
following Definition 1, i.e. S = {(t1, z1,m1), . . . , (tM , zM ,mM )}, such that f : S → RC , where
S represent a generic time series of arbitrary cardinality and RC corresponds to the logits of the C
classes in the dataset. As we previously discussed, we interpret each time series as an unordered set
of measurements, where all information is conserved because the observation time is included for
each set element. Following the framework of Zaheer et al. (2017), we define f to be a set function,
i.e. a function that operates on a set and thus has to be invariant to the ordering of the elements in
the set. We achieve these constraints by sum-decomposing f into the form

f(S) = g

 1

|S|
∑
sj∈S

h(sj)

 (2)

where h : Ω → Rd and g : Rd → RC are neural networks, d ∈ N+ determines the dimensionality
of the latent representation, and sj represents a single observation of the time series S. We can view
the averaged representations 1/|S|

∑
sj∈S h(sj) in general as a dataset-specific summary statistic

learned to best distinguish the class labels. Equation 2 also implies the beneficial scalability prop-
erties of our approach: each embedding can be calculated independently of the others; hence, the
constant computational cost of passing a single observation through the function h is scaled by the
number of observations, resulting in a runtime of O(M) for a time series of length M .

Recently, Wagstaff et al. (2019) derived requirements for a practical universal function represen-
tation of sum-decomposable set functions, i.e the requirements necessary for a sum-decomposable
function to represent an arbitrary set-function given that h and g are arbitrarily expressive. In par-
ticular, they show that a universal function representation can only be guaranteed provided that
d ≥ maxi len(Si) is satisfied. During hyperparameter search we thus independently sample the di-
mensionality of the aggregation space, and allow it to be in the order of the number of observations
that are to be expected in the dataset. Further, we explored the utilization of max, sum, and mean as
alternative aggregation functions inspired by Zaheer et al. (2017); Garnelo et al. (2018).

Intuition Our method can be connected to Takens’s embedding theorem (Takens, 1981) for dy-
namical systems: we also observe a set of samples from some unknown (but deterministic) dynami-
cal process; provided the dimensionality of our architecture is sufficiently large1, we are capable of
reconstructing the system up to diffeomorphism. The crucial difference is that we do not have to
construct a time-delay embedding but rather, we let the network learn an embedding that is suitable
for classification.

Time encoding In order to represent the time point of an observation on a normalized scale, we
employ variant of positional encodings, as introduced by Vaswani et al. (2017). Preliminary results
indicated that this encoding scheme reduces the sensitivity towards initialization and training hyper-
parameters of a model. Specifically, the time encoding converts the one-dimensional time axis into a
multi-dimensional input by passing the time t of each observation through multiple sine and cosine
functions of varying frequencies. Given a step size τ ∈ N+, we refer to the encoded position as
x ∈ Rτ , where

x2i(t) := sin

(
t

max ts2i/τ

)
(3)

x2i+1(t) := cos

(
t

max ts2i/τ

)
(4)

1In Takens’s embedding theorem, d > dB is required, where dB refers to the fractal box counting dimen-
sion (Liebovitch & Toth, 1989), which is typically well below the size of typical neural network architectures.
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and max ts represents the maximal time scale that is expected in the data. More precisely, we select
the wavelengths using a geometric progression from 2π to max ts · 2π, and treat the number of
steps and the maximal timescal max ts as hyperparameters of the model. For all experiments time
encodings were used, such that an observation is represented as sj = (x (tj) , zj ,mj).

Loss function If not mentioned otherwise, we choose h and g in Equation 2 to be multilayer
perceptron deep neural networks, parametrized by weights θ and ψ, respectively. We thus denote
these neural networks by hθ and gψ; their parameters are shared across all instances per dataset. In
our training setup, we follow Zaheer et al. (2017) and apply the devised set function to the complete
time series, i.e. to the set of all observations for each time series. Overall, we optimize a loss function
that is defined as

L(θ, ψ) := E(S,y)∈D

`
y; gψ

 1

|S|
∑
sj∈S

hθ(sj)

 , (5)

where `(·) represents a task-specific loss function.

3.3 ATTENTION-BASED AGGREGATION

So far, our method permits encoding sets of arbitrary sizes into a fixed-size representation. For
increasingly large set sizes, however, many irrelevant observations could influence the result of the
set function. The mean aggregation function is particularly susceptible to this because the influence
of an observation to the embedding shrinks proportionally to the size of the set. We thus suggest
to use a weighted mean in order to allow the model to decide which observations are relevant and
which should be considered irrelevant. This is equivalent to computing an attention a(S, sj) over
the set input elements, and subsequently, computing the sum over all elements in the set.

Our approach is based on scaled dot-product attention with multiple heads m in order to be able to
cover different aspects of the aggregated set. We define a(·) to depend on the overall set of elements,
by computing an embedding of the set elements using a smaller set function f ′ and projecting the
concatenation of the set representation and the individual set elements into the dot-product space
of dimensionality d, i.e. Kj,i = [f ′(S), sj ]

TWi where Wi ∈ Rim(f ′)+|sj |×d, i ∈ {1 . . .m}, and
K ∈ R|S|×d. Furthermore, we define a matrix of query points Q ∈ Rm×d, which allow the model
to summarize different aspects of the dataset via

ej,i =
Kj,i ·Qi√

m
and aj,i =

exp(ej,i)∑
j exp(ej,i)

where aj,i represents the amount of attention that head i gives to set element j. For each head, we
multiply the set element embeddings computed via the set function f with the attentions derived
for the individual instances, i.e. ri =

∑
j aj,if(sj). The computed representation is concatenated

and passed to the aggregation network hθ as in a regular set function, i.e. r∗ = [r1 . . . rm]. In our
setup, we initialize Q with zeros, such that at the beginning of training, the attention mechanism is
equivalent to computing the unweighted mean over the set elements.

4 EXPERIMENTS

We executed all experiments and implementations in a unified code base, which we also make
available2 to the community. While some of the datasets used subsequently have access restrictions,
anybody can gain access after satisfying the defined requirements. This ensures the reproducibility
of our results. Please consult Appendix A.2 for further details.

4.1 DATASETS

In order to benchmark the proposed method we selected 4 datasets with irregularly-sampled and
non-synchronized measurements.

2https://osf.io/2hg74/?view_only=8d45fdf237954948a02f1e2bf701cdf1
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Healing MNIST The H-MNIST dataset was introduced by Krishnan et al. (2015) in order to sim-
ulate characteristics which typically occur in medical time series. In our setup, we use a variant
of this dataset. Every instance of the dataset contains 10 frames, derived from a single instance of
MNIST dataset, where the digit is rotated according to an angle uniformly sampled between −90◦
to 90◦. Furthermore, 3 randomly-selected consecutive frames are augmented by a square artefact in
the top left corner of the image in order to indicate seasonality in the time series. Finally, 60 % of
the data points are randomly discarded in order to yield a final high-dimensional irregularly-sampled
time series with non-synchronized measurements. Using these settings each instance has on average
3, 136 observations.

MIMIC-III Tasks MIMIC-III (Johnson et al., 2016) is a widely-used, freely-accessible dataset con-
taining around 50, 000 distinct ICU stays. The median length of stay is 2.1 d and a wide range of
physiological measurements (e.g. arterial blood pressure, respiration rate, heart rate) are recorded
with a resolution of 1 h. Furthermore, laboratory test results, collected at irregular time intervals are
available. Recently, Harutyunyan et al. (2019) defined a set of machine learning tasks, labels, and
benchmarks using a subset of the MIMIC-III data set. We trained and evaluated our method and
competing methods on the binary mortality prediction task (M3-Mortality) and on the multi-
class problem of phenotype classification (M3-Phenotyping), while applying additional filtering
described in Appendix A.1. The goal of the mortality prediction task is to predict whether a patient
will die during his/her hospital stay using only data from the first 48 hours of the ICU stay. This
data set contains around 21, 000 stays of which approximately 10 % result in death. The phenotype
classification task consists of 40, 000 patients, each of which can suffer from a multitude of 25 acute
care conditions.

Physionet Mortality Prediction Challenge The 2012 Physionet challenge data set (Goldberger
et al., 2000), which we abbreviate P-Mortality, contains 12, 000 ICU stays each of which lasts
at least 48 h. For each stay, a set of general descriptors (such as gender, age, height, weight) were
collected at admission time. Depending on the course of the stay and patient status, up to 37 time
series variables were measured (e.g. blood pressure, lactate, respiration rate, temperature). While
some modalities might be measured in regular time intervals (e.g. hourly or daily), some are only
collected when required. Not all variables are available for each stay. The goal of the challenge was
to predict if—and with which certainty —a patient will die during the hospital stay. The training set
consists of 8, 000 stays while the testing set comprises 4, 000 ICU visits. Both data sets are similarly
imbalanced, with a prevalence of around 14 %. For simplicity, the general descriptors (such as age
and weight), were included as time points with a single observation at the beginning of the stay. This
treatment is similar to the approach by Harutyunyan et al. (2019) in the MIMIC-III benchmarking
datasets. Please refer to Table 2, Table 3, and Table 4 in the appendix for a more detailed enumeration
of samples sizes and label distributions. The total number of samples may slightly deviate from the
originally published splits, as time series of excessive length prevented fitting some methods in
reasonable time, and were therefore excluded.

4.2 COMPETITOR METHODS

GRU-simple GRU-SIMPLE (Che et al., 2018) augments the input at time t of a Gated-Recurrent-
Unit RNN with a measurement mask md

t and a δt matrix, which contains the time since the last
measurement of the corresponding modality d, such that

δt =


st − st−1 + δdt−1 t > 1,md

t−1 = 0

st − st−1 t > 1,md
t−1 = 1

0 t = 0

where st represents the time associated with time step t.

Phased-LSTM The PHASED-LSTM (Neil et al., 2016) introduced a biologically inspired time de-
pendent gating mechanism which regulates access to the hidden and cell state of a Long short-term
RNN cell (Hochreiter & Schmidhuber, 1997). While this allows the network to handle event-based
sequences with irregularly spaced observations, the approach does not support unaligned measure-
ments. In order to still provide the architecture with all relevant information, we augment the input
in a similar fashion as described for the GRU-SIMPLE approach.

GRU-D GRU-D or GRU-Decay (Che et al., 2018) contains modifications to the GRU RNN cell,
allowing it to decay past observations to the mean imputation of a modality using a learnable decay
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Table 1: Performance comparison of methods on benchmarking datasets. Performance metrics have
been rescaled to 100 for readability reasons. “AUC” denotes the area under the Receiver Operating
Characteristic (ROC) curve; “PR AUC” denotes the area under the precision recall curve.
DATASET MODEL MICRO AUC MACRO AUC WEIGHTED AUC RUNTIME

H-MNIST

GRU-SIMPLE 99.09 ± 0.05 99.01 ± 0.05 99.03 ± 0.05 11.43 ± 0.47
PHASED-LSTM 98.63 ± 0.13 98.50 ± 0.15 98.52 ± 0.14 33.93 ± 1.11
GRU-D 99.42 ± 0.01 99.37 ± 0.02 99.38 ± 0.02 11.81 ± 0.44
IP-NETS 99.06 ± 0.05 98.96 ± 0.03 98.98 ± 0.03 127.76 ± 0.95
SEFT* 99.76 ± 0.01 99.75 ± 0.01 99.75 ± 0.01 4.05 ± 0.35

M3-Phenotyping

GRU-SIMPLE 79.89 ± 0.14 73.91 ± 0.19 72.55 ± 0.16 112.58 ± 2.03
PHASED-LSTM 80.00 ± 0.06 73.91 ± 0.09 72.65 ± 0.08 400.41 ± 14.14
GRU-D 82.16 ± 0.04 77.14 ± 0.03 76.08 ± 0.01 288.70 ± 16.66
IP-NETS - - - -
SEFT 81.22 ± 0.12 75.95 ± 0.09 74.90 ± 0.11 56.27 ± 2.14
SEFT-ATTN 82.00 ± 0.06 76.95 ± 0.09 75.88 ± 0.09 52.32 ± 0.74

ACCURACY PR AUC AUC RUNTIME

M3-Mortality

GRU-SIMPLE 88.24 ± 0.38 36.36 ± 1.31 79.36 ± 0.26 22.80 ± 0.56
PHASED-LSTM 88.32 ± 0.31 35.30 ± 1.38 80.16 ± 0.22 25.54 ± 0.26
GRU-D 89.56 ± 0.38 46.76 ± 0.65 83.73 ± 0.21 31.85 ± 0.86
IP-NETS 89.73 ± 0.16 45.88 ± 0.87 83.30 ± 0.56 101.12 ± 4.52
SEFT 88.65 ± 0.49 36.18 ± 5.07 79.15 ± 3.00 3.72 ± 0.11
SEFT-ATTN 89.48 ± 0.16 45.25 ± 0.96 83.79 ± 0.59 16.64 ± 0.20

P-Mortality

GRU-SIMPLE 85.66 ± 0.14 39.43 ± 0.71 79.79 ± 0.16 5.16 ± 0.06
PHASED-LSTM 85.57 ± 0.11 39.55 ± 0.62 78.71 ± 0.76 18.59 ± 1.15
GRU-D 87.19 ± 0.30 54.95 ± 0.54 86.58 ± 0.32 14.08 ± 0.38
IP-NETS 87.23 ± 0.18 54.87 ± 0.41 86.42 ± 0.18 7.21 ± 0.46
SEFT 87.11 ± 0.32 52.07 ± 0.41 84.12 ± 0.32 3.07 ± 0.03
SEFT-ATTN 87.62 ± 0.16 54.05 ± 0.27 85.50 ± 0.13 7.54 ± 0.08

*: Due to the high dimensionality of HealingMNIST and associated memory issues, the set elements were
constructed by simply combining the observation time with all values and measurement indicators.

rate. By additionally providing the measurement masks as an input the recurrent neural network the
last feed in value. Learns how fast to decay back to a mean imputation of the missing data modality.

Interpolation Prediction Networks IP-NETWORKS (Shukla & Marlin, 2019) apply multiple semi-
parametric interpolation schemes to irregularly-sampled time series to obtain regularly-sampled rep-
resentations that cover long-term trends, transients, and also sampling information. The method
combines a univariate interpolation step with a subsequent multivariate interpolation; the parame-
ters of the interpolation network are trained with the classifier in an end-to-end fashion.

4.3 RESULTS

To permit a fair comparison between the methods, we executed hyperparameter searches for each
model on each dataset, composed of uniformly sampling 20 parameters according to Appendix A.3.
Training was stopped after 20 epochs without improvement of the validation loss, the hyperparam-
eters with the best overall validation performance were selected for quantifying the performance on
the test set. The train, validation, and test splits were the same for all models and all evaluations. Fi-
nal performance on the test set was calculated by 3 independent runs of the models; evaluation took
place after the model was restored to the state with the best validation loss. The results are shown in
Table 1. Overall, our proposed method exhibits the lowest per-epoch runtime on all datasets, while
either yielding competitive or state-the-art performance on medical time series datasets.

Opening the black box In the medical domain, it is of particular interest to understand the deci-
sions a model makes based on the input it is provided with. The formulation of our model and its
per observation perspective on time series gives it the unique property of being able to quantify to
which extent an individual observation contributed to the output of the model. We exemplify this in
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Figure 2: Visualizations of a single attention head on an instance of the P-Mortality dataset. We
display a set of variables relevant for assessing patient stability and organ failure: Serum Potassium
(K), Lactate, Systolic Arterial Blood Pressure (SysABP), and Urine output. Darker colors represent
higher attention values.

Figure 2 with a patient time series that was combined with our models attention values, displayed for
a set of clinically relevant variables. After reviewing these records with our medical expert, we find
that our model is able to pick up regions with drastic changes in individual modalities. Moreover,
it is able to inspect other modalities at the same associated time (for instance, at hour 20). This is
behaviour similar to what one would expect from an alerted clinician reviewing the logged medical
records. Interestingly, we observe that the model attends to known trends (that are consisting with
domain knowledge about patient deterioration ultimately resulting in death) such as increase in lac-
tate or hemodynamic instability, as indicated by drops in blood pressure. Furthermore, the model
appears to be alerted by persisting low urine output. After several hours, this can be indicative of
kidney failure.

5 CONCLUSION

In this work, we presented a novel approach for classifying time series with irregularly-sampled and
unaligned, that is non-synchronized, observations. Our approach yields state-of-the-art to strongly
competitive performance on numerous simulated and real-world datasets, while reducing runtime by
almost half. Moreover, we demonstrated that combining the perspective of individual observations
with an attention mechanism permits increasing the interpretability of the model. This is particularly
relevant for the medical and healthcare applications.

For future work, we reserve a more extensive exploration of the learned latent representation to
evaluate its utility for clustering of time series or visualization of their similarity.
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A APPENDIX

Table 2: M3-Mortality prevalence of labels for the binary classification task

Training Prevalence Testing Prevalence

In-hospital deaths 0.135 0.116

Table 3: P-Mortality prevalence of labels for the binary classification task

Training Prevalence Testing Prevalence

In-hospital deaths 0.140 0.146

A.1 DATA FILTERING

Due to memory requirements of some of the competitor methods, it was necassary to excluded
time series with extremly high number of measurements. For the M3-Phenotyping patients with
more than 2000 distinct time points were discarded from training. For M3-Mortality patients
with more than 1000 time points were discarded as they contained dramatically different measuring
frequencies compared to the rest of the dataset.

A.2 IMPLEMENTATIONAL DETAILS

All experiments were run using tensorflow 0.15.0rc0 and training was performed on
NVIDIA Geforce GTX 1080 GPUs. In order to allow a fair comparison between methods,
the input processing pipeline cached model specific representations and transformations of the
data. To further increase efficiency of the RNNs, sequences were binned in to buckets of jointly
trained instances depending on their sequence length. The buckets were determined according to
the (0.25, 0.5, 0.75) quantiles of the length distributions of the datasets.

A.3 TRAINING AND HYPERPARAMETER SEARCH

General All models were trained using the Adam optimizer, while randomly sampling the learning
rate from (0.001, 0.0005, 0.00025, 0.0001). Further, the batch size of all methods was sampled from
the values (32, 64, 128, 256).

Recurrent neural networks For the RNN based methods (GRU-SIMPLE, PHASED-
LSTM, GRU-D and IP-NETS), the number of units was sampled in from the values
(16, 32, 64, 128, 256, 512). Further, recurrent dropout and input dropout were sampled from the
values (0.0, 0.1, 0.2, 0.3). Solely, for the PHASED-LSTM method, we did not apply dropout to the
recurrent state and the inputs, as the learnt frequencies were hypothesized to fulfill a similar function
as dropout (Neil et al., 2016).

SEFT We vary the number of layers, dropout in between the layers and the number of nodes per
layer for both the encoding network hθ and the aggregation network gψ from the same ranges. The
number of layers is randomly sampled between 1 and 5, the number of nodes in a layer are uniformly
sampled from the range (16, 32, 64, 128, 256, 512) and the dropout fraction is sampled from the
values (0.0, 0.1, 0.2, 0.3). The width of the embedding space prior to aggregation is sampled from
the values (32, 64, 128, 256, 512, 1024, 2048). The aggregation function selected to be one ofmean,
sum andmax. The number of dimensions used for the positional embedding τ is selected uniformly
from (4, 8, 16) and max ts us selected from the values (10, 100, 1000).

SEFT-Attn The parameters for the encoding and aggregation networks are sampled in a similar
fashion as for SEFT. In contrast we set the aggregation function to be sum as described in the text.
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Table 4: M3-Phenotyping prevalence of labels for the multi label classification task

Phenotype Training Prevalence Validation Prevalence Testing Prevalence

Acute and unspecified renal failure 0.216 0.207 0.211
Acute cerebrovascular disease 0.0746 0.0753 0.0662
Acute myocardial infarction 0.103 0.103 0.108
Cardiac dysrhythmias 0.322 0.317 0.323
Chronic kidney disease 0.135 0.131 0.132
Chronic obstructive pulmonary disease
and bronchiectasis

0.132 0.128 0.126

Complications of surgical procedures or
medical care

0.207 0.201 0.213

Conduction disorders 0.0726 0.07 0.0704
Congestive heart failure; nonhyperten-
sive

0.268 0.264 0.268

Coronary atherosclerosis and other
heart disease

0.323 0.317 0.331

Diabetes mellitus with complications 0.0955 0.0945 0.094
Diabetes mellitus without complication 0.194 0.187 0.192
Disorders of lipid metabolism 0.291 0.287 0.289
Essential hypertension 0.421 0.41 0.424
Fluid and electrolyte disorders 0.267 0.276 0.265
Gastrointestinal hemorrhage 0.0715 0.0747 0.0788
Hypertension with complications and
secondary hypertension

0.133 0.131 0.13

Other liver diseases 0.0884 0.0904 0.0883
Other lower respiratory disease 0.0514 0.0484 0.0565
Other upper respiratory disease 0.0408 0.0371 0.0429
Pleurisy; pneumothorax; pulmonary
collapse

0.0858 0.09 0.0905

Pneumonia (except that caused by tu-
berculosis or sexually transmitted dis-
ease)

0.14 0.135 0.135

Respiratory failure; insufficiency; arrest
(adult)

0.18 0.184 0.177

Septicemia (except in labor) 0.142 0.145 0.138
Shock 0.0783 0.0745 0.0811
Total samples 29 208 6359 6266

Further we use a constant architecture for the attention network f ′ with 2 layers, 64 nodes per layer,
4 heads and a dimensionality of the dot product space d of 128. We solely sample the amount of
attention dropout uniformly from the values (0.0, 0.1, 0.25, 0.5).
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