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ABSTRACT

It has recently been shown that ReLU networks produce arbitrarily over-confident
predictions far away from the training data. Thus, ReLU networks do not know
when they don’t know. However, this is a highly important property in safety
critical applications. In the context of out-of-distribution detection (OOD) there
have been a number of proposals to mitigate this problem but none of them are able
to make any mathematical guarantees. In this paper we propose a new approach
to OOD which overcomes both problems. Our approach can be used with ReLU
networks and provides provably low confidence predictions far away from the
training data as well as the first certificates for low confidence predictions in a
neighborhood of an out-distribution point. In the experiments we show that state-
of-the-art methods fail in this worst-case setting whereas our model can guarantee
its performance while retaining state-of-the-art OOD performance.

1 INTRODUCTION

Deep Learning Models are being deployed in a growing number of applications. As these include
more and more systems where safety is a concern, it is important to guarantee that deep learning
models work as one expects them to. One topic that has received a lot of attention in this area is the
problem of adversarial examples, in which a model’s prediction can be changed by introducing a
small perturbation to an originally correctly classified sample. Achieving robustness against this type
of perturbation is an active field of research. Empirically, adversarial training (Madry et al., 2018)
performs well and provably robust models have been developed (Hein & Andriushchenko, 2017;
Wong & Kolter, 2018; Raghunathan et al., 2018; Mirman et al., 2018; Cohen et al., 2019).

On the other end of the spectrum it is also important to study how deep learning models behave far
away from the training samples. A simple property every classifier should satisfy is that far away from
the training data, it should yield close to uniform confidence over the classes: it knows when it does
not know. However, several cases of high confidence predictions far away from the training data have
been reported for neural networks, e.g. fooling images (Nguyen et al., 2015), for out-of-distribution
(OOD) images (Hendrycks & Gimpel, 2017) or in medical diagnosis (Leibig et al., 2017). Moreover,
it has been observed that, even on the original task, neural networks often produce overconfident
predictions (Guo et al., 2017). Very recently, it has been shown theoretically that the class of ReLU
networks (all neural networks which use a piecewise affine activation function), which encompasses
almost all standard models, produces predictions with arbitrarily high confidences far away from the
training data (Hein et al., 2019). Unfortunately, this statements holds for almost all such networks
and thus without a change in the architecture one cannot avoid this phenomenon.

Traditionally, the calibration of the confidence of predictions has been considered on the in-
distribution (Guo et al., 2017; Lakshminarayanan et al., 2017). However these techniques cannot be
used for OOD techniques (Leibig et al., 2017). Only recently the detection of OOD inputs (Hendrycks
& Gimpel, 2017) has been tackled. The existing approaches are roughly of two types: first, postpro-
cessing techniques that adjust the estimated confidence (DeVries & Taylor, 2018; Liang et al., 2018)
which includes the baseline ODIN. Second, modification of the classifier training by integrating
generative models like a VAE or GAN in order to discriminate out-distribution from in-distribution
data (Lee et al., 2018a; Wang et al., 2018; Lee et al., 2018b) or approaches which enforce low
confidence on OOD inputs during training (Hein et al., 2019; Hendrycks et al., 2019). Worst-case
aspects of OOD detection have previously been studied in Nguyen et al. (2015); Schott et al. (2018);
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Figure 1: Illustration on toy dataset: We show the color-coded confidence in the prediction (yellow
indicates high confidence maxy p̂(y|x) ≈ 1, whereas dark purple regions indicate low confidence
maxy p̂(y|x) ≈ 0.5) for a normal neural network (left) and our CCU neural network (right). The
decision boundary is shown in white which is similar for both models. Our CCU-model retains
high-confidence predictions in regions close to the training data, whereas far away from the training
the CCU-model outputs close to uniform confidence. In contrast the normal neural network is
over-confident everywhere except very close to the decision boundary.

Hein et al. (2019); Sehwag et al. (2019), but no robustness guarantees have yet been proposed for this
setting. In particular, none of those approaches are able to guarantee that neural networks produce
low confidence predictions far away from the training data. We prove that our classifier satisfies this
requirement even when we use ReLU networks as the classifier model - without loosing performance
on either the prediction task on the in-distribution nor the OOD detection performance, see Figure 1
for an illustration. Moreover, our technique allows to give upper bounds on the confidence over a
whole neighborhood around a point (worst-case guarantees). We show that most state-of-the-art OOD
methods can be fooled by maximizing the confidence in this ball even when starting from uniform
noise images, which should be trivial to identify.

2 A GENERIC MODEL FOR CLASSIFIERS WITH CERTIFIED LOW CONFIDENCE
FAR AWAY FROM THE TRAINING DATA

The model which we propose in this paper assumes that samples from an out-distribution are given to
us. In image recognition we could either see the set of all images as a sample from the out-distribution
(Hendrycks et al., 2019) on all images or the agnostic case where we use use uniform noise on
[0, 1]d as a maximally uninformative out-distribution. In both settings one tries to discriminate
these out-distribution images from images coming from a particular image recognition task and the
task is to get low confidence predictions on the out-distribution images vs. higher confidence on
the images from the actual task. From the general model we derive under minimal assumptions
a maximum-likelihood approach where one trains both a classifier for the actual task and density
estimators for in- and out-distribution jointly. As all of these quantities are coupled in our model for
the conditional distribution P(y|x) we get guarantees by controlling the density estimates far away
from the training data. This is a crucial difference to the approaches of Lee et al. (2018a); Wang et al.
(2018); Hendrycks et al. (2019) which empirically yield good OOD performance but are not able to
certify the detection mechanism.

2.1 A PROBABILISTIC MODEL FOR IN- AND OUT-DISTRIBUTION DATA

We assume that there exists a joint probability distribution p(y, x) over the in- and out-distribution
data, where y are the labels in {1, . . . ,M}, M is the number of classes, and x ∈ Rd, where d is the
input dimension. In the following, we denote the underlying probabilities/densities with p(y|x) resp.
p(x) and the estimated quantities with p̂(y|x) and p̂(x). We are mainly interested in a discriminative
framework, i.e. we want to estimate p(y|x) which one can represent via the conditional distribution
of the in-distribution p(y|x, i) and out-distribution p(y|x, o):

p(y|x) = p(y|x, i)p(i|x) + p(y|x, o)p(o|x) =
p(y|x, i)p(x|i)p(i) + p(y|x, o)p(x|o)p(o)

p(x|i)p(i) + p(x|o)p(o)
. (1)

Note that at first it might seem strange to have a conditional distribution p(y|x, o) for out-distribution
data, but until now we have made no assumptions about what in-and out-distribution are. A realistic
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scenario would be that at test time we are presented with instances x from other classes (out-
distribution) for which we expect a close to uniform p(y|x, o).

Our model for p̂(y|x) has the same form as p(y|x)

p̂(y|x) =
p̂(y|x, i)p̂(x|i)p̂(i) + p̂(y|x, o)p̂(x|o)p̂(o)

p̂(x|i)p̂(i) + p̂(x|o)p̂(o)
. (2)

Typically, out-distribution data has no relation to the actual task and thus we would like to have
uniform confidence over the classes. Therefore we set in our model

p̂(y|x, o) =
1

M
and p̂(y|x, i) =

efy(x)∑M
k=1 e

fk(x)
, y ∈ {1, . . .M}, (3)

where f : Rd → RM is the classifier function (logits). This framework is generic for classifiers
trained with the cross-entropy (CE) loss (as the softmax function is the correct link function for
the CE loss) and we focus in particular on neural networks. For a ReLU network the classifier
function f is componentwise a continuous piecewise affine function and has been shown to produce
asymptotically arbitrarily highly confident predictions (Hein et al., 2019), i.e. the classifier gets more
confident in its predictions the further it moves away from its training data. One of the main goals of
our proposal is to fix this behavior of neural networks in a provable way.

Note that with the choice of p̂(y|x, o) and non-zero priors for p̂(i), p̂(o) , the full model p̂(y|x) can be
seen as a calibrated version of p̂(y|x, i), where p̂(y|x) ≈ p̂(y|x, i) for inputs with p̂(x|i)� p̂(x|o)
and p̂(y|x) ≈ 1

M if p̂(x|i)� p̂(x|o). However, note that only the confidence in the prediction p̂(y|x)
is affected, the classifier decision is still done according to p̂(y|x, i) as the calibration does not change
the ranking. Thus even if the OOD data came from the classification task we would like to solve, the
trained classifier’s performance would be unaffected, only the confidence in the prediction would be
damped.

For the marginal out-distribution p̂(x|o) there are two possible scenarios. In the first case one could
concentrate on the worst case where we assume that p(x|o) is maximally uniformative (maximal
entropy). This means that p̂(x|o) is uniform for bounded domains e.g. for images which are in
[0, 1]d, p̂(x|o) = 1 for all x ∈ [0, 1]d, or p̂(x|o) is a Gaussian for the domain of Rd (the Gaussian
has maximum entropy among all distributions of fixed variance). However, in this work we follow
the approach of Hendrycks et al. (2019) where they used the 80 million tiny image dataset (Torralba
et al., 2008) as a proxy of all possible images. Thus we estimate the density of p̂(x|o) using this data.

In order to get guarantees, the employed generative models for p̂(x|i) and p̂(x|o) have to be chosen in
a way that allows one to control predictions far away from the training data. Variational autoencoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014), normalizing flows (Dinh et al., 2016;
Kingma & Dhariwal, 2018) and generative adversarial networks (GANs) (Goodfellow et al., 2014)
are powerful generative models. However, there is no direct way to control the likelihood far away
from the training data. Moreover, it has recently been discovered that VAEs, flows and GANs also
suffer from overconfident likelihoods (Nalisnick et al., 2019; Hendrycks et al., 2019) far away from
the data they are supposed to model as well as adversarial samples (Kos et al., 2017).

For p̂(x|o) and p̂(x|i) we use a Gaussian mixture model (GMM) which is less powerful than a VAE
but has the advantage that the density estimates can be controlled far away from the training data:

p̂(x|i) =

Ki∑
k=0

αk exp

(
−d(x, µk)2

2σ2
k

)
, p̂(x|o) =

Ko∑
l=0

βl exp

(
−d(x, νl)

2

2θ2l

)
(4)

where d : Rd × Rd → R is the metric

d(x, y) =
∥∥∥C− 1

2 (x− y)
∥∥∥
2
.

with C being a positive definite matrix and

αk =
1

Ki

1

(2πσ2
k detC)

d
2

, βl =
1

Ko

1

(2πθ2l detC)
d
2

.

We later fix C as a slightly modified covariance matrix of the in-distribution data (see Section 4 for
details). Thus one just has to estimate the centroids µk, νl and the variances σ2

k, θ
2
l . The idea of

this metric is to use distances adapted to the data-distribution. Note that equation 4 is a properly
normalized density in Rd.
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2.2 MAXIMUM LIKELIHOOD ESTIMATION

Given models for p̂(y|x) and p̂(x) we effectively have a full generative model and apply maximum
likelihood estimation to get the underlying classifier p̂(y|x, i) and the parameters of the Gaussian
mixture models p̂(x|i), p̂(x|o). The only free parameter left is the probability p̂(i), p̂(o) which we
write compactly as λ = p̂(o)

p̂(i) . In principle this parameter should be set considering the potential cost
of over-confident predictions. In our experiments we simply fix it to λ = 1.

E
(x,y)∼p(x,y)

log
(
p̂(y, x)

)
= E

(x,y)∼p(x,y)
log
(
p̂(y|x)

)
+ log(p̂(x)),

= E
(x,y)∼p(x,y)

log

(
p̂(y|x, i)p̂(x|i)p̂(i) + 1

M p̂(x|o)p̂(o)
p̂(x|i)p̂(i) + p̂(x|o)p̂(o)

)
+ log

(
p̂(x|i)p̂(i) + p̂(x|o)p̂(o)

)
. (5)

In practice, we have to compute empirical expectations from finite training data from the in-
distribution (xi, yi)

ni
i=1 and out-distribution (zj)

no
j=1. Labels for the out-distribution could be gen-

erated randomly via p(y|x, o) = 1
M , but we obtain an unbiased estimator with lower variance by

averaging over all classes directly, as was done in Lee et al. (2018a); Hein et al. (2019); Hendrycks
et al. (2019). Now we can estimate the classifier f and the mixture model parameters µ, ν, σ, θ via

arg max
f,µ,ν,σ,θ

{
1

ni

ni∑
i=1

log
(
p̂(yi|xi)

)
+

λ

no

no∑
j=1

1

M

M∑
m=1

log
(
p̂(m|zj)

)
(6)

+
1

ni

ni∑
i=1

log(p̂(xi)) +
λ

no

no∑
j=1

log(p̂(zj))

, (7)

with

p̂(y|x) =
p̂(y|x, i)p̂(x|i) + λ

M p̂(x|o)
p̂(x|i) + λp̂(x|o)

and p̂(x) =
1

λ+ 1

(
p̂(x|i) + λp̂(x|o)

)
. (8)

Due to the bounds derived in Section 3, we denote our method by Certified Certain Un-
certainty (CCU). Note that if one uses a standard neural network model with softmax, i.e.
p̂(y|x) = p̂(y|x, i) = efy(x)∑M

m=1 e
fm(x) , then the first term in equation 6 would be the cross-entropy

loss for the in-distribution data and the second term the cross entropy loss for the out-distribution data
with a uniform distribution over the classes. For this choice of p̂(y|x) and neglecting the terms for
p̂(x) we recover the approach of Hein et al. (2019); Hendrycks et al. (2019) for training a classifier
which outputs uniform confidence predictions on out-distribution data where p̂(i)

p̂(o) corresponds to that
regularization parameter λ. The key difference in our approach is that p̂(y|x) 6= p̂(y|x, i) and the
estimated densities for in- and out distribution p̂(x|i) and p̂(x|o) lead to a confidence calibration of
p̂(y|x), and in turn the fit of the classifier influences the estimation of p̂(x|i) and p̂(x|o). The major
advantage of our model is that we can give guarantees on the confidence of the classifier decision far
away from the training data.

3 PROVABLE GUARANTEES FOR CLOSE TO UNIFORM PREDICTIONS FAR AWAY
FROM THE TRAINING DATA

In this section we provide two types of guarantees on the confidence of a classifier trained according
to our model in equation 6. The first one says that the classifier has provably low confidence far away
from the training data, where an explicit bound on the minimal distance is provided, and the second
provides an upper bound on the confidence in a ball around a given input point. The latter bound
resembles robustness guarantees for adversarial samples (Hein & Andriushchenko, 2017; Wong &
Kolter, 2018; Raghunathan et al., 2018; Mirman et al., 2018) and is quite different from the purely
empirical evaluation done in OOD detection papers as we show in Section 4.

We provide our bounds for a more general mixture model which includes our GMM in equation 4 as
a special case. Up to our knowledge, these are the first such bounds for neural networks and thus
it is the first modification of a ReLU neural network so that it provably “knows when it does not
know” (Hein et al., 2019) in the sense that far away from the training data the predictions are close to
uniform over the classes.
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Theorem 3.1. Let (x
(i)
i , y

(i)
i )ni=1 be the training set of the in-distribution and let the model for the

conditional probability be given as

∀x ∈ Rd, y ∈ {1, . . . ,M}, p̂(y|x) =
p̂(y|x, i)p̂(x|i) + λ

M p̂(x|o)
p̂(x|i) + λp̂(x|o)

, (9)

where λ = p̂(o)
p̂(i) > 0 and let the model for the marginal density of the in-distribution p̂(x|i) and

out-distribution p(x|o) be given by the generalized GMMs

p̂(x|i) =

Ki∑
k=0

αk exp

(
−d(x, µk)2

2σ2
k

)
, p̂(x|o) =

Ko∑
l=0

βl exp

(
−d(x, νl)

2

2θ2l

)
with αk, βl > 0 and µk, νl ∈ Rd ∀k = 1, . . .Ki, l = 1, . . . ,Ko and d : Rd × Rd →
R+ a metric. Let z ∈ Rd and define k∗ = arg min

k=1,...,Ki

d(z,µk)
σk

, i∗ = arg min
i=1,...,n

d(z, xi),

l∗ = arg min
l=1,...,Ko

βl exp
(
−d(z,νl)

2

2θ2l

)
and ∆ =

θ2l∗
σ2
k∗
− 1. For any ε > 0, if minl θl > maxk σk and

mini=1,...,n d(z, xi) ≥ d(xi∗ , µk∗)+d(µk∗ , νl∗)
[ 2

∆
+

1√
∆

]
+
θl∗√

∆

√
log
( ε λ

M − 1

βl∗∑
k αk

)
, (10)

then it holds for all m ∈ {1, . . . ,M} that

p̂(m|z) ≤ 1

M

(
1 + ε

)
. (11)

In particular, if mini d(z, xi)→∞, then p̂(m|z)→ 1
M .

The proof is in the Appendix A. Theorem 3.1 holds for any multi-class classifier which defines for
each input a probability distribution over the labels. Given the parameters of the GMM’s it quantifies
at which distance of an input z to the training set the classifier achieves close to uniform confidence.
The theorem holds even if we use ReLU classifiers which in their unmodified form have been shown
to produce arbitrarily high confidence far away from the training data Hein et al. (2019). This is a
first step towards neural networks which provably know when they don’t know.

In the next corollary, we provide an upper bound on the confidence over a ball around a given data
point. This allows to give “confidence guarantees” for a whole volume and thus is much stronger
than the usual pointwise evaluation of OOD methods.

Corollary 3.1. Let x0 ∈ Rd and R > 0, then with λ = p̂(o)
p̂(i) it holds

max
d(x,x0)≤R

p̂(y|x) ≤ 1

M

1 +M b
λ

1 + b
λ

, (12)

where b =

∑Ki
k=1 αk exp

(
−max{d(x0,µk)−R,0}2

2σ2
k

)
∑Ko
l=1 βl exp

(
− (d(x0,νl)+R)2

2θ2
l

) .

The proof is in the Appendix B. We show in Section 4 that even though OOD methods achieve
low confidence on noise images, the maximization of the confidence in a ball around a noise point
(adversarial noise) yields high confidence predictions for OOD methods, whereas our classifier has
provably low confidence, as certified by Corollary 3.1. The failure of OOD methods shows that the
certification of entire regions is an important contribution of CCU which goes beyond the purely
sampling-based evaluation.

4 EXPERIMENTS

We evaluate the worst-case performance of various OOD detection methods within regions for which
CCU yields guarantees and by standard OOD on MNIST (LeCun et al., 1998), FashionMNIST (Xiao
et al., 2017), SVHN (Netzer et al., 2011) and CIFAR10 (Krizhevsky & Hinton, 2009). We show that
all other OOD methods yield undesired high confidence predictions in the certified low confidence
regions of CCU and thus would not detect these inputs as out-distribution. For calibrating hyper-
parameters resp. training we use for all OOD methods the 80 Million Tiny Images (Torralba et al.,
2008) as out-distribution Hendrycks et al. (2019) which yields a fair and realistic comparison.
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MNIST

.

Seed

8: 1.00

Base

8: 0.00*

MCD

0: 1.00

GAN

8: 0.10

ODIN

3: 76.64*

Maha

5: 1.00

ACET

2: 1.00

OE

9: 0.10

CCU

FMNIST

. shirt: 1.00 dress: 0.00* shirt: 1.00 shirt: 0.13 bag: 267.29* shirt: 0.16 bag: 1.00 boot: 0.10

SVHN

. 1: 1.00 2: 0.00* 4: 0.10 4: 1.00 6: 103.56* 1: 0.13 7: 1.00 9: 0.10

CIFAR10

. bird: 1.00 cat: 0.00* bird: 1.00 bird: 1.00 bird: 122.99* horse: 0.53 frog: 1.00 truck: 0.10

Figure 2: Adversarial Noise: We maximize the confidence of the OOD methods using PGD in the
ball around a uniform noise sample (seed images, left) on which CCU is guaranteed by Corollary 3.1
to yield less than 1.1 1

M maximal confidence. For each OOD method we report the image with the
highest confidence. Maha and MCD use scores where lower is more confident (indicated by ∗). If we
do not find a sample that has higher confidence/lower score than the mean of the in-distribution, we
highlight this in boldface. All other OOD methods fail on some dataset, see Table 1 for a quantitative
version. Arguably ACET produces good samples on MNIST, but the sample is classified as a 5.
ODIN at high temperatures always returns low confidence, so a value of 0.1 is not informative.

CCU: As the Euclidean metric is known to be a relatively bad distance between two images we
instead use the distance d(x, y) =

∥∥∥C− 1
2 (x− y)

∥∥∥, where C is generated as follows. We calculate

the covariance matrix C ′ on augmented in-distribution samples (see C.1). Let (λi, ui)
d
i=1 be the

eigenvalues/eigenvectors of C ′. Then we set

C =

d∑
i=1

max{λi, 10−6 maxj λj}uiuTi , (13)

that is we fix a lower bound on the smallest eigenvalue so that C has full rank. This metric strongly
penalizes moving away from the in-distribution. We choose Ki = Ko = 100 as the number of
centroids for the GMMs. We initialize the in-GMM on augmented in-data using the EM algorithm
with spherical covariance matrices in the transformed space, as in equation 4. For the out-distribution
we use a subset of 20000 points for the initialization. While, initially it holds that ∀k, l : σk < θl,
as required in Theorem 3.1, this is not guaranteed during the optimization of equation 6. Thus, we
enforce the constraint during training by setting: θl 7→ max{θl, 2 maxk σk} at every gradient step.
Since the “classifier” and “density” terms in equation 6 have very different magnitudes we choose a
small learning rate of 1e− 5 for the parameters in the GMMs. It is also crucial to not apply weight
decay to these parameters. The other hyperparameters are chosen as in the base model below.

Benchmarks: For all OOD methods we use LeNet on MNIST and a Resnet18 (for GAN and MCD
we use VGG) otherwise. The hyperparameters used during training can be found in Appendix C. The
AUC is computed by treating in-distribution versus out-distribution as a two-class problem using
the confidence/score of the method as criterion. MCD: Monte-Carlo Dropout (Gal & Ghahramani,
2016) uses dropout at train and at test time. Since it is not clear where to put the dropout layers in
a ResNet, we use VGG instead. We take the softmax from 7 forward passes (Shafaei et al., 2018)
and use the mean of the output for prediction and the variance as score. GAN: The framework of
confidence-calibrated classifiers (Lee et al., 2017) relies on training a GAN alongside a classifier
such that the GAN’s generator is encouraged to generate points close to but not on the in-distribution.
On these points one then enforces uniform confidence. We used their provided code to train a VGG
this way, as we were unable to adapt the method to a ResNet with an acceptable test error (e.g.
TE< 30% on SVHN). ODIN: ODIN (Liang et al., 2017) consists of two parts: a temperature T
by which one rescales the logits before the softmax layer efn/T∑

k e
fk/T

and a preprocessing step that
applies a single FGSM-step (Goodfellow et al., 2015) of length ε before evaluating the input. The two
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Base MCD GAN ODIN Maha ACET OE CCU
MNIST TE 0.5 0.4 0.8 0.5 0.5 0.5 0.7 0.4

SR 100.0 100.0 62.5 100.0 99.5 90.5 100.0 0.0
AUC 4.1 5.3 41.2 0.0 22.9 28.3 35.2 100.0

FMNIST TE 4.9 5.6 6.3 4.9 4.9 4.9 5.7 4.9
SR 100.0 99.5 100.0 100.0 100.0 0.0 100.0 0.0
AUC 0.0 33.5 35.9 0.0 24.0 100.0 35.7 100.0

SVHN TE 3.0 3.9 4.2 3.0 3.0 3.0 4.1 3.0
SR 100.0 99.0 0.0 100.0 100.0 0.0 100.0 0.0
AUC 0.0 23.3 100.0 0.0 0.0 100.0 13.5 100.0

CIFAR10 TE 5.7 12.0 11.7 5.7 5.7 5.6 4.7 5.8
SR 100.0 98.0 100.0 100.0 100.0 0.0 100.0 0.0
AUC 0.0 17.2 25.3 0.0 0.0 100.0 0.4 100.0

Table 1: Worst-case performance of different OOD methods in neighborhoods around uniform noise
points certified by CCU. We report the clean test error (TE) on the in-distribution (GAN and MCD use
VGG). The success rate (SR) is the fraction of adversarial noise points for which the confidence/score
inside the ball is higher than the median of the in-distribution’s confidence/score. The AUC quantifies
detection of adversarial noise versus in-distribution. All values in %.

parameters are calibrated on the out-distribution. Maha: The approach in Lee et al. (2018c) is based
on computing a class-conditional Mahalanobis distance in feature space and applying an ODIN-like
preprocessing step for each layer. Following Ren et al. (2019) we use a single-layer version of this
on our networks’ penultimate layers because the multi-layer version in the original code does not
support gradient-based attacks. OE: Outlier exposure (Hendrycks et al., 2019) enforces uniform
confidence on a large out-distribution. We use their provided code to train a model with our chosen
architecture. ACET: Adversarial confidence enhanced training (ACET) (Hein et al., 2019) enforces
uniform confidence on a ball around points from an out-distribution by running adversarial attacks
during training. In order to make the comparison with OE more meaningful we use 80M tiny images
to draw the seeds rather than smoothed uniform noise as in Hein et al. (2019).

Some of the above OOD papers optimize their hyperparameters on a validation set for each out-
distribution they test on. However, this leads to different classifiers for each out-distribution dataset
which seems unrealistic as we want to have good generic OOD performance and not for a particular
dataset. Thus we keep the comparison realistic and fair by calibrating the hyperparameters of all
methods on a subset of 80M tiny images and then evaluating on the other unseen distributions.

Certified robustness against adversarial noise: We sample uniform noise images as they are
obviously out-distribution for all tasks and certify using Corollary 3.1 the largest ball around the
uniform noise sample on which CCU attains at most 1.1· uniform confidence, that is 11% on all
datasets. We describe how to compute the radius of this ball in Appendix D. We construct adversarial
noise samples for all OOD methods by maximizing the confidence/minimizing the score via a PGD
attack with 500 steps and 50 random restarts on this ball. Further details of the attack can be found
in Appendix C.2. In Table 1 we show the results of running this attack on the different models. We
used 200 noise images and we report clean test error on the in-distribution, the success rate (SR)
(fraction of adversarial noise points for which the confidence resp. score inside the ball is higher
resp. lower than the median of the in-distribution’s confidence/score) and the AUC for the separation
of the generated adversarial noise images and the in-distribution based on confidence/score. By
construction, see Corollary 3.1, our method provably makes no overconfident predictions but we
nevertheless run the attack on CCU as well. We note that only CCU performs perfectly on this task
for all datasets. We also see that ACET achieves very robust performance which is maybe expected
as it does some kind of adversarial training for OOD detection. Nevertheless ACET can be broken on
MNIST and has no guarantees. We illustrate the generated adversarial noise images for all methods
in Figure 2.

OOD performance: For each dataset and method we report the AUC for the binary classification
problem of discriminating in- and out-distribution based on confidence resp. score. The results are
shown in Table 2. The list of datasets we use for OOD detection can be seen in Table 2. LSUN_CR
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Base MCD GAN ODIN Maha ACET OE CCU

MNIST FMNIST 97.1 77.5 99.4 98.3 97.2 100.0 99.9 99.9
EMNIST 89.5 74.1 92.8 88.7 92.4 96.6 95.8 92.3
GrayCIFAR10 99.6 75.2 99.1 99.9 97.7 100.0 100.0 100.0
Noise 100.0 77.1 99.3 100.0 97.7 100.0 100.0 100.0
UniformNoise 91.9 77.4 99.9 96.8 99.5 100.0 100.0 100.0

FMNIST MNIST 97.0 74.9 99.7 99.2 97.1 96.9 96.3 97.6
EMNIST 97.7 79.9 99.9 99.4 97.8 97.4 99.3 99.5
GrayCIFAR10 87.7 87.6 91.1 90.4 97.2 100.0 100.0 100.0
Noise 95.9 89.7 99.4 98.4 98.8 99.8 100.0 100.0
UniformNoise 96.6 89.4 81.2 98.3 98.4 100.0 97.6 100.0

SVHN CIFAR10 95.3 87.6 96.8 95.9 96.5 94.7 100.0 100.0
CIFAR100 94.9 87.3 96.1 95.5 96.0 94.7 100.0 100.0
LSUN_CR 95.1 84.5 99.0 96.1 95.9 98.0 100.0 100.0
Imagenet- 94.7 87.7 97.7 95.5 96.1 98.0 100.0 100.0
Noise 96.5 88.6 96.3 87.0 97.4 95.7 97.8 97.3
UniformNoise 97.9 88.5 100.0 98.9 97.4 100.0 100.0 100.0

CIFAR10 SVHN 93.3 76.6 83.9 94.6 94.8 93.0 98.8 98.0
CIFAR100 86.9 74.9 82.9 86.9 68.7 86.7 95.3 94.1
LSUN_CR 91.7 76.2 89.9 92.8 68.4 91.9 98.6 98.0
Imagenet- 86.3 74.8 83.9 86.5 65.7 90.1 94.7 93.1
Noise 94.7 74.2 81.8 96.0 81.2 94.6 97.3 97.3
UniformNoise 90.0 77.4 73.0 92.1 56.7 100.0 98.8 100.0

Table 2: AUC (in- versus out-distribution based on confidence/score) in percent for different OOD
methods and datasets (higher is better). OE and CCU have the best OOD performance.

refers to only the classroom class of LSUN and Imagenet- is a subset of 10000 resized Imagenet
validation images, that have no overlap with CIFAR10/CIFAR100 classes. The noise dataset was
obtained as in Hein et al. (2019) by first shuffling the pixels of the test images in the in-distribution
and then smoothing them by a Gaussian filter of uniformly random width, followed by a rescaling so
that the images have full range. We see that OE and CCU have the best OOD performance. MCD is
worse than the base model which confirms the results found in Leibig et al. (2017) that MCD is not
useful for OOD. The performance of Maha is worse than what has been reported in Lee et al. (2018c)
which can have two reasons. We just use their version where one uses the scores only from the last
layer and we do not calibrate hyperparameters for each test set separately but just once on the Tiny
Image dataset. Especially on CIFAR10 we found that the results depend strongly on the step size.
The results of ACET, GAN and ODIN are mixed but clearly outperform the baseline. Comparing
Table 1 and Table 2 we see that most models perform well when evaluating on uniform noise but fail
when finding the worst case in a small neighborhood around the noise point. Thus we think that such
worst-case analysis should become standard in OOD evaluation.

5 CONCLUSION

In Hein et al. (2019) it has recently been shown that ReLU networks produce arbitrarily highly
confident predictions far away from the training data, which could only be resolved by a modification
of the network architecture. With CCU we present such a modification which explicitly integrates
a generative model and provably show that the resulting neural network produces close to uniform
predictions far away from the training data. Moreover, CCU is the only OOD method which can
guarantee low confidence predictions over a whole volume rather than just pointwise and we show
that all other OOD methods fail in this worst-case setting. CCU achieves this without loss in test
accuracy or OOD performance. In the future it would be interesting to use more powerful generative
models for which one can also guarantee their behavior far away from the training data. This is
currently not the case for VAEs and GANs (Nalisnick et al., 2019; Hendrycks et al., 2019).
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A APPENDIX - PROOF OF THEOREM 3.1

Theorem A.1. Let (xi, yi)
n
i=1 be the training set of the training distribution. We define the model

for the conditional probability over the classes y ∈ {1, . . . ,M} given x as

p̂(y|x) =
p̂(y|x, i)p̂(x|i) + λ

M p̂(x|o)
p̂(x|i) + λp̂(x|o)

, (14)

where λ = p̂(o)
p̂(i) > 0 and M > 1. Further, let the model for the marginal density of the in-distribution

p̂(x|i) and out-distribution p(x|o) be given by the generalized GMMs

p̂(x|i) =

Ki∑
k=0

αk exp

(
−d(x, µk)2

2σ2
k

)
, p̂(x|o) =

Ko∑
l=0

βl exp

(
−d(x, νl)

2

2θ2l

)
with αk, βl > 0 and µk, νl ∈ Rd ∀k = 1, . . .Ki, l = 1, . . . ,Ko and d : Rd ×Rd → R+ a metric.
Let z ∈ Rd and define k∗ = arg min

k=1,...,Ki

d(z,µk)
σk

, i∗ = arg min
i=1,...,n

d(z, xi), l∗ =

arg min
l=1,...,Ko

βl exp
(
−d(z,νl)

2

2θ2l

)
and ∆ =

θ2l∗
σ2
k∗
− 1. For any ε > 0, if minl θl > maxk σk and

mini=1,...,n d(z, xi) ≥ d(xi∗ , µk∗)+d(µk∗ , νl∗)
[ 2

∆
+

1√
∆

]
+
θl∗√

∆

√
log
( ε λ

M − 1

βl∗∑
k αk

)
, (15)

then it holds for all m ∈ {1, . . . ,M} that

p̂(m|z) ≤ 1

M

(
1 + ε

)
. (16)

In particular, if mini d(z, xi)→∞, then p̂(m|z)→ 1
M .

Proof. The proof essentially hinges on upper bounding p̂(z|i)
p̂(z|o) using the specific properties of the

Gaussian mixture model. We note that

p̂(y|x) =
p̂(y|x, i)p̂(x|i) + λ

M p̂(x|o)
p̂(x|i) + λp̂(x|o)

=
1

M

1 + M
λ
p̂(x|i)
p̂(x|o)

1 + 1
λ
p̂(x|i)
p̂(x|o)

≤ 1

M

(
1 +

M − 1

λ

p̂(x|i)
p̂(x|o)

)
The last step holds because the function g(ξ) = 1+Mξ

1+ξ is monotonically increasing

∂g

∂ξ
=

M − 1

(1 + ξ)2
and

∂2g

∂ξ2
= −2

M − 1

(1 + ξ)3
. (17)

As the second deriviative is negative for ξ ≥ 0, g is concave for ξ ≥ 0 and thus
1 +Mξ

1 + ξ
= g(ξ) ≤ g(0) +

∂g

∂ξ

∣∣∣
ξ=0

(ξ − 0) = 1 + (M − 1)ξ. (18)

In order to achieve the required result we need to show that M−1λ
p̂(x|i)
p̂(x|o) ≤ ε for x sufficiently far

away from the training data.

We note that

p̂(x|i)
p̂(x|o)

=

∑
k αk exp

(
−d(x,µk)

2

2σ2
k

)
∑
l βl exp

(
−d(x,νl)

2

2θ2l

) ≤ maxk exp
(
−d(x,µk)

2

2σ2
k

)∑
k αk

maxl βl exp
(
−d(x,νl)

2

2θ2l

)
=

∑
k αk
βl∗

exp

(
−d(x, µk∗)2

2σ2
k∗

+
d(x, νl∗)2

2θ2l∗

)
where k∗ = arg min

k

d(x,µk)
2

2σ2
k

and l∗ = arg min
l

βl exp(−d(x,νl)
2

2θ2l
). Using triangle inequality,

d(x, νl∗) ≤ d(x, µk∗) + d(µk∗ , νl∗), we get the desired condition as∑
k αk
βl∗

exp

(
−d(x, µk∗)2

(
1

2σ2
k∗
− 1

2θ2l∗

)
+
d(µk∗ , νl∗)d(x, µk∗)

θ2l∗
+
d(µk∗ , νl∗)2

2θ2l∗

)
≤ ε λ

M − 1
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Thus we get with a =
(

1
2σ2
k∗
− 1

2θ2
l∗

)
, b = d(µk∗ ,νl∗ )

θ2
l∗

and c = d(µk∗ ,νl∗ )
2

2θ2
l∗

, d = log
(

ε λ
M−1

βl∗∑
k αk

)
,

the quadratic inequality

−d(x, µk∗)2a+ d(x, µk∗)b+
b2

2
≤ d,

where d < 0 for sufficiently small ε. We get the solution

d(x, µk∗) ≥ b

2a
+

√
max

{
0,
c− d
a

+
b2

4a2

}
.

It holds, using
√
a+ b ≤

√
a+
√
b for a, b > 0,

b

2a
+

√
max

{
0,
c− d
a

+
b2

4a2

}
≤ b

a
+

√
c

a
+

√
d

a
.

One can simplify
b

a
= 2

σ2
k∗θ

2
l∗

θ2l∗ − σ2
k∗

d(µk∗ , νl∗)

θ2l∗
= 2

σ2
k∗ d(µk∗ , νl∗)

θ2l∗ − σ2
k∗

= 2
d(µk∗ , νl∗)
θ2
l∗
σ2
k∗
− 1

c

a
= 2

σ2
k∗θ

2
l∗

θ2l∗ − σ2
k∗

d(µk∗ , νl∗)2

2θ2l∗
=
σ2
k∗ d(µk∗ , νl∗)2

θ2l∗ − σ2
k∗

=
d(µk∗ , νl∗)2

θ2
l∗
σ2
k∗
− 1

Noting that d(x, µk∗) ≥ |d(x, xi∗)− d(xi∗ , µk∗)| we get that

d(x, xi∗) ≥ d(xi∗ , µk∗) +
b

2a
+
b

a
+

√
c

a
+

√
d

a
,

implies M−1
λ

p̂(x|i)
p̂(x|o) ≤ ε. The last statement follows directly by noting that by assumption a > 0

(independently of the choice of l∗ and k∗) and b, c, d(xi∗ , µk∗) are bounded as Ki,Ko, n are finite.
With ∆ =

θ2l∗
σ2
k∗
− 1 we can rewrite the required condition as

d(x, xi∗) ≥ d(xi∗ , µk∗) + d(µk∗ , νl∗)
[ 2

∆
+

1√
∆

]
+

θl∗√
∆

√
log
( ε λ

M − 1

βl∗∑
k αk

)
.

B APPENDIX - PROOF OF COROLLARY 3.1

Corollary B.1. Let x0 ∈ Rd and R > 0, then with λ = p̂(o)
p̂(i) it holds

max
d(x,x0)≤R

p̂(y|x) ≤ 1

M

1 +M b
λ

1 + b
λ

, (19)

where b =

∑Ki
k=1 αk exp

(
−max{d(x0,µk)−R,0}2

2σ2
k

)
∑Ko
l=1 βl exp

(
− (d(x0,νl)+R)2

2θ2
l

) .

Proof. From the previous section we already know that p̂(y|x) ≤ 1
M

1+M b
λ

1+ b
λ

as long as p(x|i)
p(x|o) ≤ b.

Now we can separately bound the numerator and denominator within a ball of radius R around x0.
For the numerator we have

max
d(x,x0)≤R

p̂(x|i) ≤
K∑
k=1

αk max
d(x,x0)≤R

e
− d(x,µk)2

2σ2
k (20)

≤
K∑
k=1

αk exp

− min
d(x,x0)≤R

d(x, µk)2

2σ2
k


≤

K∑
k=1

αk exp

(
− (max {d(µk, x0)−R, 0})2

2σ2
k

)
, (21)
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where we have lower bounded min
d(x,x0)≤R

d(x, µk) via the reverse triangle inequality

min
d(x,x0)≤R

d(x, µk) ≥ min
d(x,x0)≤R

|d(x0, µk)− d(x, x0)|,

≥ max

{
min

d(x,x0)≤R
(d(x0, µk)− d(x0, µk)), 0

}
,

≥ max {d(x0, µk)− r, 0} . (22)

The denominator can similarly be bounded via

min
d(x,x0)≤R

p̂(x|o) ≥
Ko∑
l=1

βl min
d(x,x0)≤R

e
− d(x,νl)

2

2θ2
k (23)

≥
Ko∑
l=1

βl exp

− max
d(x,x0)≤R

d(x, νl)
2

2θ2l


≥

Ko∑
l=1

βl exp

(
− (d(x0, νl) +R)2

2θ2l

)
. (24)

With both of these bounds in place the conclusion immediately follows.

C APPENDIX - EXPERIMENTAL DETAILS

Unless specified otherwise we use ADAM on MNIST with a learning rate of 1e− 3 and SGD with
learning rate 0.1 for the other datasets. The learning rate for the GMM is always set to 1e− 5. We
decrease all learning rates by a factor of 10 after 50, 75 and 90 epochs. Our batch size is 128, the
total number of epochs 100 and weight decay is set to 5e− 4.

When training ACET, OE and CCU with 80 million tiny images we pick equal batches of in- and
out-distribution data (corresponding to p(i) = p(o)) and concatenate them into a batches of size 256.
Note that during the 100 epochs only a fraction of the 80 million tiny images are seen and so there is
no risk of over-fitting.

C.1 DATA AUGMENTATION

Our data augmentation scheme uses random crops with a padding of 2 pixels on MNIST and FMNIST.
On SVHN and CIFAR10 the padding width is 4 pixels. For SVHN we fill the padding with the value
at the boundary and for CIFAR10 we apply reflection at the boundary pixels. On top of this we
include random horizontal flips on CIFAR10. For MNIST and FMNIST we generate 60000 such
samples and for SVHN and CIFAR10 50000 samples by drawing from the clean dataset without
replacement. This augmented data is used to calculate the covariance matrix from equation 13.
During the actual training we use the same data augmentation scheme in a standard fashion.

C.2 ATTACK DETAILS

We begin with a step size of 3 and for each of the 50 restarts we randomly initialize at some point in
the ellipsoid. Whenever a gradient step successfully decreases the losses we increase the step size by
a factor of 1.1. Whenever the loss increases instead we use backtracking and decrease the step size
by a factor of 2. We apply normal PGD using the l2-norm in the transformed space to ensure that
we stay on the ellipsoid and after each gradient step we rotate back into the original space to project
onto the box [0, 1]d. The result is not guaranteed be on the ellipsoid so after the 500 steps we use
the alternating projection algorithm (Bauschke & Borwein, 1996) for 10 steps which is guaranteed
to converge to a point in the intersection of the ellipsoid and the box because both of these sets are
convex.
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Figure 3: Histograms of bounds: Certified radius in transformed space for different datasets.

D APPENDIX - FINDING A THE CERTIFIABLE RADIUS

Since Corollary 3.1 does not explicitly give a radius, one has to numerically invert the bound. The
bound

b(R) =

∑Ki
k=1 αk exp

(
−max{d(x0,µk)−R,0}2

2σ2
k

)
∑Ko
l=1 βl exp

(
− (d(x0,νl)+R)2

2θ2l

) (25)

is monotonically increasing in R. Thus, for a given sample x0 one can fix a desired bound
max

d(x,x0)≤R
p̂(x|i) ≤ 1

M ν, where ν ∈ (1,M) and then find the unique solution

b(R) =
ν − 1

M − ν
λ (26)

for R via bisection. This radius R̂ will then represent the maximal radius, that one can certify using
Corollary 3.1. The presumption is, of course, that for R = 0 one has a sufficiently low bound in the
first place, i.e. that a solution exists. In our experiments on uniform noise we did not encounter a
single counterexample to this assumption. We show the radii for the different datasets in Figure 3.
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