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ABSTRACT

Well-performing deep learning models have enormous impact, but getting them
to perform well is complicated, as the model architecture must be chosen and a
number of hyperparameters tuned. This requires experimentation, which is time-
consuming and costly. We propose to address the problem of hyperparameter
tuning by learning to forecast the training behaviour of deep learning architectures.
Concretely, we introduce a forecasting model that, given a hyperparameter schedule
(e.g., learning rate, weight decay) and a history of training observations (such as
loss and accuracy), predicts how the training will continue. Naturally, forecasting
is much faster and less expensive than running actual deep learning experiments.
The main question we study is whether the forecasting model is good enough to be
of use - can it indeed replace real experiments? We answer this affirmatively in two
ways. For one, we show that the forecasted curves are close to real ones. On the
practical side, we apply our forecaster to learn hyperparameter tuning policies. We
experiment on a version of ResNet on CIFAR10 and on Transformer in a language
modeling task. The policies learned using our forecaster match or exceed the ones
learned in real experiments and in one case even the default schedules discovered
by researchers. We study the learning rate schedules created using the forecaster
are find that they are not only effective, but also lead to interesting insights.

1 INTRODUCTION

Machine learning researchers working with deep neural networks spend time looking at training
curves and asking themselves the question: How would the results change if I modified some
hyperparameters? They run many experiments and, with time, develop a better understanding of how
modifications in various hyperparameters affect the learning dynamics of our models.

In this work, we attack this problem of understanding deep learning dynamics with deep learning
itself. To this end, we collect a data-set of training curves of deep learning models with a diverse set
of hyperparameter schedules. Next, we train an autoregressive deep model to predict the training
curves conditioned on the schedule.

Figure 1: Real and predicted evaluation accu-
racy curves, see text on the left for details.

More concretely, our model observes the setting of
a small number of hyperparameters, such as learning
rate, weight decay, or dropout rate. Then, it predicts
a small number of values that a researcher would usu-
ally look at, such as training and validation loss and
accuracy. We predict how these values will change
a few hundred training steps later. Then, the model
gets new settings for for the next few hundred train-
ing steps, and predicts the next values. The model
is autoregressive, so it uses the history of its own
predictions from previous time-steps to predict the
next ones.

We study how to do time-series prediction with au-
toregressive models even in the presence of stochastic
behaviour. We study different losses and introduce a
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Figure 2: Discretization procedure where xt is the discretized sequence. It is represented in fixed-
precision encoding with 2 base-8 digits per number, so each symbol si corresponds to 3 bits of
precision. Weights of symbols are decayed with parameter β according to their significance, so the
more significant digit has weight 1 and the other has weight β.

loss weight scheme that allows to use Transformer models for stochastic time-series predictions. We
show that the new method we introduce outperforms baselines and is able to faithfully approximate
the learning dynamics of deep learning models, as shown in the examples in Figure 1.

Having a model of learning dynamics is interesting in its own right, as it allows to study the training
process much faster, without running full experiments. But it also opens up the possibility to learn
hyperparameter schedules by using reinforcement learning in the model. We experiment with this
and validate our forecaster: the policies learned using reinforcement learning and the forecaster work
well when training real models. Running the forecaster is of course much faster than running real
experiments, so learning a policy in the forecaster is thousands of times faster.

2 TIME-SERIES MODELING WITH TRANSFORMER

Transformer models show very good performance in modeling distributions over discrete sequences,
such as text (Vaswani et al., 2017). In this work, we show that they can also be used to predict time
series – concretely, training curves of deep learning models. One obvious way to apply Transformer
to time-series prediction would be to try to directly predict the next value in the sequence with L2 loss.
We show (below) that this is not a good strategy when sequences can be stochastic and introduce a
discretization technique that reduces the problem to the standard discrete sequence prediction setting
and that yields remarkably good results.

2.1 DISCRETIZATION

In order to model time series using Transformer, we represent each number in the sequence in
fixed-precision, base-k encoding. We concatenate the consecutive base-k digits corresponding to each
number, starting from the most significant one. To predict multiple time series at a time, we arrange
the representations of a single element of each time series in a fixed order, and then concatenate the
representations of each time step, as shown at Figure 2. This way we can model the joint probability
distribution of multiple time series using a single model. We train the Transformer decoder to predict
consecutive symbols in this discrete sequence autoregressively. We use cross-entropy as the loss
function, weighted with exponential decay according to the significance of each digit:

L(t, p) =

n−1∑
i=0

βiH(ti, pi)

where H denotes cross-entropy, ti is the deterministic distribution over true digits, pi is the model
prediction and i indexes digits in the fixed precision, base-k encoding of a number, starting from the
most significant one.

2.2 RESULTS ON SYNTHETIC DATA

To demonstrate the ability of Transformer to predict training curves, we train it on a dataset of
synthetically generated curves calculated using the formula:
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Figure 3: Synthetic curves generated by discrete Transformer decoder with weighted cross-entropy
loss together with the histogram of α values. In the generation process we used a uniform distribution
and the histogram approximates it well.

xi = 1− 1

1− i
α

+N (0, σ2)

where i is an integer from the interval [1, N ] and σ is scale of the noise, set to 0.01. The dataset is
designed to mimic training accuracy curves, starting from 0 and converging to 1 in the limit. Rate of
the convergence is controlled by the parameter α, sampled uniformly from the interval [0.5, 5] for
each curve.

To measure the diversity of the generated curves, we estimate the parameter α from a curve predicted
by the model, by averaging over pointwise estimates along the curve:

α̂ =
1

N

N−1∑
i=0

t(
1

xi
− 1)

We then visualize the distribution of α̂ in a histogram. As shown in Figure 3, Transformer is able to
generate diverse and convincingly-looking curves.

As a baseline, we consider modeling the curves without discretization, using the Transformer decoder
without embedding and predicting a sequence of real numbers, training the model with L2 loss.
During inference, we add Gaussian noise with variance σ2 to the prediction at each step, to introduce
stochasticity. As shown at Figure 4, the curves generated this way tend to collapse to a single shape.

Figure 4: Synthetic curves generated by continuous Transformer decoder with L2 loss together with
the histogram of α values that shows collapse.

3 HYPERPARAMETER TUNING USING REINFORCEMENT LEARNING

As is standard in reinforcement learning, we frame the problem of controlling model hyperparameters
during training as a partially-observable Markov decision process. Each transition in the MDP
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corresponds to n steps of training followed by an evaluation on a held-out set of 5% of the training
data. Observations are the current values of training and evaluation accuracy and loss. Note that the
agent does not have access to full state of the environment, because that would encompass the current
values of all parameters of the model, which is intractable as an input for the agent. Rewards are
differences between the values of an optimized metric between two timesteps, so that the optimized
cumulative reward is equal to the final value of that metric. In all experiments we optimize for
validation accuracy.

Actions are relative changes in each controlled hyperparameter. We predict the
change independently for each hyperparameter, out of a discrete set of values
{−50%,−20%,−5%, 0,+5%,+25%,+100%}. The action space conveys the intuition that
a hyperparameter schedule should be approximately continuous in the log space, while allowing for
both significant changes in the hyperparameters between timesteps, and for more fine-grained control.
Opposite values of relative change cancel each other out, so that a random walk in the action space
has a median relative change of approximately 1 for every hyperparameter.

3.1 MODEL-FREE APPROACH

As a basic model-free approach to solving this problem, we use the Proximal Policy Optimization
algorithm (Schulman et al., 2017). We set the discount factor γ to 1 to get an unbiased estimate of
the expected return. This does not cause the return to diverge, as the rewards are bounded and the
trajectory length is constant. To calculate advantages, we use Generalized Advantage Estimation
(Schulman et al., 2015b) with λ = 0.95.

As a policy network, we use the decoder part of Transformer, without the embedding, so it accepts
continuous input. The network has two heads, one predicting the distribution over actions, and the
other the value (an estimate of the future return). We add to the PPO objective the L2 loss of the
value head with weight 1 and an entropy bonus with weight 0.1.

3.2 MODEL-BASED APPROACH

As a more sample-efficient, model-based approach, we use Simulated Policy Learning (SimPLe,
Kaiser et al. (2017)). The algorithm consists of three phases, repeated in a loop, as shown in Figure 5.
First, a set of trajectories is collected, either using the current policy network (which is randomly
initialized) or using an external data-set. Then a predictive model of the environment is trained on the
collected data. After that, the policy is trained using PPO in the environment simulated by the model.
The improved policy is used to collect new data, and the loop continues.

Figure 5: SimPLe algorithm. π denotes the policy, ε the environment model, and T the set of collected
trajectories.

We use a simplified variant of SimPLe where we start the loop from training the model on a set of
pre-collected data, and run only one iteration of the algorithm. Given a diverse dataset, this allows to
learn a forecasting model accurate enough for policy training.

To be able to use the Transformer decoder as an environment model, we discretize the entire history of
observations and actions and concatenate their representations into one long sequence o1a1o2a2...on.
Observations are discretized as described in subsection 2.1. Actions are already discrete, so we just
rewrite them using one discrete symbol per each controlled hyperparameter. We train the model to
predict just the observation symbols, masking out the loss terms corresponding to action symbols.
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During inference, we calculate the reward based on the difference of an appropriate metric in two
consecutive predicted observations.

4 RELATED WORK

As described above, learning the training dynamics and utilizing it involves a mixture of time-series
modeling, reinforcement learning (RL) and model-based RL. We discuss related works in this order.

Time-Series Modeling with Deep Learning. Time series forecasting has been traditionally studied
using statistical models like ETS (Hyndman et al., 2008) and ARIMA (Box & Jenkins, 1994). There
are a number of works that use feed forward neural networks (FFNNs) for time series forecasting,
see a survey by Zhang et al. (1998). However, FFNNs break the input series into consecutive fixed
size input windows, so the temporal order is ignored within each input window and every new input
is considered in isolation. It is also not uncommon to use a hybrid approach of using FFNNs along
with ARIMA or ETS as in Khashei & Bijari (2011) and Faruk (2010).

Recurrent Neural Networks (RNNs) are a more natural fit for sequence prediction tasks and have
gained popularity for natural language processing tasks. They started to be applied to time-series later
and were found to be competitive for point forecasts in a univariate context (Hewamalage et al., 2019).
Recently Convolutional Neural Networks (CNNs) have also been used for time series forecasting,
specially for capturing long-term dependencies, see van den Oord et al. (2016) and Lai et al. (2018).
Other approaches have used Deep Belief Networks and Stacked Denoising Autoencoders to predict
temperature and traffic flow (Romeu et al., 2013; Lv et al., 2015). Outside of language and generating
audio, Transformers (Vaswani et al., 2017) have not been widely used for time-series prediction.

Reinforcement Learning DQN (Mnih et al., 2013) kicked off the field of Deep Reinforcement
Learning by training a CNN on raw input pixels to predict the value of future rewards. Further work
that built on top of DQN includes Double-DQN by van Hasselt et al. (2016), Dueling-DQN Wang
et al. (2016) etc. On the other hand, pure policy optimization techniques like TRPO (Schulman
et al., 2015a) and PPO (Schulman et al., 2017) directly represent the policy and optimize the policy
parameters. PPO is quite simple to implement and works well on a variety of tasks: Atari, MuJoCo
etc. A downside of pure policy gradient algorithms using on-policy learning is the large number of
environment interactions needed to achieve satisfactory performance (sample complexity). Soft-Actor
Critic (Haarnoja et al., 2018) is a recent development that uses ideas from both Q-learning and policy
gradient methods to achieve better sample complexity.

Model-based Reinforcement Learning All RL methods mentioned above suffer from the require-
ment of a large number of interactions with the environment. This can be very costly, as in our case.
The idea to use a model of the environment instead of the true one has been explored for a long
time. For example, Holland et al. (2018) use a variant of Dyna Sutton (1991) to learn a model of the
environment and generate experience for policy training in the context of Atari games. Outside of
games, model-based reinforcement learning has been investigated at length for applications such as
robotics Deisenroth et al. (2013). Though most of such works do not use image observations, several
recent works have incorporated images into real-world robotic control (Finn et al., 2016; Finn &
Levine, 2016; Babaeizadeh et al., 2017; Ebert et al., 2017; Piergiovanni et al., 2018; Paxton et al.,
2018; Rybkin et al., 2018; Ebert et al., 2018) and simulated Watter et al. (2015); Hafner et al. (2018).

Hyperparameter Tuning Black-box hyperparameter tuning is extremely popular in industry and
academia, examples include Google Vizier (Golovin et al., 2017), Hyperopt (Bergstra & Bengio,
2012), Spearmint (Snoek et al., 2012). These approaches assume the existence of a metric on a
validation set. Sequential Model-Based Optimization (SMBO), (Hutter et al., 2011) is a family of
methods that builds a model of the validation metric with hyperparameters as input, this model is
usually trained on the previous trials of the hyperparameters. A large category of SMBO algorithms
is Bayesian Optimization that builds a probabilistic model of the above function.A detailed survey
about Bayesian Optimization can be found here Shahriari et al. (2016).

In Klein et al. (2017) the authors use Bayesian Neural Networks to predict the training curves of
various models. In contrast to our work, they do not predict schedules of hyperparameters, so their
models are not conditioned on these schedules.
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Figure 6: Test accuracy plot of Wide ResNet on CIFAR-10 and the corresponding learned learning
rate schedule. The final accuracy is 93.6% for the forecaster, 91.8% for the model-free baseline and
90% for the human-defined schedule.

Population Based Training of Neural Networks Jaderberg et al. (2017) is another approach that jointly
optimizes the parameters and hyperparameters of a network. It starts off with a population of agents,
that after every few training iterations compare their fitness and mutate themselves using traditional
evolutionary techniques (copying, mutation etc) and resume training from the next iteration onward,
yielding an adaptive hyperparameter schedule that is similar to our work.

Also similar to our work, Xu et al. (2019) learn to tune hyperparameters during model training using
reinforcement learning, but they only use a model-free approach and restrict themselves to controlling
the learning rate.

5 EXPERIMENTAL RESULTS

5.1 WIDE RESNET ON CIFAR-10

In our first experiment, we gather a data-set of 10K training runs of Wide ResNet on CIFAR-10
while varying the learning rate and weight decay used during training. The network we use is a Wide
ResNet 4-28 and we train it for 10000 steps with batch size 512.

To gather the training curves, we run model-free PPO on 128 parallel environments. That means there
are 128 concurrent workers training the network in each epoch, after which the policy for learning
rate and weight decay tuning gets updated and another batch of 128 workers start training. We run 4
parallel runs of this, each for 20 epochs, resulting in 128*4*20 = 10240 training curves.

We then train on this set the forecasting model – a 3-layer Transformer with the loss described in
Section 2.1. This forecaster fits a holdout set of curves quite well, as can be seen in Figure 1.

In order to get a quantitative verification of our forecaster, we train another PPO policy, this time
using the forecaster as the environment. Since the forecaster is much faster, we train for 50 epochs.
The resulting policy is even better than the one obtained using actual training curves, see Figure 6,
which validates our claim that the forecaster is a useful model of deep learning dynamics.

Discussion While the above results attest to the quality of the forecaster, can we draw any insights
from the learned policies? We analyzed the learning rate and weight decay schedules and there was a
clear pattern employed by the forecaster. Namely: the schedule would increase learning rate not too
rapidly at first, until accuracy gets reasonable (above 20-50%, stochastically). Then, it would increase
the learning rate to the maximum, even at the cost of accuracy going slightly down and the loss
increasing. It will recover in time though and only after a few hundred more steps the schedule would
decrease the learning rate again to obtain the final result. This method, depicted on Figure 6, leads to
higher validation accuracy than just keeping the accuracy rising. We conjecture that such schedule
results in models that generalize better, but we leave it to future work to verify this conjecture.
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Figure 7: Test accuracy plot of the Transformer language model on Penn Treebank. The final
accuracy is 21% for the forecaster, 23.8% for the model-free baseline and 23.2% for the human-
defined schedule.

Figure 8: Hyperparameter schedules of the Transformer language model on Penn Treebank. See text
for a discussion of the learned schedules.

5.2 TRANSFORMER ON PTB

We repeat the experiment described above for Transformer models on the task of language modeling
on the Penn Treebank corpus (PTB). In this model, in addition to learning rate and weight decay,
we also tune 3 dropout parameters: the attention dropout, the dropout in the middle of feed-forward
layers and the dropout at the final residual connection in a layer. Not only are there 3 different
dropouts, we tune them separately for the first layer, last layer, and all other layers in the middle.
Since we are training a Transformer model, these are layers 2-5.

The final accuracy curves for all models are depicted in Figure 7. Neither the model-free baseline nor
the forecaster policy manages to out-perform the human baseline in this case. The forecaster overfits
slightly and so its final score gets worse in the end, but it is close to the model-free baseline.

Discussion The schedules of these parameters used by the model-free baseline, the forecaster-
trained model and human researchers are depicted in Figure 8. The forecaster clearly employs some
interesting strategies. The dropout inside the feed-forward part of the middle layers is raised very
heavily after the first few thousand steps, possibly because this 6-layer Transformer model has too
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many parameters for the PTB dataset. In the final layer, the feed-forward dropout is not changed but
the final one oscillates and goes up in the end. Similarly for the dropout of the first layer of word
embeddings: both the forecaster policy and the model-free one decide to raise it.

6 CONCLUSIONS

Modeling the learning dynamics of deep models is a complex problem, but a modification of the
Transformer model with the discretization strategy we developed in Section 2.1 yields good results
in many cases. The predicted curves not only have low L2 distance and look close to the real ones,
as seen in Figure 1, but can also be used in a reinforcement learning setting to create parameter
schedules.

Learning parameter scheduling policies using the forecaster is much more efficient than when running
real experiments. A single inference of the forecaster, at batch 128, takes less than a minute even on a
single GPU. Training the models on the other hand takes at least an hour and one needs 128 GPUs
for that. So it is at least 60 × 128 = 7680 times more efficient to operate in simulation. We show
experimentally that the forecasting model is indeed good enough to be used in this way.

One question that we leave for future work is how to effectively gather data for the forecaster
model. Having a lot of training curves from varied models would allow pre-training the Transformer
forecaster before using task-specific data. Pre-training with large data-sets has worked very well
with Transformers, e.g., in the context of BERT and other NLP tasks, so we consider it a promising
direction in this case too.

To pre-train the forecaster we will need to scale-up the effort of gathering data. Luckily, this can be a
community effort as many people are training models and could benefit from better hyperparameter
schedules. In preparation for this we have already released the code for our experiments as open-
source1 and we are gathering feedback as we extend its applicability.

Finally, aside from the applications to hyperparameter tuning, our forecaster can be applied to any
time-series prediction task. We have not experimented with other tasks than the synthetic one, but
our results in Section 2.1 are very encouraging and let us believe that Transformer-based models can
achieve good results in many time-series prediction tasks.
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