
Under review as a conference paper at ICLR 2020

HOMOGENEOUS LINEAR INEQUALITY CONSTRAINTS
FOR NEURAL NETWORK ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a method to impose homogeneous linear inequality constraints of the
form Ax ≤ 0 on neural network activations. The proposed method allows a data-
driven training approach to be combined with modeling prior knowledge about
the task. One way to achieve this task is by means of a projection step at test time
after unconstrained training. However, this is an expensive operation. By directly
incorporating the constraints into the architecture, we can significantly speed-up
inference at test time; for instance, our experiments show a speed-up of up to two
orders of magnitude over a projection method. Our algorithm computes a suitable
parameterization of the feasible set at initialization and uses standard variants of
stochastic gradient descent to find solutions to the constrained network. Thus,
the modeling constraints are always satisfied during training. Crucially, our ap-
proach avoids to solve an optimization problem at each training step or to man-
ually trade-off data and constraint fidelity with additional hyperparameters. We
consider constrained generative modeling as an important application domain and
experimentally demonstrate the proposed method by constraining a variational
autoencoder.

1 INTRODUCTION

Deep learning models (LeCun et al., 2015) have demonstrated remarkable success in tasks that
require exploitation of subtle correlations, such as computer vision (Krizhevsky et al., 2012) and
sequence learning (Sutskever et al., 2014). Typically, humans have strong prior knowledge about a
task, e.g., based on symmetry, geometry, or physics. Learning such a priori assumptions in a purely
data-driven manner is inefficient and, in some situations, may not be feasible at all. While certain
prior knowledge was successfully imposed – for example translational symmetry through convolu-
tional architectures (LeCun et al., 1998) – incorporating more general modeling assumptions in the
training of deep networks remains an open challenge. Recently, generative neural networks have
advanced significantly (Goodfellow et al., 2014; Kingma & Welling, 2014). With such models, con-
trolling the generative process beyond a data-driven, black-box approach is particularly important.

In this paper, we present a method to impose prior knowledge through homogeneous linear inequal-
ity constraints of the form Ax ≤ 0 on the activations of deep learning models. We directly impose
these constraints through a suitable parameterization of the feasible set. This has several advantages:

• The constraints are hard-constraints in the sense that they are satisfied at any point during
training and inference.

• Inference on the constrained network incurs no overhead compared to unconstrained infer-
ence.

• There is no manual trade-off between constraint satisfaction and data representation.

In summary, the main contribution of our method is a reparameterization that incorporates homo-
geneous linear inequality hard-constraints on neural network activations and allows for efficient test
time predictions, i.e., our method is faster up to two orders of magnitude. The model can be opti-
mized by standard variants of stochastic gradient descent. As an application in generative modeling,
we demonstrate that our method is able to produce authentic samples from a variational autoencoder
while satisfying the imposed constraints.

1



Under review as a conference paper at ICLR 2020

Figure 1: Samples drawn from a variational autoencoder trained on MNIST without constraints
(left) and with a checkerboard constraint on the output domain (right). For a pixel intensity do-
main [−1, 1], the checkerboard constraint forces the image tiles to have average positive or negative
brightness.

2 RELATED WORK

Various works have introduced methods to impose some type of hard constraint on neural network
activations. This differs from a classical constrained optimization problem (Nocedal & Wright,
2006) in that the constraints are on the image of a parameterized function rather than on the neural
network parameters.

Márquez-Neila et al. (2017) formulated generic differentiable equality constraints as soft constraints
and employed a Lagrangian approach to train their model. While this is a principled approach
to constrained optimization, it does not scale well to practical deep neural network models with
their vast number of parameters. To make their method computationally tractable, a subset of the
constraints is selected at each training step. In addition, these constraints are locally linearized; thus,
there is no guarantee that this subset will be satisfied after a parameter update.

For the specific problem of weakly supervised segmentation, Pathak et al. (2015) proposed an opti-
mization scheme that alternates between optimizing the deep learning model and fitting a constrained
distribution to these intermediate models. However, this method involves solving a (convex) opti-
mization problem at each training step. Furthermore, the overall convergence path depends on how
the alternating optimization steps are combined, which introduces an additional hyperparameter that
must be tuned. Briq et al. (2018) approached the weakly supervised segmentation problem with a
layer that implements the orthogonal projection onto a simplex, thereby directly constraining the
activations to a probability distribution. This optimization problem can be solved efficiently, but
does not generalize to other types of inequality constraints.

OptNet, an approach to solve a generic quadratic program as a differentiable network layer, was
proposed by Amos & Kolter (2017). OptNet backpropagates through the first-order optimality con-
ditions of the quadratic program, and linear inequality constraints can be enforced as a special case.
The formulation is flexible; however, it scales cubically with the number of variables and constraints.
Thus, it becomes prohibitively expensive to train large-scale deep learning models.

Finally, several works have proposed handcrafted solutions for specific applications, such as skeleton
prediction (Zhou et al., 2016) and prediction of rigid body motion (Byravan & Fox, 2017). In
contrast, to avoid laborious architecture design, we argue for the value of generically modeling
constraint classes. In practice, this makes constraint methods more accessible for a broader class of
problems.

Contribution In this work, we tackle the problem of imposing homogeneous linear inequality con-
straints on neural network activations. Rather than solving an optimization problem during training,
we split this task into a feasibility step at initialization and an optimality step during training. At ini-
tialization, we compute a suitable parameterization of the constraint set (a polyhedral cone) and use
the neural network training algorithm to find a good solution within this feasible set. Conceptually,
we are trading-off computational cost during initialization to obtain a model that has no overhead at
test time. The proposed method is implemented as a neural network layer that is specified by a set
of homogeneous linear inequalities and whose output parameterizes the feasible set.

2



Under review as a conference paper at ICLR 2020

3 LINEAR INEQUALITY CONSTRAINTS FOR DEEP LEARNING MODELS

We consider a generic L layer neural network Fθ with model parameters θ for inputs x as follows:

Fθ(x) = f
(L)
θL

(σ(f
(L−1)
θL−1

(σ(. . . f
(1)
θ1

(x) . . . )))), (1)

where f (l)θl are affine functions, e.g., a fully-connected or convolutional layer, and σ is an element-
wise non-linearity1, e.g., a sigmoid or rectified linear unit (ReLU). In supervised learning, training
targets y are known and a loss Ly(Fθ(x)) is minimized as a function of the network parameters θ. A
typical loss for a classification task is the cross entropy between the network output and the empir-
ical target distribution, while the mean-squared error is commonly used for a regression task. The
proposed method can be applied to constrain any linear activations z(l) = f

(l)
θl

(a(l−1)) or non-linear
activations a(l) = σ(z(l)). In most cases, one would like to constrain the output Fθ(x).

The feasible set for m linear inequality constraints in d dimensions is the convex polyhedron

C :=

{
z

∣∣∣∣Az ≤ b, A ∈ Rm×d, b ∈ Rm
}
⊆ Rd . (2)

A suitable description of the convex polyhedron C is obtained by the decomposition theorem for
polyhedra.
Theorem 1 (Decomposition of polyhedra, Minkowski-Weyl). A set C ⊂ Rd is a convex polyhedron
of the form (2) if and only if

C = conv(v1, . . . , vn) + cone(r1, . . . , rs)

=


n∑
i=1

λivi +

s∑
j=1

µjrj

∣∣∣∣λi, µj ≥ 0,

n∑
i=1

λi = 1

 (3)

for finitely many vertices {v1, . . . , vn} and rays {r1, . . . , rs}.

Furthermore, C =
{
z|Az ≤ 0, A ∈ Rm×d

}
if and only if

C = cone(r1, . . . , rs) (4)

for finitely many rays {r1, . . . , rs}.

The theorem states that an intersection of half-spaces (half-space or H-representation) can be written
as the Minkowski sum of a convex combination of the polyhedron’s vertices and a conical combi-
nation of some rays (vertex or V-representation). One can switch algorithmically between these
two viewpoints via the double description method (Motzkin et al., 1953; Fukuda & Prodon, 1996),
which we discuss in the following. Thus, the H-representation, which is natural when modeling
inequality constraints, can be transformed into the V-representation, which can be incorporated into
gradient-based neural network training.

In this paper, we focus on homogeneous constraints of the form (4), for which the feasible set is a
polyhedral cone. Due to the special structure of this set, we can avoid to work with the convex com-
bination parameters in (3), which is numerically advantageous (Section 3.5), and we can efficiently
combine modeling constraints and domain constraints, such as a [−1, 1]-pixel domain for images
(Section 3.3). Such a polyhedral cone is shown in Figure 2.

3.1 DOUBLE DESCRIPTION METHOD

The double description method converts between the half-space and vertex representation of a sys-
tem of linear inequalities. It was originally proposed by Motzkin et al. (1953) and further refined by
Fukuda & Prodon (1996).2 Here, we are only interested in the conversion from H-representation to
V-representation for homogeneous constraints (4),

H → cone(r1, . . . , rs) . (5)

1Formally, σ maps between different spaces for different layers and may also be a different element-wise
non-linearity for each layer. We omit such details in favor of notational simplicity.

2In our experiments we use pycddlib, which is a Python wrapper of Fukuda’s cddlib.

3



Under review as a conference paper at ICLR 2020

Rk

r5

r1

r2

r3

r4

H

Rk+1

r5

r1
r3

r4

r6 r7

Figure 2: Diagram illustrating an iteration of the double description method. Adding a constraint to
the k-constraint set Ak at iteration k + 1 introduces a hyperplane H . The intersection points of H
with the boundary of the current polyhedron Rk (marked by ◦) are added as rays r6 and r7 to the
polyhedral cone. The ray r2 is cut-off by the hyperplane H and is removed from Rk. The result is
the next iterate Rk+1.

The core algorithm proceeds as follows. Let the rows of A define a set of homogeneous inequalities
and let R = [r1, . . . , rs] be the matrix whose columns are the rays of the corresponding cone. Here,
(A,R) form a double description pair. The algorithm iteratively builds a double description pair
(Ak+1, Rk+1) from (Ak, Rk) in the following manner. The rows in Ak represent a k-subset of
the rows of A and thus define a convex polyhedron associated with Rk. Adding a single row to
Ak introduces an additional half-space constraint, which corresponds to a hyperplane. If the vector
ri − rj for two columns ri, rj of Rk intersects with this hyperplane then this intersection point is
added to Rk. Existing rays that are cut-off by the additional hyperplane are removed from Rk. The
result is the double description pair (Ak+1, Rk+1). This procedure is shown in Figure 2.

Adding a hyperplane might drastically increase the number of rays in intermediate representations,
which, in turn, contribute combinatorically in the subsequent iteration. In fact, there exist worst
case polyhedra for which the algorithm has exponential run time as a function of the number of
inequalities and the input dimension, as well as the number of rays (Dyer, 1983; Bremner, 1999).
Overall, one can expect the algorithm to be efficient only for problems with a reasonably small
number m of inequalities and dimension d.

3.2 INTEGRATION IN NEURAL NETWORK ARCHITECTURES

We parameterize the homogeneous form (4) via a neural network layer. This layer takes as input
some (latent) representation of the data, which is mapped to activations satisfying the desired hard
constraints. The algorithm is provided with the H-representation of linear inequality constraints,
i.e., a matrix A ∈ Rm×d for m constraints in d dimensions to specify the feasible set (4). At ini-
tialization, we convert this to the V-representation via the double description method (Section 3.1).
This corresponds to computing the set of rays {r1, . . . , rs} to represent the polyhedral cone. During
training, the neural network training algorithm is used to optimize within in the feasible set. There
are two critical aspects in this procedure. First, as outlined in Section 3.1, the run-time complexity
of the double description method may be prohibitive. Conceptually, the proposed approach allows
for significant compute time at initialization to obtain an algorithm that is very efficient at train-
ing and test time. Second, we must ensure that the mapping from the latent representation to the
parameters integrates well with the training algorithm. We assume that the model is trained with
gradient-based backpropagation, as is common for current deep learning applications. The con-
straint layer comprises a batch normalization layer and an affine mapping (fully-connected layer
with biases) followed by the element-wise absolute value function that ensures the non-negativity
required by the conical combination parameters. In theory, any function f : R→ R≥0 would fulfill
this requirement; however, care must be taken to not interfere with backpropagated gradients.

4



Under review as a conference paper at ICLR 2020

3.3 COMBINING MODELING AND DOMAIN CONSTRAINTS

Domain constraints are often formulated as unit box constraints, B := {x ∈ Rd|−1 ≤ xi ≤ 1}, such
as a pixel domain for images. Box constraints are particularly unfit to be converted using the double
description method because the number of vertices is exponential in the dimension. Therefore,
we distinguish modeling constraints and domain constraints and only convert the former into V-
representation. Based on this representation, we obtain a point in the modeling constraint set, x ∈ C.
However, this point may not be in the unit box B. To arrive at a point in the intersection C ∩ B, we
normalize x by its infinity norm if x /∈ B, x̂ = x/max{‖x‖∞ , 1}. Indeed, x̂ ∈ C ∩ B since scaling
by a positive constant remains in the cone, i.e., if x ∈ C, then αx ∈ C ∀α ≥ 0.

3.4 APPLICATIONS OF HOMOGENEOUS LINEAR INEQUALITY CONSTRAINTS

A natural application of constraints of the form Ax ≤ 0 is a parameterization of a set of binary
classifiers. If each row ai of A is such a binary classifier, then the method presented in this paper
parameterizes the set {x|aTi x ≤ 0 ∀i}. Consequently, it can be guaranteed that neural network
activations satisfy a set of binary criteria. Another domain is to express certain direct relations
between neural network activations. Notably, one can guarantee mathematical properties such as
monotonicity via xi+1 ≥ xi and convexity via xi+1 − 2xi + xi−1 ≥ 0.

3.5 EXTENSION TO GENERAL LINEAR INEQUALITY CONSTRAINTS

The proposed method takes advantage of the special structure of a polyhedral cone to efficiently
combine modeling and domain constraints (Section 3.3). General linear inequality constraints of
the form Ax ≤ b without restrictions on A and b possibly require the conic and convex component
of (3) for their V-representation. The main approach of this paper may be used in this case, i.e.,
our layer additionally needs to predict convex combination parameters. However, we observed
slow convergence, which we ascribe to the simplex parameterization for the convex combination
parameters. We used a softmax function f(x)i = exp(xi)/

∑m
j=1 exp(xj) to enforce the constraints

λi ≥ 0,
∑m
i=1 λi = 1 of the convex combination parameters in (3). This function has vanishing

gradients when one xi is significantly greater than the other vector entries. Furthermore, this most
general setting does not allow for efficient incorporation of domain constraints, as this would require
an efficient parameterization of the intersection of a general convex polyhedron and the unit box.

4 NUMERICAL RESULTS

We compare the proposed constraint parameterization algorithm with an algorithm that trains with-
out constraints, but requires a projection step at test time. We call this latter algorithm test time
projection. We analyze these algorithms in two different settings. In an initial experiment, we learn
the orthogonal projection onto a constraint set to demonstrate properties of these algorithms. Here,
the result can be compared to the optimal solution of the convex optimization problem. In a second
experiment, consistent with our motivation to constrain the output of generative models, we apply
these algorithms to a variational autoencoder. Finally, we evaluate the running time of inference for
these problems and show that the proposed algorithm is significantly more efficient compared to the
test time projection method.

We used the MNIST dataset (LeCun et al.) for both experiments (59000 training, 1000 validation,
and 10000 test samples). We chose PyTorch (Paszke et al., 2017) for our implementation3 and all
experiments were performed on a single Nvidia Titan X GPU. All networks were optimized with the
Adam optimizer and we evaluated learning rates in the range [10−5, 10−3]. The initial learning rate
was annealed by a factor of 1/2 if progress on the validation loss stagnated for more than 5 epochs.
We used OSQP (Stellato et al., 2017) as an efficient solver to compute orthogonal projections.

Both experiments were performed with a checkerboard constraint with 16 tiles, where neighbor-
ing tiles are constrained to be on average either below or above pixel domain midpoint. For a
[−1, 1]-pixel domain, the tiles’ average intensity is positive or negative, respectively. The initial
computational cost of converting these constraints into V-representation via the double description

3Our implementation will be publicly available.

5



Under review as a conference paper at ICLR 2020

method is negligible (less than 1s). We observed that it is numerically advantageous to activate unit
box scaling after the constraint parameterization model was initially optimized only with modeling
constraints for a specified number of epochs.

One might consider OptNet (Amos & Kolter, 2017) and an analogous version of the method intro-
duced by Pathak et al. (2015) as baselines. However, these approaches incur a significant drawback
for the setup presented in this paper as they are are computationally expensive at training time. An
OptNet layer solves a generic quadratic program as a differentiable network layer, which scales cu-
bically with the number of variables and constraints. The method by Pathak et al. (2015) for the
regression problems in this paper alternates between optimization steps in the network parameters
via a variant of stochastic gradient descent and projecting the network output onto the constraints,
which is computationally expensive.

4.1 ORTHOGONAL PROJECTION ONTO A CONSTRAINT SET

We learn an orthogonal projection to demonstrate general properties of both algorithms. For given
linear inequalities specified in H-representation, we solve the following problem:

min
z∈Rd
‖z − y‖2 s.t. Az ≤ 0 , (6)

where y is an MNIST image. Here, the problem is convex; therefore, the global optimum can be
readily computed and compared to the performance of the learning algorithms. In this setting, we
can expect that training an unconstrained network with subsequent projection onto the constraint set
at test time yields good results, which can be seen as follows. Let PC(y) := argminz∈C‖z − y‖2 be
the orthogonal projection onto the constraint set C and denote the mean-squared error as Ly(x) :=
‖x− y‖2. Both mappings are Lipschitz continuous with Lipschitz constant L = 1. Consequently,
for an output ŷ of an unconstrained model,

∣∣∣∣Ly(PC(ŷ))− Ly(PC(y))∣∣∣∣ ≤∥∥PC(ŷ)− PC(y)∥∥2 ≤‖ŷ − y‖2 , (7)

where, by definition, the term Ly(PC(y)) is the optimal value of problem (6). The training algorithm
fits ŷ to y; therefore, projecting the unconstrained output ŷ onto the constraint set will yield an
objective value that is close to the optimal value of the constrained optimization problem.

To have a comparable number of parameters for both methods, we use a single fully-connected
layer in both cases. For the unconstrained model, we employ an FC(784, 784) layer, and for the
constrained model we employ an FC(784, nr) layer with nr = 1552 many rays to represent the
constraint set in V-representation. Additionally, the constraint layer first applies a batch normaliza-
tion operation (Ioffe & Szegedy, 2015). Both models were optimized with an initial learning rate of
10−4, which was annealed by a factor of 0.1 if progress on the validation loss stagnated for more
than 5 epochs. The batch size was chosen to be 256. The unit box constraints were activated after 25
epochs. Additionally, the data for training the model with all constraints being active is shown. This
mode eventually results in worse generalization. Figure 3 shows that the mean-squared validation
objective for both algorithms converges close to the average optimum. The constraint parameteri-
zation method has a larger variance and optimality gap, which hints at the numerical difficulty of
training the constrained network. To be precise, the best average validation error during training is
within 9% of the optimum for the constraint parameterization method and within 1% of the optimum
for the test time projection method. Figure 4 shows a test set sample and the respective output of the
learned models.

6



Under review as a conference paper at ICLR 2020

0 10 20 30 40 50 60 70 80 90 100
0.3

0.5

0.7

0.9

1.1

training time [s]
va

lid
at

io
n

lo
ss

constraint parameterization (box delay)
constraint parameterization
test time projection
average optimal value

Figure 3: Mean-squared validation loss averaged over all pixels for 10 runs; shaded area denotes
standard deviation. The objective function (6) is computed on a held-out validation set for the
proposed constraint parameterization method and unconstrained optimization with subsequent test
time projection. The average optimum over the validation set is obtained as a solution to a convex
optimization problem. For the box delay curve, the box constraints are activated after 25 epochs
(after∼ 30s), which results in better generalization. The best average validation error during training
is within 9% of the optimum for the constraint parameterization method with box constraint delay
and within 1% of the optimum for the test time projection method.

Figure 4: Learning to solve the orthogonal projection onto a constraint set as defined in (6). From
left to right: MNIST sample from a test set, optimal projection by solving a quadratic program,
constraint parameterization model inference, and test time projection model inference.

4.2 CONSTRAINED GENERATIVE MODELING WITH VARIATIONAL AUTOENCODERS

Variational autoencoders (VAE) are a class of generative models that are jointly trained to encode
observations into latent variables via an encoder or inference network and decode observations from
latent variables using a decoder or generative network (Kingma & Welling, 2014). We base our
implementation on (Baumgärtner, 2018). The model has a fully-connected architecture:

encoder: FC(784, 256)− ReLU− FC(256, 2)
decoder: FC(2, 256)− ReLU− FC(256, 784)− sigmoid− constraint

Here, ReLU(x) = max(0, x) and the sigmoid non-linearity takes the form σ(x) = 1/(1+exp(−x)).
In contrast to a standard VAE, we constrain the samples generated by the model to obey a checker-
board constraint. The model was optimized with an initial learning rate of 10−4, which was annealed
by a factor of 0.1 if progress on the validation loss stagnated for more than 5 epochs. The batch size
was chosen to be 64. The model was trained for 200 epochs while the unit box constraints were
activated after 100 epochs. To generate images, we sample the latent space prior z ∼ N (0, I) and
evaluate the decoding neural network (Figure 5). The model is able to sample authentic digits while
obeying the checkerboard constraint.

4.3 FAST INFERENCE WITH CONSTRAINED NEURAL NETWORKS

The main advantage of the proposed method over a simple projection method is a vast speed-up at
test time. Since the constraint is incorporated into the neural network architecture, a forward pass has
almost no overhead compared to an unconstrained network. On the other hand, for a network that
was trained without constraints, a final projection step is necessary; this requires solving a convex

7



Under review as a conference paper at ICLR 2020

Pr
oj

ec
tio

n
O

ur
s

Figure 5: Samples from a constrained variational autoencoder trained with the test time projection
method and our constraint parameterization method. The images represent authentic digits while
satisfying the imposed checkerboard constraint. Inference is significantly faster using our method.

Table 1: Inference time for test time projection and constraint parameterization methods. Mean and
standard deviation of running times are computed over 100 runs of 59000 samples with a batch size
of 256.

METHOD PROJECTION VAE
Test time projection 82± 1 s 40± 1 s
Constraint parameterization (ours) 0.46± 0.02 s 0.75± 0.04 s

optimization problem, which is relatively costly. Table 1 shows inference times for both models for
the above numerical experiments. The constraint parameterization approach is up to two orders of
magnitude faster at test time compared to the test time projection algorithm.

5 CONCLUSION

To combine a data-driven task with modeling constraints, we have developed a method to impose
homogeneous linear inequality constraints on neural network activations. At initialization, a suitable
parameterization is computed and subsequently a standard variant of stochastic gradient descent is
used to train the reparameterized network. In this way, we can efficiently guarantee that network ac-
tivations – in the final or any intermediate layer – satisfy the constraints at any point during training.
The main advantage of our method over simply projecting onto the feasible set after unconstrained
training is a significant speed-up at test time of up to two orders of magnitude. An important ap-
plication of the proposed method is generative modeling with prior assumptions. Therefore, we
demonstrated experimentally that the proposed method can be used successfully to constrain the
output of a variational autoencoder. Our method is implemented as a layer, which is simple to com-
bine with existing and novel neural network architectures in modern deep learning frameworks and
is therefore readily available in practice.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), pp. 136–
145, 2017.

Tim Baumgärtner. VAE-CVAE-MNIST. https://github.com/timbmg/
VAE-CVAE-MNIST, 2018. commit: e4ba231.

David Bremner. Incremental convex hull algorithms are not output sensitive. Discrete & Computa-
tional Geometry, 21(1):57–68, 1999.

Rania Briq, Michael Moeller, and Juergen Gall. Convolutional Simplex Projection Network (CSPN)
for Weakly Supervised Semantic Segmentation. BMVC 2018, 2018.

Arunkumar Byravan and Dieter Fox. SE3-nets: Learning rigid body motion using deep neural
networks. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.

Martin E. Dyer. The complexity of vertex enumeration methods. Mathematics of Operations Re-
search, 8(3):381–402, 1983.

Komei Fukuda and Alain Prodon. Double description method revisited, pp. 91–111. Combinatorics
and Computer Science: 8th Franco-Japanese and 4th Franco-Chinese Conference Brest, France,
July 3–5, 1995 Selected Papers. Springer Berlin Heidelberg, 1996.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems 27 (NIPS 2014), pp. 2672–2680. 2014.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on
Machine Learning, volume 37, pp. 448–456. PMLR, 07–09 Jul 2015.

Diederik Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR 2014), 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. ImageNet classification with deep convolu-
tional neural networks. In Proceedings of the 25th International Conference of Neural Information
Processing Systems (NIPS 2012), 2012.

Yann LeCun, Corinna Cortes, and Christopher Burges. The MNIST database of handwritten digits.
URL http://yann.lecun.com/exdb/mnist/.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
works: Promises and limitations. First Workshop on Negative Results in Computer Vision, CVPR
2017, 2017.

T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method. In
Contributions to the Theory of Games II, volume 8 of Ann. of Math. Stud., pp. 51–73. Princeton
University Press, 1953.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series in Operations Re-
search and Financial Engineering. Springer, 2006.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. Autodiff Workshop, NIPS 2017, 2017.

9

https://github.com/timbmg/VAE-CVAE-MNIST
https://github.com/timbmg/VAE-CVAE-MNIST
http://yann.lecun.com/exdb/mnist/


Under review as a conference paper at ICLR 2020

Deepak Pathak, Philipp Krähenbühl, and Trevor Darrell. Constrained Convolutional Neural Net-
works for Weakly Supervised Segmentation. In International Conference on Computer Vision
(ICCV 2015), 2015.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An Operator Splitting Solver for Quadratic Programs. ArXiv e-prints, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Net-
works. In Proceedings of the 27th International Conference of Neural Information Processing
Systems (NIPS 2014), 2014.

Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, and Yichen Wei. Deep Kinematic Pose Regres-
sion. Workshop on Geometry Meets Deep Learning, ECCV 2016, 2016.

10


	Introduction
	Related work
	Linear inequality constraints for deep learning models
	Double description method
	Integration in neural network architectures
	Combining modeling and domain constraints
	Applications of homogeneous linear inequality constraints
	Extension to general linear inequality constraints

	Numerical Results
	Orthogonal projection onto a constraint set
	Constrained generative modeling with variational autoencoders
	Fast inference with constrained neural networks

	Conclusion

