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ABSTRACT

Data augmentation (DA) has been widely utilized to improve generalization in
training deep neural networks. Recently, human-designed data augmentation has
been gradually replaced by automatically learned augmentation policy. Through
finding the best policy in well-designed search space of data augmentation, Au-
toAugment (Cubuk et al., 2018) can significantly improve validation accuracy on
image classification tasks. However, this approach is not computationally practi-
cal for large problems. In this paper, we develop an adversarial method to arrive
at a computationally-affordable solution called Adversarial AutoAugment, which
can simultaneously optimizes target related object and augmentation policy search
loss. The augmentation policy network attempts to increase the training loss of a
target network through generating adversarial augmentation policies, while the
target network can learn more robust features from harder examples to improve
the generalization. In contrast to prior work, we reuse the computation in tar-
get network training for policy evaluation, and dispense with the retraining of
the target network. Compared to AutoAugment, this leads to about 12× reduc-
tion in computing cost and 11× shortening in time overhead on ImageNet. We
show experimental results of our approach on CIFAR-10/CIFAR-100, ImageNet,
and demonstrate significant performance improvements over state-of-the-art. On
CIFAR-10, we achieve a top-1 test error of 1.36%, which is the currently best per-
forming single model. On ImageNet, we achieve a leading performance of top-1
accuracy 79.40% on ResNet-50 and 80.00% on ResNet-50-D without extra data.

1 INTRODUCTION

Massive amount of data promotes the great success of deep learning in academia and industry. The
performance of a deep neural network (DNN) would be improved substantially when more super-
vised data available or better data augmentation method adapted. Data augmentation such as rota-
tion, flipping, cropping, et al., is a powerful technique to increase the amount and diversity of data.
Experiments show that the generalization of a neural network can be efficiently improved through
manually designing data augmentation policies. However, this needs lots of knowledge of human
expert, and also shows the weak transferability across different tasks and datasets in practical appli-
cations. Inspired by neural architecture search (NAS)(Zoph & Le, 2016; Zoph et al., 2017; Zhong
et al., 2018a;b; Guo et al., 2018), a reinforcement learning (RL) (Williams, 1992) method called
AutoAugment is proposed by Cubuk et al. (2018), which can automated learn the augmentation
policy from data and provide an exciting performance improvement on image classification tasks.
However, the computing cost is huge for training and evaluating thousands of sampled policies in
the search process. Although proxy tasks, i.e., smaller models and reduced datasets, are taken to
accelerate the searching process, there still requires tens of thousands of GPU-hours consumption.
In addition, these data augmentation policies optimized on proxy tasks are not guaranteed to be op-
timal on the target task, and the fixed augmentation policy is also sub-optimal for the whole training
process.

In this paper, we propose an efficient data augmentation method to address the problems mentioned
above, which can directly search the best augmentation policy on the full dataset during training
a target network, as shown in Figure 1. We first organize the network training and augmentation
policy search in an adversarial and online manner. The augmentation policy is dynamically changed
along with the training state of the target network, rather than fixed throughout the whole training
process like normal AutoAugment (Cubuk et al., 2018). Due to reusing the computation in policy
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Figure 1: The overview of our proposed method. We formulate it as a Min-Max game. The
data of each batch is augmented by multiple pre-processing components with sampled policies
{τ1, τ2, · · · , τM}, respectively. Then, a target network is trained to minimize the loss of a large
batch, which is formed by multiple augmented instances of the input batch. We extract the training
losses of a target network corresponding to different augmentation polices as the reward signal. Fi-
nally, the augmentation policy network is trained with the guideline of the processed reward signal,
and aims to maximize the training loss of the target network through generating adversarial policies.

evaluation and dispensing with the retraining of the target network, the computing cost and time
overhead are extremely reduced. Then, the augmentation policy network is taken as an adversary to
explore the weakness of the target network. We augment the data of each min-batch with various
adversarial policies in parallel, rather than the same data augmentation taken in batch augmentation
(BA) (Hoffer et al., 2019). Then, several augmented instances of each mini-batch is formed into a
large batch for target network learning. As an indicator of the hardness of augmentation policies, the
training losses of the target network are used to guide the policy network to generate more aggres-
sive and efficient policies based on REINFORCE algorithm (Williams, 1992). Through adversarial
learning, we can train the target network more efficiently and robustly.

The contributions can be summarized as follows:
• Our method can directly learn augmentation policies on target tasks, i.e., target networks

and full datasets, with a relative low computing cost. The direct policy search avoids the
performance reduction caused by the transfer from proxy tasks to target tasks.

• We propose an adversarial framework to jointly optimize target network training and aug-
mentation policy search. The harder samples augmented by adversarial augmentation poli-
cies are constantly fed into a target network to promote robust feature learning. Hence, the
generalization of a target network can be significantly improved.

• The experiment results show that our proposed method outperforms all previous aug-
mentation methods. For instance, we achieve a top-1 test error of 1.36% with Pyramid-
Net+ShakeDrop (Yamada et al., 2018) on CIFAR-10, which is the state-of-the-art perfor-
mance. On ImageNet, we improve the top-1 accuracy of ResNet-50 (He et al., 2016) from
76.3% to 79.4% without extra data, which is even 1.77% better than AutoAugment (Cubuk
et al., 2018).

2 RELATED WORK

Common data augmentation, which can generate extra samples by some label-preserved transfor-
mations, is usually used to increase the size of datasets and improve the generalization of networks,
such as on MINST, CIFAR-10 and ImageNet (Krizhevsky et al., 2012; Wan et al., 2013; Szegedy
et al., 2015). However, human-designed augmentation polices are specified for different datasets.
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For example, flipping, the widely used transformation on CIFAR-10/CIFAR-100 and ImageNet, is
not suitable for MINST, which will destroy the property of original samples.

Hence, several works (Lemley et al., 2017; Cubuk et al., 2018; Ho et al., 2019) have attempted to
automated learn data augmentation polices. Lemley et al. (2017) propose a method called Smart
Augmentation, which merges two or more samples of a class to improve the generalization of a
target network. The result also indicates that an augmentation network can be learned when a target
network is being training. Through well designing the search space of data augmentation policies,
AutoAugment (Cubuk et al., 2018) takes a recurrent neural network (RNN) as a sample controller
to find the best data augmentation police for a selected dataset. To reduce the computing cost, the
augmentation policy search is performed on proxy tasks. Population based augmentation (PBA) (Ho
et al., 2019) replaces a fixed augmentation policy with a dynamic schedule of augmentation policy
along with the training process, which is mostly related to our work. Inspired by population based
training (PBT) (Jaderberg et al., 2017), the augmentation policy search problem in PBA is modeled
as a process of hyperparameter schedule learning. However, the augmentation schedule learning is
still performed on proxy tasks. The learned policy schedule should be manually adjusted when the
training process of a target network is non-matched with proxy tasks.

Another related topic is Generative Adversarial Networks (GANs), which has recently attracted
lots of research attention due to its fascinating performance, and also been used to enlarge datasets
through directly synthesizing new images (Tran et al., 2017; Perez & Wang, 2017; Antoniou et al.,
2017; Gurumurthy et al., 2017; Frid-Adar et al., 2018). Although we formulate our proposed method
as a Min-Max game, there exists obvious difference with traditional GANs. We want to find the best
augmentation policy to perform image transformation along with the training process, rather than
synthesize new images. Peng et al. (2018) also take such an idea to optimize the training process of
a target network in human pose estimation.

3 METHOD

In this section, we present the implementation of our Adversarial AutoAugment method. First,
the motivation for the adversarial relation between network learning and augmentation policy was
discussed. Then, we introduce the search space with the dynamic augmentation policy. Finally, the
joint framework for network training and augmentation policy search is presented in detail.

3.1 MOTIVATIONS

Although some human-designed data augmentation has been used in the training of DNNs, such
as randomly cropping and horizontally flipping on CIFAR-10/CIFAR-100 and ImageNet, limited
randomness will make it very difficult to generate effective samples at the tail end of the training.
To struggle with the problem, more randomness about image transformation is introduced in the
search space of AutoAugment (Cubuk et al., 2018) (described in Section 3.2). However, the learned
augmentation police is fixed for the entire training process. All of possible instances of each example
will be send to the target network repeatedly, which still results in an inevitable overfitting in a long-
epoch training. This phenomenon indicates that the learned policy is not adaptive to the training
process of a target network, especially found on proxy tasks. Hence, the dynamic and adversarial
augmentation policy with the training process is considered as crucial features in our search space.

Another consideration is how to improve the efficiency of the policy search. In AutoAugment
(Cubuk et al., 2018), to evaluate the performance of an augmentation policy, a lot of child models
should be trained from scratch nearly to convergence. The computation in training and evaluating
the performance of different sampled policies can not be reused, which leads to huge waste of com-
putation resources. In this paper, we propose a computing-efficient policy search framework through
reusing prior computation in policy evaluation. We use one target network to evaluate the perfor-
mance of different policies, i.e., the training losses of corresponding augmented instances, along
with the training phases. The augmentation policy network is learned from the intermediate state of
a target network, which makes generated augmentation policies more aggressive and adaptive. On
the contrary, to combat harder examples augmented by adversarial policies, the target network has
to learn more robust features, which makes the training more efficiently.
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Figure 2: An example of dynamic augmentation policies learned with ResNet-50 on ImageNet.
With the training process of the target network, harder augmentation policies are sampled to combat
overfitting. Intuitively, more geometric transformations, such as TranslateX, ShearY and Rotate, are
picked in our sampled polices, which is obviously different from AutoAugment (Cubuk et al., 2018)
concentrating on color-based transformations.

3.2 SEARCH SPACE

In this paper, the basic structure of the search space of AutoAugment (Cubuk et al., 2018) is re-
served. An augmentation policy is defined as that a policy is composed by 5 sub-polices, each
sub-policy contains two image operations to be applied orderly, each operation has two correspond-
ing parameters, i.e., the probability and magnitude of the operation. Finally, the 5 best policies are
concatenated to form a single policy with 25 sub-polices. For each image in a mini-batch, only
one sub-policy will be randomly selected to be applied. To compare with AutoAugment (Cubuk
et al., 2018) conveniently, we just slightly modify the search space with removing the probability
of each operation. This is because that we think the stochasticity of an operation with a probability
requires a certain epochs to take effect, which will detain the feedback of the intermediate state of
the target network. There are totally 16 image operations in our search space, including ShearX/Y,
TranslateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Bright-
ness, Sharpness, Cutout (Devries & Taylor, 2017) and Sample Pairing (Inoue, 2018). The range of
the magnitude is also discretized uniformly into 10 values. To guarantee the convergence during
adversarial learning, the magnitude of all the operations are set in a moderate range.1 Besides,
the randomness during the training process is introduced into our search space. Hence, the search
space of the policy in each epoch has |S| = (16 × 10)10 ≈ 1.1 × 1022 possibilities. Considering
the dynamic policy, the number of possible polices with the whole training process can be expressed
as |S|#epochs. An example of dynamically learning the augmentation policy along with the training
process of a target network is shown in Figure 2. We observe that the magnitude (an indication of
difficulty) gradually increases with the training process.

3.3 ADVERSARIAL LEARNING

In this section, the adversarial framework of jointly optimizing network training and augmentation
policy search is presented in detail. We use the augmentation policy network A(·,θ) as an adver-
sary, which attempts to increase the training loss of the target network F(·,w) through adversarial

1The more details about the parameter setting please refer to AutoAugment (Cubuk et al., 2018).
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learning. The target network is trained by a large batch formed by multiple augmented instances of
each batch to promote invariant learning (Salazar et al., 2018), and the losses of different augmen-
tation policies applied on the same data are used to train the augmentation policy network by RL
algorithm.

Considering the target network F(·,w) with a loss function L[F(x,w),y], where each example is
transformed by some random data augmentation o(·), the learning process of the target network can
be defined as the following minimization problem

w∗ = arg min
w

E
x∼Ω
L[F(o(x),w),y], (1)

where Ω is the training set, x and y are the input image and the corresponding label, respectively.
The problem is usually solved by vanilla SGD with a learning rate η and batch size N , and the
training procedure for each batch can be expressed as

wt+1 = wt − η
1

N

N∑
n=1

∇wL[F(o(xn),w, yn]. (2)

To improve the convergence performance of DNNs, more random and efficient data augmentation
is performed under the help of the augmentation policy network. Hence, the minimization problem
should be slightly modified as

w∗ = arg min
w

E
x∼Ω

E
τ∼A(·,θ)

L[F(τ(x),w),y], (3)

where τ(·) represents the augmentation policy generated by the network A(·,θ). Accordingly, the
training rule can be rewritten as

wt+1 = wt − η
1

M ·N

M∑
m=1

N∑
n=1

∇wL[F(τm(xn),w), yn], (4)

where we introduce M different instances of each input example augmented by adversarial policies
{τ0, τ1, · · · , τM}. For convenience, we denote the training loss of a mini-batch corresponding to the
augmentation policy τm as

Lm =
1

N

N∑
n=1

L[F(τm(xn),w), yn]. (5)

Hence, we have an equivalent form of Equation 4

wt+1 = wt − η
1

M

M∑
m=1

∇wLm. (6)

Note that the training procedure can be regarded as a larger N · M batch training or an average
over M instances of gradient computation without changing the learning rate, which will lead to a
reduction of gradient variance and a faster convergence of the target network Hoffer et al. (2019).
However, overfitting will also come. To overcome the problem, the augmentation policy network
is designed to increase the training loss of the target network with harder augmentation policies.
Therefore, we can mathematically express the object as the following maximization problem

θ∗ = arg max
θ

J(θ),

where J(θ) = E
x∼Ω

E
τ∼A(·,θ)

L[F(τ(x),w),y].
(7)

Similar to AutoAugment (Cubuk et al., 2018), the augmentation policy network is also implemented
as a RNN shown in Figure 3. At each time step of the RNN controller, the softmax layer will
predict an action corresponding to a discrete parameter of a sub-policy, and then an embedding of
the predicted action will be fed into next time step. In our experiments, the RNN controller will
predict 20 discrete parameters to form a whole policy.

However, there has a severe problem in jointly optimizing target network training and augmentation
policy search. This is because that non-differentiable augmentation operations break gradient flow
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Figure 3: The basic architecture of the controller for generating a sub-policy, which consists of two
operations with corresponding parameters, the type and magnitude of each operation. When a policy
contains Q sub-policies, the basic architecture will be repeated Q times. Following the setting of
AutoAugment (Cubuk et al., 2018), the number of sub-policies Q is set to 5 in this paper.

from the target network F to the augmentation policy network A (Wang et al., 2017; Peng et al.,
2018). As an alternative approach, REINFORCE algorithm (Williams, 1992) is applied to optimize
the augmentation policy network as

∇θJ(θ) = ∇θ E
x∼Ω

E
τ∼A(·,θ)

L[F(τ(x),w),y]

≈
∑
m

Lm∇θpm =
∑
m

Lmpm∇θ log pm

= E
τ∼A(·,θ)

Lm∇θ log pm

≈ 1

M

M∑
m=1

Lm∇θ log pm,

(8)

where pm represents the probability of the policy τm sampled by the augmentation policy network.
To reduce the variance of gradient ∇θJ(θ), we replace the training loss of a mini-batch Lm with
L̂m a moving average over a certain mini-batches2, and then normalize it among M instances as
L̃m. Hence, the training procedure of the augmentation policy network can be expressed as

∇θJ(θ) ≈ 1

M

M∑
m=1

L̃m∇θ log pm,

θe+1 = θe + β
1

M

M∑
m=1

L̃m∇θ log pm,

(9)

The adversarial learning of target network training and augmentation policies is summarized as
Algorithm 1.

4 EXPERIMENTS AND ANALYSIS

In this section, we first reveal the details of experiment settings. Then, we evaluate our proposed
method on CIFAR-10/CIFAR-100, ImageNet, and compare it with previous methods. Results show
our proposed method achieves the state-of-the-art performance with higher computing and time
efficiency as shown in Figure 4.

4.1 EXPERIMENT SETTINGS

The RNN controller is implemented as a one-layer LSTM (Hochreiter & Schmidhuber, 1997). We
set the hidden size to 100, and the embedding size to 32. We use Adam optimizer (Kingma &
Ba, 2015) with a initial learning rate 0.00035 to train the controller. To avoid unexpected rapid
convergence, an entropy penalty of a weight of 0.00001 is applied. All the reported results are the
mean of five runs with different initialization.

2The length of the moving average is fixed to an epoch in our experiments
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Algorithm 1 Joint Training of Target Network and Augmentation Policy Network
Initialization: target network F(·,w), augmentation policy network A(·,θ)
Input: input examples x, corresponding labels y

1: for 1 ≤ e ≤ epochs do
2: Initialize L̂m = 0,∀m ∈ {1, · · · ,M};
3: Generate M policies with the probabilities {p1, p2, · · · , pM};
4: for 1 ≤ t ≤ T do
5: Augment each batch data with M generated policies, respectively;
6: Update we,t+1 according to Equation 4;
7: Update L̂m through moving average, ∀m ∈ {1, 2, · · · ,M};
8: Collect {L̂1, L̂2, · · · , L̂M};
9: Normalize L̂m among M instances as L̃m, ∀m ∈ {1, 2, · · · ,M};

10: Update θe+1 via Equation 9;
11: Output w∗,θ∗
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our method and AutoAugment.
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Figure 5: The Top-1 test accuracy of Wide-
ResNet-28-10 on CIFAR-10 verse different M ,
where M ∈ {2, 4, 8, 16, 32}.

4.2 EXPERIMENTS ON CIFAR-10 AND CIFAR-100

CIFAR-10 dataset (Krizhevsky, 2009) has totally 60000 images. The training and test sets have
50000 and 10000 images, respectively. Each image in size of 32× 32 belongs to one of 10 classes.
We evaluate our proposed method with the following models: Wide-ResNet-28-10 (Zagoruyko &
Komodakis, 2016), Shake-Shake (26 2x32d) (Gastaldi, 2017), Shake-Shake (26 2x96d) (Gastaldi,
2017), Shake-Shake (26 2x112d) (Gastaldi, 2017), PyramidNet+ShakeDrop (Han et al., 2017; Ya-
mada et al., 2018). All the models are trained on the full training set.

Training details: The Baseline is trained with the standard data augmentation, namely, randomly
cropping a part of 32 × 32 from the padded image and horizontally flipping it with a probability
of 0.5. The Cutout (Devries & Taylor, 2017) randomly select a 16 × 16 patch of each image, and
then set the pixels of the selected patch to zeros. For our method, the searched policy is applied in
addition to standard data augmentation and Cutout. For each image in the training process, standard
data augmentation, the searched policy and Cutout are applied in sequence. For Wide-ResNet-28-
10, the step learning rate (LR) schedule is adopted. The cosine LR schedule is adopted for the other
models. The more details about model hyperparameters are supplied in A.1.

Choice of M : To choose the optimal M , we select Wide-ResNet-28-10 as a target network, and
evaluate the performance of our proposed method verse different M , where M ∈ {2, 4, 8, 16, 32}.
From Figure 5, we can observe that the test accuracy of the model improves rapidly with the increase
of M up to 8. The further increase of M does not bring a significant improvement. Therefore, to
balance the performance and the computing cost, M is set to 8 in all the following experiments.

CIFAR-10 results: In Table 1, we report the test error of these models on CIFAR-10. For all of
these models, our proposed method can achieve better performance compared to previous methods.
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Table 1: Top-1 test error (%) on CIFAR-10. We replicate the results of Baseline, Cuout and Au-
toAugment methods from Cubuk et al. (2018), and the results of PBA from Ho et al. (2019) in all of
our experiments.

Model Baseline Cutout AutoAugment PBA Our Method

Wide-ResNet-28-10 3.87 3.08 2.68 2.58 1.90
Shake-Shake (26 2x32d) 3.55 3.02 2.47 2.54 2.36
Shake-Shake (26 2x96d) 2.86 2.56 1.99 2.03 1.85
Shake-Shake (26 2x112d) 2.82 2.57 1.89 2.03 1.78
PyramidNet+ShakeDrop 2.67 2.31 1.48 1.46 1.36

Table 2: Top-1 test error (%) on CIFAR-100.

Model Baseline Cutout AutoAugment PBA Our Method

Wide-ResNet-28-10 18.80 18.41 17.09 16.73 15.49
Shake-Shake (26 2x96d) 17.05 16.00 14.28 15.31 14.10
PyramidNet+ShakeDrop 13.99 12.19 10.67 10.94 10.42

We achieve 0.78% and 0.68% improvement on Wide-ResNet-28-10 compared to AutoAugment and
PBA, respectively. We achieve a top-1 test error of 1.36% with PyramidNet+ShakeDrop, which is
0.1% better than the current state-of-the-art reported in Ho et al. (2019).

CIFAR-100 results: We also evaluate our proposed method on CIFAR-100, as shown in Table 2.
As we can observe from the table, we also achieve the state-of-the-art performance on this dataset.

4.3 EXPERIMENTS ON IMAGENET

As a great challenge in image recognition, ImageNet dataset (Deng et al., 2009) has about 1.2 million
training images and 50000 validation images with 1000 classes. In this section, we directly search
the augmentation policy on the full training set and train ResNet-50 (He et al., 2016), ResNet-50-D
(He et al., 2018) and ResNet-200 (He et al., 2016) from scratch.

Training details: For the baseline augmentation, we randomly resize and crop each input image
to a size of 224 × 224, and then horizontally flip it with a probability of 0.5. For AutoAugment
(Cubuk et al., 2018) and our method, the baseline augmentation and the augmentation policy are
both used for each image. The cosine LR schedule is adopted in the training process. The model
hyperparameters on ImageNet is also detailed in A.1.

ImageNet results: The performance of our proposed method on ImageNet is presented in Table 3.
It can be observed that we achieve a top-1 accuracy 79.40% on ResNet-50 without extra data. To
the best of our knowledge, this is the highest top-1 accuracy for ResNet-50 learned on ImageNet.
Besides, we only replace the ResNet-50 architecture with ResNet-50-D, and achieve a consistent
improvement with a top-1 accuracy of 80.00%.

4.4 ABLATION STUDY

To check the effect of each component in our proposed method, we report the test error of ResNet-50
on ImageNet the following augmentation methods in Table 4.

• Baseline: Training regularly with the standard data augmentation and step LR schedule.

• Fixed: Augmenting all the instances of each batch with the standard data augmentation
fixed throughout the entire training process.

• Random: Augmenting all the instances of each batch with randomly and dynamically
generated policies.

• Ours: Augmenting all the instances of each batch with adversarial policies sampled by the
policy network along with the training process.

From the table, we can find that Fixed can achieve 0.99% error reduction compared to Baseline.
This shows that a large-batch training with multiple augmented instances of each mini-batch can
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Table 3: Top-1 test error (%) on ImageNet. Note that the result of ResNet-50-D is achieved only
through substituting the architecture.

Model Baseline AutoAugment PBA Our Method

ResNet-50 23.69 22.37 - 20.60
ResNet-50-D 22.84 - - 20.00
ResNet-200 21.52 20.00 - 18.68

indeed improve the generalization of the model, which is consistent with the conclusion presented in
Hoffer et al. (2019). In addition, the test error of Random is 1.02% better than Fixed. This indicates
that augmenting batch with randomly generated policies can reduce overfitting in a certain extent.
Furthermore, our method achieves the best test error of 20.60% through augmenting samples with
adversarial policies. From the result, we can conclude that these policies generated by the policy
network are more adaptive to the training process, and make the target network have to learn more
robust features.

Table 4: Top-1 test error (%) of ResNet-50 with different augmentation methods on ImageNet.

Method Aug. Policy Enlarge Batch LR Schedule Test Error

Baseline standard M = 1 step 23.69
Fixed standard M = 8 cosine 22.70
Random random M = 8 cosine 21.68
Ours adversarial M = 8 cosine 20.60

4.5 COMPUTING COST AND TIME OVERHEAD

Computing Cost: The computation in target network training is reused for policy evaluation. This
makes the computing cost in policy search become negligible. Although there exists an increase of
computing cost in target network training, the total computing cost in training one target network
with augmentation policies is quite small compared to prior work.

Time Overhead: Since we just train one target network with a large batch distributedly and simul-
taneously, the time overhead of the large-batch training is equal to the regular training. Meanwhile,
the joint optimization of target network training and augmentation policy search dispenses with the
process of offline policy search and the retraining of a target network, which leads to a extreme time
overhead reduction.

In Table 5, we take the training of ResNet-50 on ImageNet as an example to compare the computing
cost and time overhead of our method and AutoAugment. From the table, we can find that our
method is 12× less computing cost and 11× shorter time overhead than AutoAugment.

Table 5: The comparison of computing cost (GPU hours) and time overhead (days) in training
ResNet-50 on ImageNet between AutoAugment and our method. The computing cost and time
overhead are estimated on 64 NVIDIA Tesla V100s.

Method Computing Cost Time Overhead

Searching Training Total Searching Training Total

AutoAugment 15000 160 15160 10 1 11
Our Method ∼0 1280 1280 ∼0 1 1

5 CONCLUSION

In this paper, we introduce the idea of adversarial learning into automatic data augmentation. The
policy network tries to combat the overfitting of a target network through generating adversarial
polices with the training process. To oppose this, robust features are learned in the target network,
which leads to a significant performance improvement. Meanwhile, the augmentation policy search
is performed along with the training of a target network, and the computation in network training
is reused for policy evaluation, which can extremely reduce the search cost and make our method
more computing-efficient.
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Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation policies from data. CVPR, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. CVPR, 2009.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. CoRR, abs/1708.04552, 2017.

Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan. Synthetic
data augmentation using GAN for improved liver lesion classification. IEEE International Sym-
posium on Biomedical Imaging (ISBI), 2018.

Xavier Gastaldi. Shake-shake regularization. CoRR, abs/1705.07485, 2017.

Minghao Guo, Zhao Zhong, Wei Wu, Dahua Lin, and Junjie Yan. IRLAS: inverse reinforcement
learning for architecture search. CoRR, abs/1812.05285, 2018.

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and Venkatesh Babu Radhakrishnan. Deli-
gan : Generative adversarial networks for diverse and limited data. CVPR, 2017.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. CVPR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CVPR, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. CoRR, abs/1812.01187, 2018.

Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi Chen. Population based augmentation:
Efficient learning of augmentation policy schedules. ICML, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment
your batch: better training with larger batches. CoRR, abs/1901.09335, 2019.

Hiroshi Inoue. Data augmentation by pairing samples for images classification. CoRR,
abs/1801.02929, 2018.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846,
2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Alex Krizhevsky. Adam: A method for stochastic optimization. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. NIPS, 2012.

Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation - learning an optimal
data augmentation strategy. CoRR, abs/1703.08383, 2017.
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A APPENDIX

A.1 HYPERPARAMETERS

We detail the model hyperparameters on CIFAR-10/CIFAR-100 and ImageNet in Table 6.

Table 6: Model hyperparameters on CIFAR-10/CIFAR-100 and ImageNet. LR represents learning
rate, and WD represents weight decay. We do not specifically tune these hyperparameters, and All
of these are consistent with previous works, expect for the number of epochs.

Dataset Model Batch Size
(N ·M ) LR WD Epoch

CIFAR-10 Wide-ResNet-28-10 128 · 8 0.1 5e-4 200
CIFAR-10 Shake-Shake (26 2x32d) 128 · 8 0.2 1e-4 600
CIFAR-10 Shake-Shake (26 2x96d) 128 · 8 0.2 1e-4 600
CIFAR-10 Shake-Shake (26 2x112d) 128 · 8 0.2 1e-4 600
CIFAR-10 PyramidNet+ShakeDrop 128 · 8 0.1 1e-4 600

CIFAR-100 Wide-ResNet-28-10 128 · 8 0.1 5e-4 200
CIFAR-100 Shake-Shake (26 2x96d) 128 · 8 0.1 5e-4 1200
CIFAR-100 PyramidNet+ShakeDrop 128 · 8 0.5 1e-4 1200

ImageNet ResNet-50 2048 · 8 0.8 1e-4 120
ImageNet ResNet-50-D 2048 · 8 0.8 1e-4 120
ImageNet ResNet-200 2048 · 8 0.8 1e-4 120
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