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ABSTRACT

Empirically, data augmentation sometimes improves and sometimes hurts test error,
even when only adding points with labels from the true conditional distribution that
the hypothesis class is expressive enough to fit. In this paper, we provide precise
conditions under which data augmentation can increase test error for minimum norm
estimators in linear regression. To mitigate the failure modes of augmentation, we
introduce X-regularization, which uses unlabeled data to regularize the parameters
towards the non-augmented estimate. We prove that our new estimator never
increases test error and in practice exhibits significant improvements for adversarial
data augmentation on CIFAR-10.

1 INTRODUCTION

We study covariate-shifted data augmentation, where we train on new inputs from some arbitrary
distribution with corresponding outputs from the true conditional distribution. Can this form of data
augmentation increase test error? On the surface, the answer seems like it should be negative since
augmentation provides additional correct information about the true distribution. But the empirical
evidence is mixed: In computer vision, while data augmentation by translating or flipping images
improves accuracy (Krizhevsky et al., 2012; Yaeger et al., 1996; Ciresan et al., 2011), data augmentation
with random or adversarial rotations (Engstrom et al., 2019; Yang et al., 2019) and imperceptible
adversarial `∞ perturbations (Madry et al., 2018) leads to worse standard (non-adversarial) accuracy.
Nakkiran (2019) explained this can happen if the hypothesis class is not expressive enough to fit the
true function, but in practice, we often work with models which can fit the augmented training data
perfectly (e.g. Zhang et al. (2017)).

In this paper, we show that surprisingly, even when the hypothesis class contains the true function,
covariate-shifted data augmentation can increase test error. As a simple example, consider the problem
of fitting a cubic spline (linear regression with some basis) to a set of points (Figure 1), where the true
function is a “staircase”. Without data augmentation (dashed blue), one obtains a line that captures the
global structure and obtains low (but non-zero) error. With data augmentation using local perturbations
(crosses), one incompletely fits the local structure of the high density points, which compromises the
global structure on the tail (solid orange). We can show that the ratio between the errors of the two estima-
tors grows as Ω(s2), where s is the number of “stairs” by constructing a distribution over inputs such that
for a small sample size, all the training points come from the first s/2 stairs (see Theorem 4 for details).

Our main result provides a general analysis of the effect of covariate-shifted data augmentation for
minimum norm estimators for any linear regression problem. We show in Theorem 1 that whether
augmentation helps or hurts hinges on the relation between the span of the augmented points and span
of the original points. Intuitively, augmentations that open up new directions may increase increase
error if those directions are weighted heavily in the population covariance. However, as the span
of the original points grows with additional training data, data augmentation becomes safer. One
might expect augmentation to be most helpful in low data settings, but we show this is exactly the
regime where it can also be most hurtful, even when all the augmented data is drawn from the correct
conditional distribution and the hypothesis class is expressive enough to interpolate it.

To eliminate detrimental effects for any possible true model, we propose a new estimator for covariate-
shifted data augmentation that leverages unlabeled data from the test distribution. The estimator adds
what we call X-regularization, which pulls the augmented estimator towards the non-augmented esti-
mator, in directions weighted heavily in the risk. We prove that with X-regularization, covariate-shifted
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Figure 1: We consider perfectly fitting training points using cubic splines while minimizing
smoothness of the function. (Left) depicts the true function f? and the mass Pxy on each point (x,y)
size of the circles) (Middle) With a small number of standard training samples (circles) from the
distribution depicted in (a), data augmentation with local perturbations (crosses) causes the estimator
to have larger error due to being maximally smooth while also fitting the augmented local perturbations.
(Right) Difference in test error before (standard) and after data augmentation (augmented)

data augmentation never increases error of any minimum norm estimator for linear regression (The-
orem 3). Empirically, for adversarial `∞ perturbations on CIFAR-10, X-regularization dramatically
outperforms vanilla adversarial training methods (Madry et al., 2018) and achieves a relative test error
decrease of at least≈20% using the entire and smaller subsets of the labeled training data.

2 SETTING

Well-specified linear regression. We assume the targets y ∈ R are drawn from the conditional
distribution

Py(· |x)=N (x>θ?, σ), (1)

wherex∈Rd are the covariates and θ?∈Rd are the true parameters. Our goal is to learn a linear predictor
fθ(x)=x>θ. In our main results, we allow the feature vectors to be arbitrary (hence, fixed design) since
we focus on the small sample regime and give results in terms of the empirical and population covariance
explicitly. The random design case for growing sample sizes however is also discussed in Section 3.3.

Covariate-shifted data augmentation. Let Pxy denote the underlying distribution of (x,y) pairs,
Px its marginal on Rd (which is arbitrary and can hence be supported on a fixed given set of
points) and Py(· | x) the corresponding conditional distribution of y given input x. Suppose we
have n pairs (xi, yi) ∼ Pxy in the standard training set. We refer to the standard training set by
Xstd =[x1,x2,...xn]>∈Rn×d and Ystd =[y1,y2,...yn]>∈Rn.

Analogously, we consider αn additional training points denoted byXext =[x̃1,x̃2,...x̃αn]>∈Rαn×d
with associated targets Yext =[ỹ1,ỹ2,...ỹn]>∈Rm. While the augmented covariates can be arbitrary
and hence the distribution of Px of the augmented dataset is potentially different than Stairs on
the original dataset, the conditional target distribution remains the same for both datasets ỹj∼Py(· | x̃).

Minimum norm interpolation estimators. Motivated by the observation that modern machine
learning models achieve near zero training loss (on standard and augmented points), we focus on the
interpolating regime that has been a focus of a number of recent works (Ma et al., 2018; Belkin et al.,
2018; Hastie et al., 2019; Liang & Rakhlin, 2018) . Given covariatesX and targets Y as training data,
we study the following interpolation estimator:

θ=argmin
θ

{
θ>Mθ :Xθ=Y

}
, (2)

whereM is a positive definite (PD) matrix that incorporates prior knowledge about the true model.

Given an arbitrary PD matrixM , we can rotate the covariates x←M−1/2x and parameters θ←M1/2θ.
The rotated feature matrix X and target matrix Y are now related via Y =Xθ+σN (0,I) and the
M -norm of the parameters simplifies to ‖θ‖2. Hence, we present our results in terms of the `2 norm
(ridgless regression) although all results hold for arbitraryM–norms via appropriate rotations.

In this work, we compare the performance two estimators: (i) standard estimator θ̂std with training
data X,Y = [Xstd,Ystd] in (2) and (ii) covariate-shifted data augmentation estimator θ̂aug where the
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training dataX=[Xstd;Xext],Y =[Ystd,Yext] in (2):

θ̂std =argmin
θ

{
‖θ‖2 :Xstdθ=Ystd

}
. (3)

θ̂aug =argmin
θ

{
‖θ‖2 :Xstdθ=Ystd,Xextθ=Yext

}
.

Predictive risk. For both estimators we are interested in the expected predictive risk on a random
sample xtest from the distribution Px with covariance Σ. For fixed design Xstd,Xext, this expected
predictive risk can be decomposed into a bias and variance term.

R(θ̂)=E[(x>test(θ̂−θ?))2]=E[(θ̂−θ?)>Σ(θ̂−θ?)]
=(E[θ̂]−θ?)>Σ(E[θ̂]−θ?)︸ ︷︷ ︸

Bias B(θ̂)

+tr(Cov(θ̂)Σ)︸ ︷︷ ︸
Variance V (θ̂)

. (4)

where the expectation is also taken over the samples Y sampled from Py(· |x). We compare the two
estimators defined in Equation (3) in terms of their predictive risk.

3 PREDICTIVE RISK OF COVARIATE-SHIFTED DATA AUGMENTATION

In this section, we study the risk of the minimum norm estimators defined in Equation (3). In
particular we compare the predictive bias and variance of a standard estimator and the corresponding
covariate-shifted data augmentation estimators (called augmented estimator for brevity).

Bias and variance of minimum norm interpolants. Let Σ be the PD matrix which determines the
predictive risk (4), which could but doesn’t necessarily have to be the covariance of the underlying
distribution Px. Let Σdata = 1

nX
>X and Π⊥data = I−Σ†dataΣdata. For the minimum norm estimators θ̂

as defined in (3) the bias and variance can be computed as follows.

B(θ̂)=θ?>Π⊥dataΣΠ⊥dataθ and V (θ̂)=
σ2

n
tr
(

Σ†dataΣ
)
. (5)

Throughout the paper we say that augmentation is safe if the predictive risk or bias does not increase,
and hurtful if it does.

Large sample regime. Common intuition from a statistical standpoint would suggest that more
data is always good. This is indeed true in the large sample regime when the covariance matrix
of the standard training data Σstd := 1

nX
>
stdXstd is invertible. In this case, both the standard and

augmented estimators are unbiased. Plugging in Σdata = Σstd for the standard estimator, and
Σdata = Σaug := 1

n

(
X>stdXstd + αX>extXext

)
for the augmented estimator in the expression for

variance (5) yields thatR(θ̂aug)≤R(θ̂std). See Appendix A.1 for a full proof.

However, when Σstd is not invertible, the augmented estimator could have higher predictive risk as
exemplified in the spline staircase example (Figure 1). In the following sections, we characterize
when the bias (Sec. 3.1) and variance (Sec. 3.2) of the augmented estimator are larger than those of
the standard estimator.

3.1 PREDICTIVE BIAS IN THE SMALL SAMPLE REGIME

In this section, we study the effect of covariate-shifted data augmentation on the predictive bias when
Σstd is not invertible. In this case, both the standard estimator and the augmented estimator are biased.
The bias is equivalent to the risk when observing noiseless targets. The spline staircase example shows
that even with noiseless target observations, data augmentation can increase bias. We now characterize
general conditions that leads to bias increase for minimum interpolants in linear regression. Before
jumping into the formal characterization we want to give some intuition for how adding noiseless
data can hurt using a very simple linear model in R3.

3.1.1 SIMPLE LINEAR EXAMPLE IN R3 WHERE ADDING DATA INCREASES BIAS

The following concrete example illustrates how the interaction between the span of the standard and
augmented training points with the underlying θ? can cause the bias to increase. For simplicity we
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choose Σ = diag(λ1,λ2,λ3) with λ2�λ1, Xstd = e3 andXext = [e1;e2]> where e1,e2,e3 denote the
standard bases in R3. Plugging these terms into the bias expression in Equation (5) yields

B(θ̂std)=θ?1
2λ1+θ?2

2λ2 and B(θ̂aug)=(1/4)(θ?1−θ?2)2λ1+(1/4)(θ?1−θ?2)2λ2.

Since θ̂aug and θ̂std are identical and perfectly interpolating on e3, we restrict our attention to the linear
span of e1,e2 that is the nullspace of Xstd. Figure 2 depicts the errors of the two estimators θ̂std and
θ̂aug in said nullspace for different choices of θ?. Since, λ2� λ1, the bias expression is dominated
by the coefficient on λ2. In particular,

(i) when θ?1�θ?2 as in Fig. 2 (a), augmenting withXext can be hurtful, that isB(θ̂aug)�B(θ̂std). Even
though the norm of θ̂aug−θ? is smaller than that of θ̂std−θ?, the increase along e2 dominates the effect
on predictive bias because λ2�λ1.

(ii) when θ?2�θ?1 as in Fig. 2 (b), the sameXext causesB(θ̂aug) to be smaller thanB(θ̂std). Here the
augmented error θ̂aug−θ? is smaller along e2 compared to the standard error θ̂std−θ?, dominating
the increase along e1.
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Figure 2: Illustration of the 3-D example described in Sec. 3.1.1. In (a), (b) we depict the errors
θ̂aug−θ? (green solid) and θ̂std−θ? (blue solid) projected on the nullspace of Ker(Σstd) that is spanned
eigenvectors e1 and e2 of Σ with λ2≥λ1. (c), (d) We show the space of safe augmentation directions
(orange) that don’t increase bias for a given θ? to be cone-shaped where the cone width depends on
the alignment of θ? with eigenvectors of Σ and the skew of the eigenvalues of Σ.

In summary, the components of the errors along eigenvectors of Σ with large eigenvalues dominate the
predictive bias. The projection onto one of these directions may increase when adding new directions
Xext. Even though the norm of the error always decreases with more data points, the same therefore
does not have to hold for the predictive bias if it weights the error in these directions more.

This viewpoint also helps us to explain the observed phenomenon in the spline example in Fig. 1 where
the eigenvectors correspond to local vs. global components. In the next section, we present these
ideas formally for a general setting.

3.1.2 GENERAL CHARACTERIZATIONS

As explained above, for the purpose of analyzing the bias difference between the augmented and
standard estimators (3), we only need to focus on the nullspace of Σstd with projection matrix Π⊥std.
Let Σaug = Σstd +αΣext. Let’s define an orthogonal decomposition Ker(Σstd) = Saug⊕Ker(Σaug)
where Saug is the subspace orthogonal to Ker(Σaug). Then, for a given θ? we can always decompose
Π⊥stdθ

? = v+w where v,w are the (mutually orthogonal) projections of θ? onto Saug and Ker(Σaug)
respectively. The following theorem gives exact conditions and characterizes combinations of
Xstd,Xext,Σ when augmentation hurts, i.e. increases the bias by a positive amount c=B(θ̂aug)−B(θ̂std)

that depends on the true model θ?. In the following, Πaug and Π⊥aug denote the projection matrices onto
col(Σaug) and Ker(Σaug) respectively.

Theorem 1. The augmented estimator θ̂aug has higher bias if and only if

v>Σv<2w>Σv, (6)
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(a) Eigenvectors 1–4 of spline Σ

Πlgθ
∗
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Global (q3)
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(b) Nullspace projections onto local vs. global

Figure 3: (a) Top 4 eigenvectors q1,...,q2s of Σ in the splines problem, representing wave functions
in the input space. As a smoothing spline, the eigenvalues have much larger weight on “global”
eigenvectors that vary smoothly over the domain. (b) Projections onto q3 and q2s in Ker(Σstd) via Πlg,
representing global and local eigenvectors respectively. The local perturbation ΠlgΦ̂(1.5) has both
local and global components, creating a high-error component in the global direction.

where v=Π⊥stdΠaugθ
? andw=Π⊥stdΠ⊥augθ

?. Furthermore, for a givenXstd,Xext,Σ, a bias increase of
B(θ̂aug)−B(θ̂std)=c>0 via augmentation withXext is possible only if θ? is sufficiently more complex
than the interpolant on the original dataset in the `2 norm, i.e. ‖θ?‖2−‖θ̂std‖2>γc for some scalar
γ>0 that depends onXstd,Xext,Σ.

The proof of Theorem 1 can be found in Appendix Sec. A.2. We can also use condition (6) to determine
augmentations or choices of Σ via theM -norm in (2) where augmentation never hurts for any θ? for
given Xstd,Σ. In particular, if for all directions w ∈Ker(Σaug) and v ∈Saug it holds that w>Σv= 0,
the bias cannot increase for any choice of θ?. This holds for example when Σ=I1 or whenXext spans
the entire nullspace of Σstd (that is Σaug becomes invertible) and hencew=0.

We now return to the simple 3-D example and illustrate the entire set of safe single augmentation
directions in the nullspace of Σstd for different choices of Σ and a fixed θ? in Figure 2 (c), (d). The
plots are created using Corollary 1 (a) in Sec. A.4 in the Appendix. In general, the safe augmentation
directions lie in a cone around the eigenvectors of Σ, supported by Corollary 1 (b), while the width
and alignment of the cone depends on the alignment of θ? with the eigenvectors of Σ.

The second statement in Theorem 1 links back to the intuition in the spline example in the introduction.
There, the true staircase function is much more complex than the (good) linear solution that fits most
points. Theorem 1 states that this does not only apply to the regression spline setting but that it is
indeed necessary for a fixed bias increase that the (rotated) parameter θ? has a higher `2-norm. In the
next section we rigorously define the spline example and use intuitions from the simple 3-D example
in Sec. 3.1.1 and our characterizations in Theorem 1 to explain the observed bias increase observed
in Fig. 2 in terms of local and global eigenvector functions.

3.1.3 REVISITING THE SPLINE STAIRCASE

The spline staircase is a linear interpolation problem with noiseless targets f?(x)=bxc. We transform
the problem to minimum `2 norm interpolation using features Φ̃(x)=Φ(x)M−1/2 (where Φ:R 7→Rd
is the cubic spline feature map), so that the results from Section 3.1.2 apply directly. Let Σ be the
population covariance of Φ̃ for a uniform distribution over the discrete domain consisting of s integers
and their perturbations (Figure 1). Let Q= [qi]

2s
i=1 be the eigenvectors of Σ in decreasing order of

their corresponding eigenvalues. The visualization in Figure 3(a) shows that qi are wave functions
in the original input space; the “frequency” of the wave increases as i increases.

Suppose the original training set consisted of two points,Xstd =[Φ̃(0);Φ̃(1)]>. We study the effect of
augmenting point xext in terms of qi above. We find that Π⊥stdq1 =Π⊥stdq2 =0. For ease of visualization,
we consider the 2D space in Ker(Σstd) spanned by Π⊥stdq3 (global dimension) and Π⊥stdq2s (local

1For the general min-norm estimator (2), this is equivalent to the unrotated covariance being equal toM .
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dimension), and denote the projection matrix onto this space by Πlg. Note that the same results hold
when projecting onto all Π⊥stdqi in Ker(Σstd).

We map the 2D space above to the simple example in Section 3.1.1: global corresponding to e2 (with
large λ2) and local to e1. Figure 3 plots the projections Πlgθ

? and ΠlgΦ̃(Xext) for differentXext. When
θ? has high frequency variations and is complex, Πlgθ

? is aligned with the local dimension. For xext

close to training points, the projection ΠlgΦ̃(xext) (orange vector in Figure 3(b)) has both local and
global components. Fitting the local component of θ? introduces an error in the global component. For
xext far away from training points, ΠlgΦ̃(xext) (blue vector in Figure 3(b)) is almost entirely global and
perpendicular to θ?, leaving bias unchanged. Thus, augmenting data close to original data cause estima-
tors to fit local components at the cost of the costly global component which changes overall structure
of the predictor like in Figure 1(middle). The choice of inductive bias in theM–norm being minimized
results in eigenvectors of Σ that correspond to local and global components, dictating this tradeoff.

3.2 PREDICTIVE VARIANCE IN THE SMALL SAMPLE REGIME

Recall that in the large sample regime where Σstd is inverible, the variance always decreases with
covariance-shifted data augmentation 2. However, when Σstd is not invertible, the variance of the
augmented estimator could be larger.
Theorem 2. The differences in variances of the two estimators can be expressed as follows.

V (θ̂aug)−V (θ̂std)=
1

n

(
V1(Π⊥stdXext)︸ ︷︷ ︸
Variance increase

−V2(ΠstdXext)︸ ︷︷ ︸
Variance decrease

)
, (7)

where V1(U) and V2(U) are scalars that depend on Xstd,Σ such that V1(U), V2(U) ≥ 0 and
V1(0)=0,V2(0)=0.

From Theorem 2, we see that when ΠstdXext = 0, and Xext is orthogonal to Xstd, the variance of
augmented estimator is larger. However when Π⊥stdXext = 0, the variance of augmented estimator is
lower (like in the large sample regime with invertible Σstd where Π⊥std =0). The exact expression the
difference in variances appears in Appendix C.1.

Thus, from Theorems 1 and 2, we see that when Xext is not in the span of Xstd, covariance-shifted
data augmentation could increase both the bias and variance.

3.3 EFFECT OF SIZE OF THE ORIGINAL TRAINING SET

The analysis of the preceding sections is general and characterizes the risk upon augmentation in terms
of Σstd and Σ without making any assumptions on their relation. When the rows inXstd correspond
to n i.i.d. samples from a distribution with covariance Σ, the empirical covariance Σstd = 1

nX
>
stdXstd

could be arbitrarily different from Σ in the small sample regime and the risk increase can be severe
even in the noiseless case.

As an example, Theorem 4 in the Appendix describes how sampling and augmenting from skewed
distributions of the staircase form as depicted in Figure 1 (a) may lead to severe bias increase in the
small sample regime (Theorem 4). On the other hand, in the large sample regime Σstd→Σ when Σstd is
invertible, we can show in Appendix A.1 that data augmentation never increases the risk. In summary,
our analysis on linear regression examples states that as the sample size increases and the span ofXstd
grows, the possible negative effect of data augmentation should decrease.

In order to see whether this trend holds true for more complex models and real world datasets as well,
we consider data augmentation via adversarial training (Madry et al., 2018) (AT) with `∞ perturbations
on CIFAR-10 on a WideResnet (in particular, the WRN-40-2 (Zagoruyko & Komodakis, 2016)).
Essentially, AT augments with imperceptible perturbations of training images with the corresponding
correct target and thereby falls in our framework of covariate-shifted data augmentation. We subsample
the full training set and plot the effect of (adversarial) data augmentation on test error as we vary the
training set size in Figure 4. Indeed, for CIFAR-10 and a standard deep learning model we observe that
the increase in test error upon data augmentation decreases as the number of samples increases. This
suggests that the ”tradeoff” between robustness and accuracy commonly observed is a finite sample
effect of augmenting a small training set, just like in our analysis of linear regression.
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Figure 4: (a), (b) Effect of covariate-shifted data augmentation via adversarial training (AT) on the
error, as a function of the # of original training samplesn. Results are for a WRN-40-2 model trained on
CIFAR-10. Shaded regions represent 1 STD. With vanilla AT, data augmentation leads to an increase
in standard test error, and this harmful effect diminishes as n increases. AT with X-regularization
(b) has lower error than vanilla AT. Further, X-regularization has lower error than even the standard
estimator showing that X-regularization can even take advantage of data augmentation when it hurts
standard training. (c) X-regularization also eliminates the increase in error upon data augmentation
in the spline staircase where points on a line are augmented with local perturbations.

4 LEVERAGING UNLABELED DATA TO ELIMINATE INCREASE IN BIAS

To this point, the paper details ways in which incorporating additional data can make predictors worse.
To complement this somewhat negative message, we introduce X-regularization, a regularization
methodology that leverages unlabeled data to appropriately smooth a predictor, allowing data
augmentation while guaranteeing that it (at least) does not decrease accuracy. We propose the most
concrete instantiation of this in the context of interpolation in linear regression (Section 4.1), dovetailing
with our development in Section 3, then generalize X-regularization to more general problems in
Section 4.2. While we do not provide theoretical guarantees in fully general cases, we perform a
corresponding empirical evaluation by applying X-regularization in an adversarial training problem
with `∞ perturbations on CIFAR-10, observing that it both mitigates the undesirable drop in standard
accuracy that standard adversarial training engenders and simultaneously improves robustness.

4.1 X-REGULARIZATION FOR LINEAR REGRESSION

Our development is most compelling in a stylized setting with noiseless observations from a linear
model, y=x>θ?, though the dimension is (much) larger than the number of observations, as in the
now familiar interpolating regime Ma et al. (2018); Belkin et al. (2018). In this case, when the data
x has population covariance Σ, the predictive risk of a point θ isR(θ) = (θ−θ?)>Σ(θ−θ?). Let us
suppose as usual that we have pairs (Xstd,Ystd) and (Xext,Yext), and let θint-std interpolate the initial
data, satisfying Xstdθint-std = Ystd. We would like to use θint-std to construct an estimator θ̂X-aug that
interpolates both the standard data and augmented data while satisfyingR(θ̂X-aug)≤R(θint-std).

To motivate our estimator, recall that while the error of the augmented estimator is smaller in `2 norm
than the standard estimator, the increase in bias upon augmentation occurs because the augmented
error could be larger than the standard error in the directions in which Σ is large (recall Figure 2). A
natural strategy, then, is to fit the augmented data Xext while staying close to θint-std weighted by Σ
that determines the population risk.

Thus, we propose the X-regularized estimator, which given Σ and an initial interpolant θint-std sets

θ̂X-aug =argmin
θ

{
(θ−θint-std)>Σ(θ−θint-std) :Xstdθ=Ystd,Xextθ=Yext

}
. (8)

The assumption that we have Σ deserves some comment. For x following distribution Px with
covariance Σ, we have ‖θ−θint-std‖2Σ =EPx [(x

>θ−x>θint-std)2], so unlabeled data fromPx can provide
an arbitrarily accurate estimate of Σ. As we discuss presently, such unlabeled data is available in many
settings. With the definition (8) of the X-regularized estimator, we have the following.

7
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Theorem 3. Assume the noiseless linear model y=x>θ?. Let θint-std be an arbitrary interpolant of
the standard data, i.e.Xstdθint-std =Ystd. Let θ̂X-aug be the X-regularized interpolant (8). Then

R
(
θ̂X-aug)≤R(θint-std).

See Appendix D for proof. To provide some graphical intuition for the result, consider the spline
interpolant θ̂std Fig. 1 illustrates. In this case, the marginal distribution Px on x puts higher mass on
points on the diagonal Tline :={(t,f(t)= t)}. The X-regularized estimator θ̂X-aug thus both interpolates
observed perturbations—as desired—while matching θ̂std wherever there is not augmented data,
so that it is linear on Tline. Thus, θ̂X-aug incorporates the local structure Xext identifies, while the
X-regularization (8) means there is no compromise of the global structure of θ̂std.

4.2 GENERAL X-REGULARIZATION

Theorem 3 holds for any interpolant on the training data, highlighting the generality of X-regularization
and it is natural to go beyond the linear regime. Revisiting the estimator (8), we see roughly that
it performs two tasks: achieving small error on the available data (Xstd,Ystd) and (Xext,Yext), while
keeping the predictions that θ̂X-aug makes close to those of θint-std, weighted by the distribution of the
(unlabeled) data x. We can leverage unlabeled data to perform the general form of X-regularization.
To do so, we slightly generalize our setting. Now, we assume we have a domain X , target set Y
and vector-valued prediction functions fθ : X → Rk indexed by parameter θ; we also have a loss
` : Rk×Y → R measuring the error in a prediction f(x) for a true label y and some distance-like
measure dist :Rk×Rk→R+ that measures similarity in predictions. (In the case of regression, both
of these are simply the squared error.) Now, suppose that we have a collection ofm unlabeled samples
x̃i
i.i.d∼Px, a model θ̂std trained on the original data (Xstd,Ystd), and an augmented data set (Xext,Yext),

jointly consisting ofN samples. Then the general X-regularized estimator is

θ̂X-aug :=argmin
θ

{
N−1

∑
(x,y)∈[Xdata,Ydata]

`(fθ(x),y)+λm−1
m∑
i=1

dist
(
fθ(x̃),fθ̂std

(x̃i)
)}

, (9)

where λ is a regularization multiplier andXdata =[Xstd;Xext],Ydata =[Ystd;Yext]. In general, the optimal
value of λ depends on the quality of θ̂std. For the squared loss (regression), the estimator (9) is a
Lagrangian form of the estimator (8), where the empirical expectation over Px replaces its population
counterpart. We investigate empirical performance of the estimator (8) in the next section. We can
view X-regularization as a generalization of the classical self-training (Rosenberg et al., 2005), where
in addition to unlabeled data from the right distribution, we have additional labeled data from a
covariate-shifted distribution.

4.3 EMPIRICAL PERFORMANCE OF X-REGULARIZATION

Using X-regularization for linear regression as in Equation (8) for the spline staircase problem
eliminates the increase in error as implied in Theorem 3. General X-regularization (Equation (9))
however can be applied broadly to any loss and function class like neural networks. We return
to augmenting CIFAR-10 with `∞ adversarial examples that leads to increases error and test
whether X-regularizationcan mitigate this effect. We use the same WRN-40-2 and compare the
test accuracies of the AT with and withoutX-regularization. We obtain the unlabeled data required
for X-regularization by following the procedure employed in (Carmon et al., 2019) and source
500K unlabeled images from 80 Million TinyImages. The parameter λ in equation (9) is chosen via
hyperparameter search. The exact training procedure can be found in Appendix E.

We compare the standard test accuracies obtained by standard training, vanilla adversarial training and
X-regularized adversarial training for `∞ perturbations in Figure 4(b). We observe that X-regularization
mitigates the risk increase upon augmentation with adversarial examples, even outperforming the
standard estimator. This benefit is more pronounced in the small sample regime, since the standard
estimator becomes more accurate with increasing labeled sample size. Finally, adversarial training
is typically used to improve the test robustness of a model. We find that X-regularized adversarial
training exhibits robust accuracies within 1−2% of vanilla adversarial training, for small training

8
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sets, and matches vanilla adversarial training as the standard training set increases (see Figure 6 in
Appendix). Therefore, empirically, we find that X-regularization applied on retains the benefits of
adversarial training while mitigating its harmful effects on the standard accuracy.

5 RELATED WORK AND DISCUSSION

Robustness via semisupervised learning (RSL). Unlabeled data in the context of adversarial training
(that we call RSL) has also been explored in several recent works (Carmon et al., 2019; Najafi et al.,
2019; Uesato et al., 2019). Morally, RSL differs from our work in that the metric of interest in both the
theoretical and empirical study is adversarial robustness, while we focus on the standard (unperturbed)
error metric. RSL views unlabeled data as ”extra samples” to break the sample complexity barrier
of robustness (Schmidt et al., 2018), while we use unlabeled data to regularize around the standard
non-augmented estimator. Operationally, we differ from RSL by not adversarially perturbing the
unlabeled data while training. Hence empirically, our X-regularization has lower standard error
but higher robust error than RSL. Our theoretical results complement RSL work by showing that in
addition to robustness, unlabeled data can provably also lower standard error.

Decreasing standard error of adversarial training. Mitigating the undesirable increase in standard
error upon adversarial training has been a recent topic of interest. Better neural network architectures
found via Neural Architecture Search (Zoph & Le, 2016) and improved training methods such as
via mixup interpolated training (Lamb et al., 2019) have shown some success in improving the
standard error of adversarially trained networks. Orthogonal to such approaches which focus on
the optimization/training aspect of neural networks, our proposed X-regularization is statistically
motivated (by studying a convex well-specified problem) and we leverage additional unlabeled data
to obtain gains. We posit that these approaches could be used in conjunction to see further gains.

REFERENCES

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel learning.
In International Conference on Machine Learning (ICML), 2018.

Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi. Unlabeled data improves
adversarial robustness. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

S. Chen, E. Dobriban, and J. H. Lee. Invariance reduces variance: Understanding data augmentation
in deep learning and beyond. arXiv preprint arXiv:1907.10905, 2019.

D. C. Ciresan, U. Meier, J. M., L. M. Gambardella, and J. Schmidhuber. High-performance neural
networks for visual object classification. arXiv, 2011.

S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization.
Journal of Machine Learning Research (JMLR), 17(83):1–5, 2016.

L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry. Exploring the landscape of spatial
robustness. In International Conference on Machine Learning (ICML), pp. 1802–1811, 2019.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer series
in statistics New York, NY, USA: Springer series in statistics New York, NY, USA:, 2001 2001.

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least
squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

D. Kleinman and M. Athans. The design of suboptimal linear time-varying systems. IEEE Transactions
on Automatic Control, 13:150–159, 1968.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), pp. 1097–1105, 2012.

A. Lamb, V. Verma, J. Kannala, and Y. Bengio. Interpolated adversarial training: Achieving robust
neural networks without sacrificing too much accuracy. arXiv, 2019.

9



Under review as a conference paper at ICLR 2020

T. Liang and A. Rakhlin. Just interpolate: Kernel” ridgeless” regression can generalize. arXiv preprint
arXiv:1808.00387, 2018.

S. Ma, R. Bassily, and M. Belkin. The power of interpolation: Understanding the effectiveness of
SGD in modern over-parametrized learning. In International Conference on Machine Learning
(ICML), 2018.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on Learning Representations (ICLR), 2018.

A. Najafi, S. Maeda, M. Koyama, and T. Miyato. Robustness to adversarial perturbations in learning
from incomplete data. arXiv preprint arXiv:1905.13021, 2019.

P. Nakkiran. Adversarial robustness may be at odds with simplicity. arXiv preprint arXiv:1901.00532,
2019.

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object detection
models. In Proceedings of the Seventh IEEE Workshops on Application of Computer Vision, 2005.

L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry. Adversarially robust generalization
requires more data. In Advances in Neural Information Processing Systems (NeurIPS), pp.
5014–5026, 2018.

J. Uesato, J. Alayrac, P. Huang, R. Stanforth, A. Fawzi, and P. Kohli. Are labels required for improving
adversarial robustness? arXiv preprint arXiv:1905.13725, 2019.

L. Yaeger, R. Lyon, and B. Webb. Effective training of a neural network character classifier for word
recognition. In Advances in Neural Information Processing Systems (NeurIPS), pp. 807–813, 1996.

F. Yang, Z. Wang, and C. Heinze-Deml. Invariance-inducing regularization using worst-case transfor-
mations suffices to boost accuracy and spatial robustness. arXiv preprint arXiv:1906.11235, 2019.

S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Conference, 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In International Conference on Learning Representations (ICLR), 2017.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

A APPENDIX

A.1 UNDERPARAMETERIZED REGIME—STANDARD ERM.

In this section consider the regime where Σstd is invertible. We refer to this as the underparameterized
regime—this is true asymptotically for finite d, and for some distributions Px in the high dimensional
asymptotic regime with d

n→γ<1 (Hastie et al., 2019). In this case, both the standard estimator θ̂std

and the augmented estimator θ̂aug are unbiased. The variance of θ̂aug is always lower than θ̂std. We
define the normalized covariance matrices (for constant eigenvalues as n grows) Σstd := 1

nX
>
stdXstd

and Σext :=
1
αnX

>
extXext. Formally, we have the following.

Proposition 1. When Σstd is invertible, the predictive risk of the minimum-augmented estimator θ̂aug
is always smaller than the predictive risk of the standard estimator.

R(θ̂aug)−R(θ̂std)=
σ2

n
tr
(

(Σstd+αΣext)
−1−Σ−1

std )Σ
)
≤0. (10)

In particular, the predictive risk of the data augmented estimator R(θ̂aug) is never greater than the
predictive risk of the standard estimatorR(θ̂std), showing that data augmentation never hurts.
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Proof. Plugging in Σdata = Σstd + αΣext (for the augmented estimator) and Σdata = Σstd
(for the standard estimator) into Equations (??), (5) yields zero and variance difference of
V (θ̂std)−V (θ̂aug) = tr

(
(Σ−1

std −(Σstd +αΣext)
−1)Σ

)
. Since Σstd is invertible and Σext� 0, we have

Σ−1
std −(Σstd+αΣext)

−1�0. Multiplying with another PSD matrix Σ gives us

tr
(

(Σ−1
std −(Σstd+αΣext)

−1)Σ
)
≥0

=⇒ V (θ̂std)−V (θ̂aug)≥0. (11)

Therefore, in terms of the predictive risk, we haveR(θ̂std)=B(θ̂std)+V (θ̂std)≥R(θ̂aug), and the data
augmented estimator never has worse performance in this regime.

Note that when Σstd is invertible, minimum norm interpolation reduces to unregularized empirical
risk minimization (ERM). In recent work, Chen et al. (2019) showed that a particular form of data
augmentation (using invariance groups) never hurts performance of unregularized ERM in general.
Essentially this is saying that if we have enough data to cover the space, augmentation never hurts
but decreases the variances.

A.2 PROOF OF THEOREM 1

We prove the two statements of Theorem 1 separately.

A.2.1 PROOF OF INEQUALITY (6)

Inequality (6) follows from

B(θ̂aug)−B(θ̂std)=(θ?−θ̂aug)>Σ(θ?−θ̂aug)−(θ?−θ̂std)>Σ(θ?−θ̂std)

=(Π⊥augθ
?)>ΣΠ⊥augθ

?−(Π⊥stdθ
?)>ΣΠ⊥stdθ

?

=w>Σw−(w+v)>Σ(w+v)

=2w>Σv−v>Σv (12)

by decomposition of Π⊥stdθ
?=v+w where v=Π⊥stdΠaugθ

? andw=Π⊥stdΠ⊥augθ
?.

A.2.2 PROOF OF LOWER BOUND ON ‖θ?‖22−‖θ̂STD‖22
The proofs of Theorem 1 (b) and (c) are based on the following two lemmas that follow from simple
linear algebra but are nonetheless used for characterization purposes as well.
Lemma 1. If a PSD matrix Σ has non-equal eigenvalues, one can find two unit vectorsw,v for which
the following holds

w>v=0 and w>Σv 6=0 (13)

Note that neither w nor v can be eigenvectors of Σ in order for both conditions in equation (13) to
hold. Notice that it doesn’t matter if the Σ inner product smaller or bigger than zero.

Note that the bias difference scales with ‖θ?‖2. Combining the two former lemmas allows an explicit
construction of θ? for which augmentation hurts bias.
Lemma 2. Assume Σ,Xstd,Xext are fixed. Condition (13) holds for two directions v∈ col(Π⊥stdΠaug)

and w ∈ col(Π⊥stdΠ⊥aug) iff there exists a θ? such that B(θ̂aug)− B(θ̂std) ≥ c > 0 for some c > 0.
Furthermore, the `2 norm of θ? needs to satisfy the following lower bounds with c1 :=‖θ̂aug‖2−‖θ̂std‖2

‖θ?‖2−‖θ̂aug‖2≥β1c1+β2
c2

c1

‖θ?‖2−‖θ̂std‖2≥(β1+1)c1+β2
c2

c1
(14)

where βi are constants that depend onXstd,Xext,Σ.
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Theorem 1(b) follows directly from the second statement of Lemma 2 by minimizing the bound (14)
with respect to c1 which is a free parameter to be chosen during construction of θ? (see proof of
Lemma (2). The minimum is attained for c1 =2

√
(β1+1)(β2c2). We hence conclude that θ? needs

to be sufficiently more complex than a good standard solution, i.e. ‖θ?‖22−‖θ̂std‖22>αcwhere α>0
is a constant that depends on theXstd,Xext.

A.3 PROOF OF LEMMA 2

We first construct Σstd,Σext using w,v from which we can reconstruct Xstd,Xext use any standard
decomposition method to obtain Σ= 1

nX
>X for any desired |X|=nwhere |X| is the number of rows

ofX . Given Σstd,Σext we construct θ? for which the inequality (6) in Theorem 1 (b) holds.

Construct Σstd,Σext Let’s construct Σstd,Σext using w,v. Wlog we can make them simultaneously
diagonalizable. So we construct a set of eigenvectors that is the same for both matrices and different
eigenvalues. Let the eigenvectors include w, v. Then if we set the corresponding eigenvalues
λw(Σext)=0,λv(Σext)>0 and λw(Σstd)=0,λv(Σstd)=0 (hencew∈col(Π⊥aug) and v∈col(Π⊥stdΠaug)
and λw(Σaug)=0) and we can design a θ? that creates tradeoff as follows.

Construct θ? We now construct a θ? such that inequality (6) holds. First choose some arbitrary θ̂std∈
col(Σstd). One can decompose the space Ker(Σstd) into the direct sum of two orthogonal subspaces

Ker(Σstd)=Ker(Σaug)⊕col(Π⊥stdΠaug)

=col(Π⊥stdΠ⊥aug)⊕col(Π⊥stdΠaug)

and hence using the minimum-norm property, we can always decompose the (rotated) augmented
θ̂aug∈col(Π⊥aug) and true parameter

θ̂aug = θ̂std+
∑
i∈ext

ζivi

θ?= θ̂aug+
∑
j∈rest

ξjwj .

Now if we require the tradeoff to be some c>0, rewrite the bias condition using the identity (6)

B(θ̂aug)−B(θ̂std)=c

⇐⇒ (
∑
i∈ext

ζivi)
>Σ(

∑
i∈ext

ζivi)+c=−2(
∑
j∈rest

ξjwj)Σ(
∑
i∈ext

ζivi)

⇐⇒ (
∑
i∈ext

ζivi)
>Σ(

∑
i∈ext

ζivi)+c=−2
∑
j,i

ξjζiw
>
j Σvi (15)

The left hand side of equation (A.3) is always positive, hence it is necessary that there exists at least
one pair i,j such thatw>j Σvi 6=0. By construction we know that this is the case and we assume wlog
that ξjζiw>j Σvi<0 (since if positive reverse the signs). For this particular choice of i (or more) we
set ζi 6=0 such that ‖θ̂aug−θ̂std‖2 =‖ζ‖2 =c1>0, i.e. that the augmented estimator is not equal to the
standard estimator (else obviously there can be no difference in bias and equation cannot be satisfied
for any desired bias increase c>0).

The choice of ξj minimizing
∑
jξ

2
j is in the direction of the vectorx=W>ΣV ζ withxj=

∑
iζiw

>
j Σvi.

Defining c0 =(
∑
i∈extζivi)

>Σ(
∑
i∈extζivi) for convenience and then setting

ξ=− c0+c

2‖x‖22
x (16)
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which is well-defined as x 6= 0 and yields a θ? such that augmentation hurts. It is thus necessary for
B(θ̂aug)−B(θ̂std)=c that∑

j

ξ2
j =

(c0+c)2

4‖W>ΣV ζ‖2 =
(ζ>V >ΣV ζ+c)2

4ζ>V >ΣWW>ΣV ζ

≥ (ζ>V >ΣV ζ)2

4ζ>V >ΣWW>ΣV ζ
+

c2

4ζ>V >ΣWW>ΣV ζ

≥ c1
4

λ2
min(V >ΣV )

λ2
max(W>ΣV )

+
c2

4c1λ2
max(W>ΣV )

Notice that by construction of V we have λmin(V >ΣV )>0 and λmax(W>ΣV )>0

Note due to construction we have ‖θ?‖22 = ‖θ̂std‖22 +
∑
iζ

2
i +
∑
jξ

2
j and plugging in the choice of ξj

in equation (16) we have

‖θ?‖22−‖θ̂std‖22≥c1
[
1+

λ2
min(V >ΣV )

4λ2
max(W>ΣV )

]
+

c2

4λ2
max(W>ΣV )

1

c1

where we define V ∈ Rd×m where m is the dimension of col(Π⊥stdΠ⊥aug) and ζ ∈ Rm. Setting

β1 =
[
1+

λ2
min(V >ΣV )

4λ2
max(W>ΣV )

]
, β2 = 1

4λ2
max(W>ΣV )

yields the result.

Some more observations. For ‖θ?‖2 larger than the minimum, we can allow ‖θ̂aug−θ̂std‖2 to be smaller
than the c1 that achieves the last inequality.

A.3.1 PROOF OF LEMMA 1

Let λi be them non-zero eigenvalues of Σ and ui be the corresponding eigenvectors. Then choose
v to be any combination of the eigenvectors v=Uβ where U = [u1,...,um] where at least βi,βj 6= 0
for λi 6=λj . We next constructw=Uα by choosing α as follows such that the inequality in (13) holds:

αi=
βj

β2
i +β2

j

αj=
−βi

β2
i +β2

j

Then we have that α>β=0 and hencew>v=0 and simultaneously

w>Σv=λiβiαi+λ2βjαj

=(λi−λj)
βiβj
β2
i +β2

j

6=0

which concludes the proof of the lemma.

A.4 CHARACTERIZATION COROLLARY 1

Given fixed Xstd,Σ,θ
?, the following corollary characterizes which single augmentation directions

do and do not lead to higher prediction error for the augmented estimator.

Corollary 1. The following characterizations hold for augmentation directions that do not cause
the bias of the augmented estimator to be higher than the original estimator

(a) (in terms of ratios of inner products) For a given θ?, data augmentation does not increase
the bias of the augmented estimator for a single augmentation direction xext if

x>extΠ
⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

−2
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

x>extΠ
⊥
stdθ

?
≤0 (17)
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(b) (in terms of eigenvectors) Data augmentation does not increase bias for any θ? if Π⊥stdxext
is an eigenvector of Σ. However if one augments in the direction of a mixture of eigenvectors
of Σ with different eigenvalues, there exists a θ? such that augmentation hurts.

The form in Equation (17) compares ratios of inner products of Π⊥stdxext and Π⊥stdθ
? in two spaces: the

one in the numerator is weighted by Σ whereas the denominator is the standard inner product. Thus,
if Σ scales and rotates rather inhomogeneously, then augmenting with xext may hurt bias. Here again,
if Σ=γI for γ>0, then the condition must hold.

A.4.1 PROOF
OF COROLLARY 1 (A) - SAFE SINGLE AUGMENTATION DIRECTIONS DEPENDENT ON θ?

The proof of Corollary 1 (a) is a direct result of condition (6) when restricted to one augmentation
point. Let the one augmentation data point be xext. WhenXext =x>ext, then X̄ext =XextΠ

⊥
std =x>extΠ

⊥
std.

Then by definition from Lemma ??,

a=(X̄ext
>X̄ext)

†X̄ext
>X̄extθ

?

=((Π⊥stdxext)(Π
⊥
stdxext)

>)†((Π⊥stdxext)(Π
⊥
stdxext)

>)θ?

=
1

‖Π⊥stdxext‖2

((
Π⊥stdxext

‖Π⊥stdxext‖

)(
Π⊥stdxext

‖Π⊥stdxext‖

)>)
((Π⊥stdxext)(Π

⊥
stdxext)

>)θ?

=
1

‖Π⊥stdxext‖2
(

Π⊥stdxext

(
(Π⊥stdxext)

>(Π⊥stdxext)

‖Π⊥stdxext‖2
))

(Π⊥stdxext)
>θ?

=
(Π⊥stdxext)

>θ?

‖Π⊥stdxext‖2
Π⊥stdxext

Substituting this a into condition (??),(
(Π⊥stdxext)

>θ?

‖Π⊥stdxext‖2
)2

x>extΠ
⊥
stdΣΠ⊥stdxext≤2

(
(Π⊥stdxext)

>θ?

‖Π⊥stdxext‖2
)

(Π⊥stdxext)
>ΣΠ⊥stdθ

?

⇐⇒ x>extΠ
⊥
stdΣΠ⊥stdxext≤2

( ‖Π⊥stdxext‖2
(Π⊥stdxext)>θ?

)
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

⇐⇒ x>extΠ
⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

≤2
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

x>extΠ
⊥
stdθ

?
.

Notice that the bias difference scales as

B(θ̂aug)−B(θ̂std)=
[(Π⊥stdxext)

>θ?]2

‖Π⊥stdxext‖2
[x>extΠ

⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

−2
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

x>extΠ
⊥
stdθ

?

]
and hence does scale with the `2 norm of θ?. Safe augmentation directions for specific choices of θ?
and Σ are illustrated in Figure 2.

A.4.2 PROOF OF COROLLARY 1
(B) - SAFE AND HURTFUL AUGMENTATION DIRECTIONS INDEPENDENT OF θ?

The proof of this statement follows directly from the iff statement in Lemma 2. When one adds one
data point xext, col(Π⊥stdΠaug) = span(Xext) and u= Π⊥stdxext. Using Corollary 1 (a), it follows that if
v is an eigenvector of Σ with eigenvalue λ>0 in the nullspace of Σstd, we have

v>Σv−2
u>ΣΠ⊥stdθ

?

u>Π⊥stdθ
?

=−λ<0

for any θ?. Hence by Lemma 2 the bias doesn’t increase by augmenting with eigenvectors of Σ for
any θ?.

When the single augmentation direction v is not an eigenvector of Σ, by Lemma 1 one can findw such
that w>Σv 6= 0. The proof in Lemma 1 gives an explicit construction for w such that condition (13)
holds and the result then follows directly by Lemma 2
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B DETAILS FOR SPLINE EXAMPLE

B.1 SPLINE PROBLEM DATA DISTRIBUTION

We consider a finite input domain T = {0,ε,1,1 + ε, ... ,s− 1,s− 1 + ε} for some integer s. Let
Tline⊂T ={0,1,...,s−1}. We define Px such that Px(Tline)=1−δ for some small δ such that points
not in Tline have low probability. We define the underlying function f? :R 7→R as f?(t) = btc. This
function takes a staircase shape, and is linear when restricted to Tline.

We describe the data distribution in terms of the one-dimensional input t, and by the one-to-one
correspondence with x=Φ(t), this also defines the distribution of spline features x∈X . Let s be the
total number of “stairs” in the staircase problem. Define δ∈ [0,1] to be the probability of sampling a
perturbation point, i.e. t∈T cline, which we will choose to be close to zero. The size of the perturbations
is ε= 1

2 , and bt+εc= t for any t∈Tline.

Letw∈∆s be a distribution over Tline where ∆s is the probability simplex of dimension s. We define
the data distribution with the following generative process for one sample t. First, sample a point i from
Tline according to the categorical distribution described byw, such that i∼Categorical(w). Second,
sample t by perturbing iwith probability δ such that

t=

{
i w.p. 1−δ
i+ε w.p. δ.

The sampled t is inTline with probability 1−δ andT cline with probability δ, where we choose δ to be small.

Augmentation For each element ti in the training set, we augment with T̃i = [u
u.a.r∼ B(ti)], an input

chosen uniformly at random fromB(ti)={btic,btic+ε}. Recall that in our work, we consider data
augmentation where the targets associated with the augmented points are from the ground truth oracle.
Notice that by definition, f?(t̃i)=f?(ti) for all t̃∈B(ti), and thus we can set the augmented targets
to be ỹi=yi. This is similar to random data augmentation in images (Yaeger et al., 1996; Krizhevsky
et al., 2012), where inputs are perturbed in a way that preserves the label.

In addition, in order to exaggerate the difference between augmented and standard estimators for small
sample sizes, we setw such that the first s0<s stairs have the majority of probability mass. To achieve
this, we set the unnormalized probabilities ofw as

ŵj=

{
1/s0 j<s0

0.01 j≥s0

and definew by normalizingw= ŵ/
∑
jŵj . For our examples, we fix s0 =5.

B.2 SPLINE MODEL

We parameterize the spline predictors as fθ(t)=θ>Φ(t) where Φ:R→Rd is the cubic B-spline feature
mapping (Friedman et al., 2001 2001) and the norm of fθ(t) can be expressed as θ>Mθ for a matrix
M that penalizes a large second derivative norm. Notice that the splines problem is a linear regression
problem from Rd to R in the feature domain Φ(t), allowing direct application of Theorem 1 with
[M ]ij=

∫
Φ
′′

i (u)Φ
′′

j (u)du. As a linear regression problem, we define the finite domain asX ={Φ(t) :

t∈T } containing 2s possible elements in Rd. There is a one-to-one correspondence between t and
Φ(t), such that Φ−1 is well-defined. We define the features that correspond to inputs in Tline asXline =
{x :Φ−1(x)∈Tline}. Using this feature mapping, there exists a θ? such that fθ?(t)=f?(t) for t∈T .

Our hypothesis class is the family of cubic B-splines as defined in (Friedman et al., 2001 2001). Cubic
B-splines are piecewise cubic functions, where the endpoints of each cubic function are called the
knots. In our example, we fix the knots to be [0,ε,1,...,s−1,s−1+ε], which places a knot on every
point in T . This ensures that for some θ?,

fθ?(t)=θ?>Φ(t)=f?(t)=btc (18)
such that f? is in the hypothesis class.

We solve the minimum norm problem

θ̂std =argmin
θ
{θ>Mθ :Xstdθ=Ystd} (19)
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Figure 5: Visualization of the effect of single augmentation points in the noiseless spline problem
given an initial datasetXstd ={Φ(t) : t∈{0,1,2,3,4}}. The standard estimator defined byXstd is linear.
(a) Plot of the difference in predictive risk for all possible single augmentation points. Augmenting with
points onXline does not affect the bias, but augmenting with any element of {Φ(t) : t∈{2.5,3.5,4.5}}
hurts the bias of the augmented estimator dramatically. (b), (c) Augmenting with Φ(3.5) or Φ(4.5)
hurts the bias by changing the direction of extrapolation.

and the corresponding augmented problem for the augmented estimator. Here, Mi,j =∫
Φ′′(t)iΦ

′′(t)jdtmeasures smoothness in terms of the second derivative.

We implement the optimization of the standard and robust objectives using the basis described in (Fried-
man et al., 2001 2001). The penalty matrixM computes second-order finite differences of the param-
eters θ. In Figure 1, we solve the min-norm objective directly using CVXPY (Diamond & Boyd, 2016).

B.3 EVALUATING COROLLARY 1 FOR SPLINES

To check our (single-point) characterization in Theorem 1 against possible augmentation points in
the splines problem, we use the rotated spline features Φ(X)M−1/2. Note that in our case,M is not
full rank. We add a small identity matrix ((1e−10)I) toM to make it invertible.

Now assume our original data Xstd = {Φ(t) : t∈ {0,1,2,3,4}} where t∈ Tline as defined below (on
integer points) and now we examine all possible single augmentation points corresponding to all points
in T in Figure 5 (a) and plot the calculated predictive risk difference. Figure 5 shows that augmenting
with an additional point from {Φ(t) : t∈Tline} does not affect the bias, but adding any perturbation
point in {Φ(t) : t ∈ {2.5,3.5,4.5}} where t /∈ Tline increases the error significantly by changing the
direction in which the estimator extrapolates. Particularly, local augmentations hurt while other
augmentations do not significantly affect the bias of the augmented estimator.

B.4 DATA AUGMENTATION CAN BE QUITE PAINFUL FOR SPLINES

Suppose a dataset T = [t1 ... , tn] is provided. Let the domain of the problem be ∪s−1
t=0 [t, t + ε].

Considering only s which is a multiple of 2, define the data distribution through the following
generative process: first sample t0∈Tline from the following distribution

p(t)=

{
1−γ
s/2 t<s/2,t∈Tline
γ
s/2 t≥s/2,t∈Tline.

(20)

for γ ∈ [0,1). Then with probability 1− δ, return t= t0. Otherwise with probability δ, return t∼
Uniform([t0,t0+ε]). Consider a modified augmented estimator for the splines problem, where for each
point ti we augment with the entire interval [btic,btic+ε], where ε∈ [0,1) is a constant and the target
is yi=btic on the whole interval. Additionally, suppose that the ratio s/n=O(1) between the number
of stairs s and the number of samples n is constant. Note that in the feature domain, this corresponds to
d/n=O(1) where d=2s+2 is the dimensionality of the spline basis as in Friedman et al. (2001 2001).
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Define the squared loss to be limited with knowledge of the number of stairs s, such that we have a
risk function bounded with respect to s:

R(θ̂)=Et[min{(s−1)2,(Φ(t)>θ̂−Φ(t)>θ?)2}|T ]. (21)

In this simplified setting, we can show that the risk of the augmented estimator grows while the risk
of the standard estimator decays to 0.

Theorem 4. Let the setting be defined as above. Then with the choice of δ= log(s3)−log(s3−1)
s and

γ=c/s for a constant c∈ [0,1), the ratio between risks is lower bounded as

R(θ̂aug)

R(θ̂std)
=Ω(s2) (22)

which goes to infinity as s→∞. Furthermore,R(θ̂std)→0 as s→∞.

Proof. We first lower bound the risk of the augmented estimator. We lower bound by consider only the
case where all the points are sampled from {t : t<s/2}, which occurs with probability (1−γ)n. Let
t?=maxibtic be the largest “stair” value seen in the training set. Note that the min-norm augmented
estimator will extrapolate with zero derivative for t ≥ maxibtic. This is because on the interval
[t?,t?+ε], the augmented estimator is forced to have zero derivative, and the solution minimizing the
second derivative of the prediction continues with zero derivative for all t≥ t?. The best case min-norm
solution in the case where all points are sampled from {t : t< s/2} is that t? = s/2−1. As a result,
for the s/2 stairs where t>(s/2−1), the augmented estimator incurs large error:

R(θ̂aug)≥(1−γ)n
s/2∑
t=1

t2 · γ
s/2

=(1−γ)n
γ

s/2
· 1

12
(s3+2s2+s)

=
1

6
γ(1−γ)n(s2+2s+1)

≥ 1

6
γ(1−γn)(s2+2s+1)

=Ω(
c−c2
s

(s2+2s+1))

=Ω(s).

where in the first line, we note that the error on each interval is the same and the probability of each
interval is (1−δ) γ

s/2 +ε δε ·
γ
s/2 = γ

s/2 .

Next we upper bound the risk of the standard estimator. We first focus on the case where all points
are sampled from Tline, which occurs with probability (1−δ)n. In this case, the standard estimator
is linear and fits the points on Tline with zero error, while incurring error for all points not in Tline. Note
that the probability density of sampling a point not in Tline is either δε ·

1−γ
s/2 or δε ·

γ
s/2 , which we upper
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bound as δε · 1
s/2 . The contribution to theR(θ̂std) for this case is upper bounded as

(1−δ)n
s−1∑
t=1

δ

ε
· 1

s/2

∫ ε

0

u2du=(1−e−δn)
δ

ε
· 1

s/2

s−1∑
t=1

∫ ε

0

u2du

=O(1− s
3−1

s3
)
δ

ε
· 1

s/2

s−1∑
t=1

∫ ε

0

u2du

=O(
1

s3
)
δ

ε
· 1

s/2

s−1∑
t=1

∫ ε

0

u2du

=O(
1

s3
)
δ

ε
· 1

s/2
O(sε3)

=O(
log(s3)−log(s3−1)

s4
)

=O(1/s4)

since log(s3)− log(s3−1)≤ 8/7 for s≥ 2. For all other cases, we upper bound the error with the
worst possible standard estimator, which has risk R(θ̂std)≤ (s−1)2 by the bounded risk. Then the
contribution toR(θ̂std) for this case is upper bounded as

(1−(1−δ)n)(s−1)2≤(1−e−δn)(s−1)2

=O(
1

s3
)(s−1)2

=O(1/s)

Thus overall,R(θ̂std)=O(1/s) and the ratio R(θ̂aug)

R(θ̂std)
=Ω(s2).

C ANALYSIS OF VARIANCE IN THE OVERPARAMETERIZED REGIME

Previous work/standard results consider the underparameterized regime where both the standard and
augmented estimators are unbiased. In thsi case, the variance (and equivalently the predictive risk)
of the augmented estimator is never larger than that of the standard estimator. In contrast, we saw
in Section 3.1 that in the overparameterized regime, the bias of an augmented estimator can be larger
than the bias of the standard estimator, and this could lead to larger predictive risk upon augmentation.
However, does the cariance show similar trends as the underparamterized regime or could augmented
estimators also have larger variance than their standard counterparts?

Just like in Section 3.1, we consider minimum P-norm interpolation, where the covariates are rotated
by P

−1
2 , so that the minimum norm interpolant takes the form in Equation 3. Theorem ?? describes

the effect of data augmentation on the variance.

C.1 ANALYSIS OF VARIANCE

In the previous subsections, we focused on the analysis of the predictive bias which is equivalent to
the predictive risk of the estimator R(θ̂) when the observed targets Y are noiseless. In this section,
we consider the case where the noise is non-zero, and compute the variances of the two estimators
of interest: the standard estimator θ̂std and data augmented estimator θ̂aug.

Theorem 5 (Variance). The difference in the variances of a standard and augmented estimator can
be expressed as follows.

n(V (θ̂aug)−V (θ̂std))=tr
(
ΣX̄†ext(X̄

†
ext)
>)︸ ︷︷ ︸

T1: Variance increase

−tr
(
ΣΣ†stdX

>
ext(I+XextΣ

†
stdX

>
ext)
−1XextΣ

†
std

)︸ ︷︷ ︸
T2: Variance reduction

, (23)

where X̄ext
def
= Π⊥stdXext, is the component ofXext in the null space of Σstd.

18



Under review as a conference paper at ICLR 2020

Proof and some corollaries appear in Appendix C.1. From Theorem 5, we see that (i) ifXext is entirely
in the span of Σstd making X̄ext =0, T1 =0 making V (θ̂aug)≤V (θ̂std) (ii) on the other extreme, ifXext

is entirely in the null space with Σ†stdXext =0, T2 =0 and hence V (θ̂aug)≥V (θ̂std).

Note that both terms T1 and T2 are traces of PSD matrices and hence non-negative.

Unlike the underparameterized regime, the variance of θ̂aug could be larger than that of θ̂std. Xext

could open up new dimensions to be estimated in θ̂aug, which were otherwise zero in θ̂std by virtue of
minimizing the norm. The precise effect can be expressed as T1. On the other hand, any augmentation
in the column space of Σstd provides a noise canceling effect similarly to the underparameterized
regime and reduces the variance, captured in term T2. The overall effect of augmentation on variance
is an interplay of these two competing factors.

Proof. Recall from (4) that the V (θ̂)=tr(Cov(θ̂ |XstdXext)Σ). For the minimum norm interpolation
estimators θ̂std and θ̂aug (3), we have

Cov(θ̂std |Xstd,Xext)=
1

n2
Cov(Σ†stdX

>
stdε)=

σ2

n2
Σ†stdX

>
stdXstdΣ†std =

σ2

n
Σ†std. (24)

Similarly, we have Cov(θ̂aug |Xstd,Xext) = σ2

n (Σstd +αΣext)
†. This gives the following expressions

for the variances of the estimators.

V (θ̂std)=
σ2

n
tr
(

Σ†stdΣ
)
.

V (θ̂aug)=
σ2

n
tr
(

(Σstd+αΣext)
†Σ
)
.

In order to compare V (θ̂std) and V (θ̂aug), we need to compare Σ†std and (Σstd+αΣext)
†. In order to do

this, we leverage the result from [CITE] on the pseudo-inverse of the sum of two symmetric matrices.

(Σstd+αΣext)
†=(Σstd+

1

n
X>extXext)

†

=Σ†std−
1

n
Σ†stdX

>
ext(I+XextΣ

+
stdX

>
ext)
−1XextΣ

†
std+

1

n
X̄†ext(X̄

†
ext)
>,

where X̄ext
def
= (I − ΣstdΣ†std)Xext, is the component of Xext in the null space of Σstd. Therefore,

Multiplying each term by Σ and using linearity of trace, we get the required expression (5).

We now interpret the above condition to compare the variances of the two estimators, and provide
some corollaries of Theorem 5.

Corollary 2 (Nullspace augmentation). If the augmented points Xext are entirely in the null space
of the covariance of the original training points Σstd, the variance of the augmented estimator is never
lesser than the variance of the standard estimator, i.e.

Σ>stdXext =0 =⇒ V (θ̂aug)≥V (θ̂std). (25)

Proof. When Σ>stdXext =0, term T2 in (5) is zero. Since T1 is non-negative by virtue of being the trace
of a PSD matrix, we have V (θ̂aug)≥V (θ̂std).

Therefore, augmenting solely in the null space of Σstd leads to larger variance. This is because,
augmenting in the null space introduces new dimensions that have to be estimated from the data. In
contrast, for the standard estimator, these dimensions would be identically zero.

In the next corollary, we consider the case where Σ>stdXext 6=0, and study the effect ofα—the proportion
of augmented points.

Corollary 3 (Amount of augmentation). Suppose we fix the covariance of the augmented points
Σext, such that Σ>stdXext 6= 0, and vary the number of augmented samples αn. For a large enough α,
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the variance of the augmented estimator is never larger than the variance of the standard estimator.
Formally, let X̃ext =

1√
α
Xext such that Σext =

1
nX̃
>
extX̃ext. For a fixed X̃ext (and hence Σext), we have

α≥
{

tr
(

ΣX̃†ext⊥(X̃†ext⊥)>
)

tr
(
X̃extΣ

†
stdΣΣ†stdX̃

>
ext

)(1+λmax(X̃extΣ
†
stdX̃

>
ext)
)
,1

}
=⇒ V (θ̂aug)≤V (θ̂std). (26)

Proof. We first express the variance increase term T1 as function of α.

T1(α)=
1

α2
tr
(

ΣX̃†ext⊥(X̃†ext⊥)>
)
. (27)

We now bound the variance reduction term as a function of α. We apply the cyclic trace property and
a standard bound on the trace of a product of symmetric matrices (Kleinman & Athans, 1968).

T2(α)=αtr
(

ΣΣ†stdX̃
>
ext(I+αX̃extΣ

†
stdX̃

>
ext)
−1X̃extΣ

†
std

)
=αtr

(
X̃extΣ

†
stdΣΣ†stdX̃

>
ext(I+αX̃extΣ

†
stdX̃

>
ext)
−1
)

≥αλmin((I+αX̃extX̄
†
extX̃

>
ext)
−1)tr

(
X̃extΣ

†
stdΣΣ†stdX̃

>
ext

)
.

By simple algebra, we have

λmin((I+αX̃extX̄
†
extX̃

>
ext)
−1)=

1

λmax(I+αX̃extΣ
†
stdX̃

>
ext)
≥ 1

1+αλmax(X̃extΣ
†
stdX̃

>
ext)

=⇒ T2(α)≥
tr
(
X̃extΣ

†
stdΣΣ†stdX̃

>
ext

)
1
α+λmax(X̃extΣ

†
stdX̃

>
ext)

(28)

Expressing the difference V (θ̂aug)−V (θ̂std) = T1(α)−T2(α) using (27) and (28) and rearranging
the terms via simple linear algebra gives the result.

To summarize, in the overparameterized regime where the standard training data is not invertible, data
augmentation could lead to higher variance due to opening up new dimensions in which the parameters
have to be estimated from the data.

D LEVERAGING UNLABELED DATA TO ELIMINATE INCREASE IN BIAS

In this section, we prove Theorem 3, which we reproduce here.
Theorem 3. Assume the noiseless linear model y=x>θ?. Let θint-std be an arbitrary interpolant of
the standard data, i.e.Xstdθint-std =Ystd. Let θ̂X-aug be the X-regularized interpolant (8). Then

R
(
θ̂X-aug)≤R(θint-std).

Proof. Let {ui} be an orthonormal basis of the kernel Ker(Σstd +Σext) and {vi} be an orthonormal
basis for Ker(Σstd)\span({ui}). Let U and V be the linear operators defined by Uw=

∑
iuiwi and

V w=
∑
iviwi, respectively, noting thatU>V =0. Defining Π⊥std :=(I−Σ†stdΣstd) to be the projection

onto the null space ofXstd, we see that there are unique vectors ρ,α such that

θ?=(I−Π⊥std)θ?+Uρ+V α. (29a)

As θint-std interpolates the standard data, we also have

θint-std =(I−Π⊥std)θ?+Uw+V z, (29b)

asXstdUw=XstdV z=0, and finally,

θ̂X-aug =(I−Π⊥std)θ?+Uρ+V λ (29c)

where we note the common ρ between Eqs. (29a) and (29c).
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Using the representations (29) we may provide an alternative formulation for the augmented
estimator (??), using this to prove the theorem. Indeed, writing θint-std−θ̂X-aug =U(w−ρ)+V (z−λ),
we immediately have that the estimator has the form (29c), with the choice

λ=argmin
λ

{
(U(w−ρ)+V (z−λ))>Σ(U(w−ρ)+V (z−λ))

}
.

The optimality conditions for this quadratic imply that

V >ΣV (λ−z)=V >ΣU(w−ρ). (30)

Now, recall that the predictive risk of a vector θ is R(θ) = (θ−θ?)>Σ(θ−θ?) = ‖θ−θ?‖2Σ, using
Mahalanobis norm notation. In particular, a few quadratic expansions yield

R(θint-std)−R(θ̂X-aug)

=‖U(w−ρ)+V (z−α)‖2Σ−‖V (λ−α)‖2Σ
=‖U(w−ρ)+V z‖2Σ+‖V α‖2Σ−2(U(w−ρ)+V z)>ΣV α−‖V λ‖2Σ−‖V α‖

2
Σ+2(V λ)>ΣV α

(i)
= ‖U(w−ρ)+V z‖2Σ−2(V λ)>ΣV α−‖V λ‖2Σ+2(V λ)>V α

=‖U(w−ρ)+V z‖2Σ−‖V λ‖
2
Σ, (31)

where step (i) used that (U(w−ρ))>ΣV =(V (λ−z))>ΣV from the optimality conditions (30).

Finally, we consider the rightmost term in equality (31). Again using the optimality conditions (30),
we have

‖V λ‖2Σ =λ>V >Σ1/2Σ1/2(U(w−ρ)+V z)≤‖V λ‖Σ‖U(w−ρ)+V z‖Σ
by Cauchy-Schwarz. Revisiting equality (31), we obtain

R(θint-std)−R(θ̂X-aug)=‖U(w−ρ)+V z‖2Σ−
‖V λ‖4Σ
‖V λ‖2Σ

≥‖U(w−ρ)+V z‖2Σ−
‖V λ‖2Σ‖U(w−ρ)+V z‖2Σ

‖V λ‖2Σ
=0,

as desired.

E EXPERIMENTAL DETAILS

E.1 ADVERSARIAL AUGMENTATION

We augment with `infty adversarial perturbations of various sizes. In each epoch, we find the
augmented examples via Projected Gradient Ascent on the multiclass logistic loss (cross-entropy
loss) of the incorrect class. Augmenting in this fashion is essentially adversarial training procedure
of (Madry et al., 2018), with equal weight on both the ”clean” and adversarial examples.

E.2 SUBSAMPLING EXPERIMENTS

We train Wide ResNet 40-2 models (Zagoruyko & Komodakis, 2016) while varying the number of
samples in CIFAR-10. We sub-sample CIFAR-10 by factors of {1,2,5,8,10,20,40} in Figure 4(a) and
{1,2,5,8,10} in Figure 4(b). For sub-sample factors 1 to 20, we report results averaged from 2 trials
for each model. For sub-sample factors greater than 20, we average over 5 trials.

E.3 X-REGULARIZATION

We instantiate the general X-regularization estimator that is defined in Equation 9. We use the
multiclass logistic loss as the classification loss ` and also as the ”distance” like measure dist.
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Figure 6: (a) Difference in robust test error between our X-regularized model and the robust model
for CIFAR-10. X-regularization keeps the robust accuracy within 2% of the robust model for small
subsamples and even improves over the robust model for larger subsamples of CIFAR-10. (b) Relative
difference in standard error between augmented estimators (our X-regularized model and the robust
model) and the standard estimator on CIFAR-10. We achieve up to 20% better standard error than
the standard model for small subsamples.

E.3.1 COMPARISON TO ROBUST SELF-TRAINING.

X-regularized adversarial training is quite related to robust self-training and it’s close variants studied
in (Carmon et al., 2019; Uesato et al., 2019; Najafi et al., 2019). However, there is one key difference.
Note that no robust loss is minimized on the unlabeled samples x̃; i.e., the perturbations of the
unlabeled samples are not added to during X-regularized adversarial training. This distinguishing
factor allows X-regularized adversarial training to completely eliminate the increase in standard error.
Robust self-training improves over vanilla adversarial training, but still suffers a drop in accuracy.

E.3.2 EVALUATING ROBUST ACCURACY

We evaluate the robustness of models to the strong PGD-attack with 40 steps and 5 restarts. In Fig-
ure 4(b), we used a simple heuristic to set the regularization strength λ in the general X-regularization
problem (9) to be λ = min(0.9,β)/(1−min(0.9,β) where β ∈ [0,1] is the fraction of the original
CIFAR-10 dataset sampled. Intuitively, we give more weight to the unlabeled data when the original
dataset is larger, meaning that the standard estimator produces more accurate pseudo-labels.

Figure 6 shows that the robust accuracy of our X-regularized model stays within 2% of the robust
model (trained using PGD adversarial training) for all subsamples, and even improves upon the robust
model on the full dataset.

Note that we cannot directly compare the empirical performance of X-regularized adversarial training
on CIFAR-10with other methods to obtain robust models that are modifications of vanilla adversarial
training. We use a smaller model due to computational constraints enforced by adversarial training.
Since the model is small, we could only fit adversarially augmented examples with small ε=2/255,
while existing baselines use ε=8/255. Note that even for ε=2/255, adversarial data augmentation
leads to an increase in error. We show that X-regularization can fix this. While ensuring models are
robust is an important goal in itself, in this work, we view adversarial training through the lens of
covariate-shifted data augmentation and study how to use augmented data without increasing test
error. We show that X-regularization preserves the other benefits of some kinds of data augmentation
like increased robustness to adversarial examples.
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