
Under review as a conference paper at ICLR 2020

NESTED LEARNING FOR MULTI-GRANULAR TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard deep neural networks (DNNs) used for classification are trained in an
end-to-end fashion for very specific tasks - object recognition, face identification,
character recognition, etc. This specificity often leads to overconfident models
that generalize poorly to samples that are not from the original training distribu-
tion. Moreover, they do not allow to leverage information from heterogeneously
annotated data, where for example, labels may be provided with different levels of
granularity. Finally, standard DNNs do not produce results with simultaneous dif-
ferent levels of confidence for different levels of detail, they are most commonly
an all or nothing approach. To address these challenges, we introduce the problem
of nested learning: how to obtain a hierarchical representation of the input such
that a coarse label can be extracted first, and sequentially refine this representa-
tion to obtain successively refined predictions, all of them with the corresponding
confidence. We explicitly enforce this behaviour by creating a sequence of nested
information bottlenecks. Looking at the problem of nested learning from an in-
formation theory perspective, we design a network topology with two important
properties. First, a sequence of low dimensional (nested) feature embeddings are
enforced. Then we show how the explicit combination of nested outputs can im-
prove both robustness and finer predictions. Experimental results on CIFAR-10,
MNIST, and FASHION-MNIST demonstrate that nested learning outperforms the
same network trained in the standard end-to-end fashion. Since the network can
be naturally trained with mixed data labeled at different levels of nested details,
we also study what is the most efficient way of annotating data, when a fixed train-
ing budget is given and the cost of labels increases with the levels in the nested
hierarchy.

1 INTRODUCTION

Deep learning is providing remarkable computational tools for the automatic analysis and under-
standing of complex high-dimensional problems Esteva et al. (2017); Spanhol et al. (2016); Parkhi
et al. (2015). Despite its tremendous value and versatility, methods based on Deep Neural Networks
(DNNs) tend to be overconfident about their predictions and limited to the task and data they have
been trained on Hein et al. (2018); Guo et al. (2017); Nguyen et al. (2014). This happens, among
other reasons, because the standard approach to train DNN models consists in optimizing its perfor-
mance over a specific dataset and for a specific task in an end-to-end fashion Szegedy et al. (2014).
Standard DNNs are not designed to be trained with data of different quality and to simultaneously
provide results at multiple granularities. The framework proposed in this work opens the door to
this, and in particular when those granular predictions are nested, meaning every subsequent level
adds information and has all the information of the previous one (this is formally defined below).

Take as an example the case illustrated in Figure 1 (left); for high quality facial images, we may be
able to infer the person’s age group and identity; whereas for poor resolution or occluded examples,
only a sub-set of these nested predictions may be achievable. We expect the network to automatically
understand what can and cannot predict, and this is obtained with the framework proposed in this
paper (Figure 1, right). Moreover, nested learning allows us to leverage training information from
diverse datasets, with varying granularity and quality of labels, and combine this information into a
single model.

On the other hand, when heterogeneous data with different granularity of annotations (as in the ex-
ample illustrated in Figure 1 (left)) is provided for training, low quality samples with coarse labels

1



Under review as a conference paper at ICLR 2020

Figure 1: On the left, an illustration of a set of nested predictions and their associated confidence given an
input image of a face. The top block illustrates a desired behavior. Depending on the quality of the input data,
one may be able to provide up to a certain level of prediction. This nested learning is the problem addressed
in this paper. The bottom block illustrates how standard DNN-based models behave when they are trained
in a end-to-end fashion to perform specific tasks such as face recognition. Clearly the traditional network is
over-confident in its predictions (potentially wrong for the last 3 cases), and provides an all or nothing response
instead of responding only what it can for the given input quality. On the right, we see a real example with
results from the proposed framework; while a sharp image gets all the nested levels with high confidence in our
proposed system, a low-quality one is getting the first two levels with confidence, while the finer one is correct
but low confidence as expected. All is automatic and transparent to the user. Standard networks, which are all
or nothing and with a single output, clearly fail with this type of challenges (the input might not even have the
information the finer level requires). The proposed single network automatically provides such confidence at
all levels, without the user having to know the quality of the data, and can simultaneously use data from all
nested levels at training. (Additional examples are presented in Figure 5 in the supplementary material.)

can help us to understand the structure of the coarser distributions (person, under 50) while simul-
taneously data with finer labels can contribute to the coarse and fine tasks. This will be formalized
later in the paper with tools from information theory.

Recently, Alsallakh et al. (2017) showed that convolutional neural networks (CNNs) naturally tend
to learn hierarchical high-level features that discriminate groups of classes in the early layers, while
the deeper layers develop more specialized feature detectors. We explicitly enforce this behaviour
by creating a sequence of nested information bottlenecks. Looking at the problem of nested learning
from an information theory perspective, we design a network topology with two important proper-
ties. First, a sequence of low dimensional (nested) feature embeddings are enforced for each level
in the taxonomy of the labels. This encourages generalization by forcing information bottlenecks
Tishby et al. (1999), Shwartz-Ziv & Tishby (2017). Second, skipped connections allow finer embed-
dings to access information of the input that may be useful for finer classification but not informative
on coarser categories Ronneberger et al. (2015). Additionally, we show how the explicit calibration
and combination of nested outputs can improve the finer predictions and improve robustness. Fi-
nally, having the flexibility of merging data with different levels of granularity inspired us to study
which is the most efficient way of annotating data given a fixed budget that takes into account that
more detailed training data is more expensive to annotate. The source code associated to this work
is open source.1

The main contributions of this paper are: (1) We introduce the concept of explicit nested learning,
where a given level in the hierarchy strictly contains the previous one and strictly adds information;
(2) We provide a deep learning architecture that can be trained with data from all levels of the nested
structure (all levels of labels and data quality), each one affecting the corresponding component
of the network; (3) We provide a model with multiple outputs, one per level of the nested hierar-
chy, each one with its own confidence; the user does not need to know the “quality” of the data
beforehand, the output confidences provide that information.

2 RELATED WORK

The problem of adapting DNNs models and training protocols to encourage nested learning shares
similarities with other popular problems in machine learning such as Multi-Task Learning (MTL).

1https://github.com/nestedlearning2019

2



Under review as a conference paper at ICLR 2020

Though our work is related to MTL because of the similar training challenges, most of the MTL
methods tackle the task in a parallel way, without imposing a task hierarchy in the architecture
(Ranjan et al. (2016), Kokkinos (2017), Bilen & Vedaldi (2016)). The idea of learning hierarchical
representations to improve classification performance has been exploited prior the proliferation of
DNNs, e.g., Zweig & Weinshall (2007), Fergus et al. (2010), Zhao et al. (2011), Liu et al. (2013).
Some of these ideas have been incorporated into deep learning methods Alsallakh et al. (2017),
Wehrmann et al. (2018), Deng et al. (2014), Srivastava & Salakhutdinov (2013), and exploited in
specific applications Clark et al. (2017), Xuehong Mao et al. (2016), Seo & shik Shin (2019).

Kim et al. (2018) proposed a nested sparse network architecture with the emphasis on having
a resource-aware versatile architecture to meet (simultaneously) diverse resource requirements.
Wehrmann et al. (2018) proposed a neural network architecture capable of simultaneously opti-
mizing local and global loss functions to exploit local and global information while penalizing hier-
archical violations. Triguero & Vens (2016) investigated different alternatives to label hierarchical
multi-label problems by selecting one or multiple thresholds to map output scores to hierarchical pre-
dictions, focusing on performance measures such as the H-loss, HMC-loss and the micro-averaged
F-measure. Yan et al. (2014) introduced hierarchical deep CNNs (HD-CNNs) which consists of em-
bedding CNNs into a two-level category hierarchy. They propose to distinguish a coarse class using
an initial classifier and then refine the classification into a second level for each individual coarse
category.

Although the works listed above are important, relevant, and related to the work presented here, there
are notable differences between them and what we propose. For example, while Kim et al. (2018)
propose a nested architecture providing different (potentially nested) outputs, they do not study how
to combine these outputs into a refined single prediction, nor provide a reliable confidence measure
of the predicted outputs or a natural way to combine training data with nested levels of labels. Yan
et al. (2014) study the problem of nested learning for two nested levels, and optimize for a final fine
prediction, while our work generalize to any number of nested levels, and we simultaneously can
train and test up to an arbitrary level of granularity. This is also a fundamental difference with the
works developed by Triguero & Vens (2016) and Wehrmann et al. (2018). In contrast with them, we
can transparently train (and predict) merging datasets that provide only coarse labels, intermediate
levels, or fine labels. Also, we show that if testing conditions shift from the ones on training, we
can still provide relatively confident coarser labels while avoiding overconfident (erroneous) fine
predictions (see, e.g., Figure 1, right; and Figure 5 in the supplementary material). Finally, because
our solution can leverage information from datasets with different granularity, we are able to analyze
how different proportions of training coarse and fine data affects models cost, performance and
robustness.

3 NESTED LEARNING

Let us assume we want to classify the popular hand written digits of MNIST LeCun & Cortes (2010).
An input image can be represented as a realization x of the random variableX .2 We denote as X the
alphabet of X . Associated to x, there is a label y that corresponds to the actual number the person
writing the character wanted to represent. The label y is a realization of the random variable Y . In
this illustrative case, Y can take 10 different values: Y = {0, 1, ..., 9}. Of course Y and X are not
independent random variables. Generally, Y precedes X , and the problem of classification can be
stated as the problem of inferring y from an observed sample x, i.e., Y → X → Ŷ . Ŷ denotes a
new random variable (estimated fromX) which approximate Y . More precisely, a common practice
is to find a mapping X → Ŷ such that the probability P (Ŷ 6= Y |X) is minimized.

Nested classification. In this work we focus on the inherent hierarchical structure most classification
problems have. For example, imagine now that we have hand written characters including numbers,
lower case letters, and capital letters. It would be intuitive to first attempt to classify these characters
into three categories: numbers, lower case letters, and capital letters. Then, depending on this coarse
classification we can perform a finer classification, i.e., classifying the numbers into 0 − 9 classes,
the letters into a− z, and so forth.

2Capital letters will be used to denote random variables and lower case letters to denote the value of a
particular realization.

3



Under review as a conference paper at ICLR 2020

Of course, we could have an arbitrary number of nested random variables associated to different
levels of labels granularity. Here, subscripts indicate the granularity of the label, for example, Yi−1
is the closest coarse level of Yi. Y ki represents the random variable associated to each k value in the
closest coarse node, i.e., Y ki represents Yi given that yi−1 = k, k ∈ Yi−1.

Definition 3.1. We define Y1, ..., Yn as a discrete sequence of nested labels if H(Yi|Yi+1) = 0
∀i ∈ [1, n− 1]. H denotes the standard definition of entropy for discrete random variables.

Definition 3.2. A discrete sequence of nested labels Y1, ..., Yn is strictly nested if H(Yi|Yi−1) <
H(Yi) ∀i ∈ [2, n].

Figure 2: On the left we illustrate the taxonomy of an example of strictly nested labels. First handwritten
characters are classified as “number” or “letter,” and then these categories are refined into specific numbers
and letters. X , Y1 and Y2 denote random variables representing the input, the coarse label, and the fine label
respectively. Y k

i represents the random variable associated to each value k in the coarser node, i.e., Yi given
that yi−1 = k, k ∈ Yi−1. The diagram in the center, illustrate the entropy of a fine and coarse level, and how
having information about a coarser level may reduce the entropy of the fine level. The right diagram illustrates
the reduction of uncertainty on the labels given the input, and how the uncertainty on the fine labels can be
reduced even further if input information and coarse information are combined.

The core of this work is to formulate classification problems such that the information of the input is
extracted in a hierarchical way. To this end, intermediate (coarse) predictions Ŷi are jointly learned.
The two key components of the proposed approach are: (i) nested information bottlenecks and (ii) a
combination of the predicted coarse and fine labels. The analysis provided in this section is agnostic
to most of the implementation details (which are addressed in coming sections).

Hierarchical information bottlenecks and the role of skipped connections. We assume the
random variable X contains information about the sequence of strictly nested labels Yi, i.e.,
H(Yi|X) < H(Yi), as illustrated in Figure 2. More precisely, H(Yi|X) > H(Yi−1|X) and
H(Yi|X) < H(Yi|Yi−1, X). To exploit these properties, we use standard DNN layers (convolu-
tional, pooling, normalization, and activation layers). As illustrated in Figure 3, we begin by guid-
ing the network to find a low dimensional feature representation f1 such that H(f1(X)) � H(X)
while, I(f1(X), Y1) is close to I(X,Y1) (I(·, ·) stands for the standard mutual information). (DNNs
are remarkably efficient at compressing and extracting the mutual information between high dimen-
sional inputs and target labels Shwartz-Ziv & Tishby (2017), Moshkovitz & Tishby (2017).)

Figure 3: Illustrative scheme of the proposed framework. From left to right, the input data x ∼ X , a first set
of layers that extract from X a feature representation f1, which leads to Ŷ1 (estimation of the coarse label Y1).
f1 is then jointly exploited in addition with complementary information of the input. This leads to a second
representation f2 from which a finer classification is obtained. The same idea is repeated until the fine level of
classification is achieved. It is important to highlight that this high level description of the proposed model can
be implemented in multiple ways. In the following sections we present our own implementation and provide
details of the specific architecture we chose for experimental validation.

4



Under review as a conference paper at ICLR 2020

The second step consists in learning the complementary information such that when combined with
the representation f1, allows us to achieve a second representation f2 from which the second hierar-
chical label Y2 can be inferred. To this end, skipped connections play a critical role as will be further
detailed next. As we discussed before,

I(X,Yi) = H(X)− H(X|Yi)︸ ︷︷ ︸
>H(X|Yi+1)

< I(X,Yi+1). (1)

On the other hand, we want each feature embedding fi to compress the information of X while
I(fi(X), Yi) → I(X,Yi). Equation 1 means that the finer the classification the more information
from X we need. Notice that while in many DNNs, skipped connections have proved to help on
the networks compactness and to mitigate vanishing gradients Szegedy et al. (2017), in the present
work they are included for a more fundamental reason. If we do not consider skipped connections,
X → fi(X) → fi+1(X) forms a Markov chain where I(X, fi+1(X)) ≤ I(X, fi(X)) (data-
processing inequality) which contradicts Equation 1. Section 4 presents experiments illustrating the
impact of skipped connections on nested learning, and complements the discussion started here.

Combination of nested outputs. We will present in the following sections experimental evidence
showing that nested learning leads to an improvement in performance and robustness. In addition,
the explicit combination of nested predictions, since the network simultaneously produces all the
outputs Yi (with corresponding confidence), can improve the accuracy and robustness even further.

Our motivation is to explicitly refine the fine prediction leveraging the information of all the coarser
outputs, i.e., {Ŷ1, ..., Ŷi} → Ỹi. Let us define si(q) the network output score associated to the event
Yi = q. In general, if si(q) > si(w) most likely P (Yi = q) > P (Yi = w), but P (Yi = q) 6= si(q).
In other words, a score value of 0.3 does not mean the sample belongs to this class with 30%
probability. This can be addressed by calibrating the outputs, which consists of mapping output
scores into an estimation of the class probability si(q)→ PŶi

(q) Zadrozny & Elkan (2002). PŶi
(q)

denotes the calibrated output of the network which approximates P (Yi = q). (We will precise
how calibration is performed in the following section.) Then, we can use the estimated probability
associated to a fine label PŶi

to compute the conditional probability P (Yi = yi|Yi−1 = k). This is
achieved by re-normalizing the finer labels associated to the same coarse label, i.e.,

PŶi|Ŷi−1
(q) =

PŶi
(q)∑

w∈Ykq
i

PŶi
(w)

, (2)

where Ykqi denotes the set of labels at granularity level i that share with q the same coarser label kq .
Finally, the estimated conditional probability is combined with the prior of the coarser prediction to
recompute the fine prediction P ′

Ŷi
(q) = PŶi|Ŷi−1

(q)PŶi−1
(kq).

3.1 IMPLEMENTATION CHALLENGES AND DETAILS

Training. Let Gθ,η(x) = (fi(x, (θj)j=1,..,i), gi(fi, ηi))i=1,..,m be the function coded by our net-
work, where m denotes the number of granularity levels and as before x an input sample. Each
sub-function gi corresponds to the output of granularity i (computed from the feature bottleneck fi).
G depends on parameters (θj)j=1,..,i which are common to the sub-functions of coarser granulari-
ties, and some granularity-specific parameters ηi. The general framework of the architecture follows
Figure 3, meaning a trunk of convolutionnal filters with parameters θ and fully connected layers for
each intermediate outputs with parameters η.

Training this kind of model with a disparity of samples per granularity is hard, and naively sampling
random batches of training data leads to a noisy gradient computation Kokkinos (2017). In order to
overcome this issue, we organize the training samples and train the network in a cascaded manner.
The datasetD is organized in subsets of samples labeled up to granularity i for i = 1, ..,m. Formally
we can write D = (x,y) with x the set of inputs and y the set of labels. We consider that x =
(xi)i=1,..,m and y = (yi)i=1,..,m where Di = (xi,yi) represents the subset of data for which the
label is known up to the granularity level i.

Having the dataset partitioned in this fashion naturally leads to a cascaded training of the network.
We train the model to solve a sequence of optimization problems using (xi,yi) as the training

5



Under review as a conference paper at ICLR 2020

examples at each step. We can write this sequence (Pi) as:

(Pi) : min
(θj ,ηj)j=1,..,i

i∑
j=1

αjLnj
(Ŷj , Yj),

where Ln is the n-categorical cross-entropy and α are the weights for each individual loss. We first
start to train the network on coarse labels and we gradually add finer labels and start optimizing
deeper parameters in an iterative way. A standard DNN unknowingly uses low quality data also to
train higher layers, even if there is no high level information in the data. This is not happening in
our framework. (Additional details are presented as supplementary material Section B.)

Scores calibration. As shown by Hein et al. (2018), deep neural networks with ReLU activations
tend to produce overconfident results for samples which are out of the training distribution. In
order to mitigate this and have meaningful outputs that can be combined, we consider a two step
calibration method. The first step consists in adding a “rejection” class for each level of granularity.
Synthetic samples associated to this class are generated from an uniform distribution. By training
the network with this supplementary class we mitigate the problem of prediction overconfidence.
However, keeping a fixed coverage on the input space would require a number of samples that
grows exponentially with the dimension of the input space.

To overcome this problem, we think of the network as a sequence of encoders in the latent spaces
gi(fi(x)) (defined as the penultimate layer prior each prediction), and fine-tune the last layer adding
synthetic out-of-distribution samples from an uniform distribution in the latent space. The latent
space has a much smaller dimension than the original input space, and therefore is tractable to
synthesise samples with a uniform coverage of the latent space. (Additional details are provided in
the supplementary material Section B.)

The second calibration step is a classic temperature scaling introduced in Guo et al. (2017). This
technique consists in scaling the output of the fully-connected layer before the softmax activation
by an optimal temperature parameter. Given x the input data and g the function coded by a neu-
ral network before the softmax activation σ, the new calibrated output is given by ḡ = σ( gT ).
The temperature parameter T is tuned so that the mean confidence of the predictions matches the
empirical accuracy, more precisely, we want to minimize, E

[
|P (Ŷ = Y |p̂ = p)− p|

]
, whereas

before, Ŷ denotes the network prediction of Y , and p̂ is the empirical confidence associated
to it. The previous expression can be approximated by the Expected Calibration Error (ECE)
ECE =

∑N
j=1

|Bj |
n |acc(Bj) − conf(Bj)|, Naeini et al. (2015). This measure takes the weighted

average between the accuracy and confidence on N bins Bj , j = 1...N . n denotes the total number
of samples, and |Bj | the number of samples on the bin Bj .

4 EXPERIMENTS AND DISCUSSION

We consider three sets of publicly available datasets for experimental evaluation: the handwritten
digits from MNIST (LeCun & Cortes (2010)), the small clothes images from Fashion-MNIST (Xiao
et al. (2017)), and CIFAR10 (Krizhevsky et al.). First we study how the actual nested nature of
the labels affects nested learning. Then we compare end-to-end training versus the proposed nested
approach. In a third group of experiments we evaluate different combination methods to leverage all
the predictions into a refined fine prediction. Then we evaluate the impact of skipped connections.
Finally, we study how the ratio of coarse and fine labels affects the network’s performance.

Hierarchical structure versus random grouping. We group the MNIST samples into two groups
of nested labels: “VG” and “RG,” both with three labels of granularity. VG corresponds to a hierar-
chy that groups visual similarities; the coarse class groups digits into {{3, 8, 5, 0, 6}, {9, 4, 7, 1, 2}},
the intermediate class into {{3, 8, 5}, {0, 6}, {9, 4, 7}, {1, 2}}, and of course the fine class into
{0} − {9}. Additional information on how we grouped the labels for the three datasets is pre-
sented in Appendix C. RG consists of a 3 level (coarse/middle/fine) grouping based on the order of
N. Empirical results shows that grouping the labels based on visual similarities leads to better results
in terms of accuracy, intuitively supporting the idea of nested learning. (See the results presented in
Table 4 provided in the supplementary materials.)

6



Under review as a conference paper at ICLR 2020

Standard end-to-end training versus nested learning. Let us define |Di| as the number of training
samples that are annotated up to the level of granularity i. To understand if adding more samples with
coarse annotation helps improving the performance on the fine task, we compared models trained
exclusively with fine dataDA = D3 and models trained fine data plus coarsely annotated dataDB =
D3 +D2 +D1. Table 1 shows the accuracy for the fine, middle, and coarse outputs for the standard
end-to-end network versus the same architecture trained using nested learning and additional coarse
and middle data. If we compare the lines for which D3 = 20%, we observe that adding coarse and
middle granularity samples improves the accuracy even for the fine task. Moreover, it also improves
the robustness of the model. We tested this models when test data is distorted and shifted from
the conditions at training. Distortion 1 to 4 correspond to four levels (increasing the severity) of
“turbulence-like” image distortion, the implementation of this distortion is inspired on the work of
Meinhardt-Llopis & Micheli (2014) (details are provided in the supplementary material, Section D).
Again looking at Table 1 we see that the model trained with additional coarse and middle samples is
more robust and less overconfident. A similar pattern is observed for MNIST and fashion-MNIST
datasets (see for example, tables 5, and 6 in the supplementary material).

method Original Distortion 1 Distortion 2 Distortion 3 Distortion 4

Coarse (end-to-end),D3 = 20% 96.0 / 97.6 87.0 / 94.0 82.5 / 93.4 80.2 / 92.9 77.0 / 93.0
Coarse (end-to-end),D3 = 32% 96.8 / 98.2 86.2 / 93.9 82.1 / 93.1 78.3 / 92.7 75.1 / 92.9
Coarse (nested) Ours,D1,2,3 = 20% 96.5 / 96.7 87.8 / 92.5 84.9 / 91.5 81.4 / 90.9 78.2 / 90.6
Middle (end-to-end),D3 = 20% 84.1 / 89.8 65.2 / 79.6 56.7 / 76.0 48.9 / 74.9 42.6 / 75.9
Middle (end-to-end),D3 = 32% 87.5 / 92.8 65.5 / 81.5 56.3 / 79.0 47.8 / 78.7 41.3 / 79.4
Middle (nested) Ours,D1,2,3 = 20% 85.2 / 85.0 65.4 / 73.5 58.1 / 70.4 50.3 / 69.5 43.9 / 69.7
Fine (end-to-end),D3 = 20% 75.9 / 88.4 50.3 / 67.9 42.8 /64.9 34.2 / 65.5 28.4 / 73.4
Fine (end-to-end),D3 = 32% 81.0 / 88.4 52.0 / 73.3 41.8 /71.4 32.8 / 71.9 26.8 / 73.4
Fine (nested) Ours,D1,2,3 = 20% 77.4 / 77.7 51.6 / 62.6 43.2 /59.8 34.7 / 57.7 29.1 / 57.7

Table 1: Accuracy and mean confidence (Acc%/Conf%) for Cifar10 dataset. Coarse, fine, and middle
indicate the accuracy at each level of the label. End-to-end, denotes the model trained with exclusively data
annotated for the fine label. We compare two end-to-end models trained with different amounts of data with
fine labels. We first set D3 = 20%, which we increase afterwards to D3 = 32%. On the other hand, “nested”
denotes the same architecture, trained with coarse middle and fine labeled data. In this experiment we set
D1 = D2 = D3 = 20%. (Similar results are reported for MNIST and fashion-MNIST datasets, see tables 5,
and 6 in the supplementary material.)

The previous discussion is interesting as it shows that including additional coarse data tends to help
also the discrimination of the fine task. However one may argue that the comparison is unfair,
as one model sees more data than the other. That is a very interesting point and we address it in
following experiments where we study how the proportion of fine and coarse granularity data affect
performance (for a fixed budget and different cost models). For now, let us observe what happens
if we increase the amount of fine data from D3 = 20% to 32% (which assuming a linear cost
model equals the budget of training with D1 = D2 = D3 = 20%). As expected, (see Table 1)
the performance on clean test data improves for the end-to-end model. However, (see columns
Distortion 1-4) it generalizes less to unseen (distorted) test data and also becomes significantly more
overconfident.

Output combination. Kuncheva (2004) presented many useful combination methods for both one-
hot encoding classifiers and continuous scores. We compare some of those combination methods
(e.g., Mean, Product, and Majority Vote) to the one that we designed specifically for multiple nested
outputs. (Details and numerical results are provided in the supplementary material, Section E and
Table 3.) We observed that different combination methods perform similar on test data that matches
the train data, while the proposed method outperforms the others when test samples are distorted.

The role of skipped connections. Skipped connections are included in order to allow information
flow from the input to the finer feature bottlenecks. Table 2 shows the accuracy for two networks
with the same structure, trained on the same data, one including skipped connections (SC) and the
other-one not.

Working on a budget. As we discussed before, establishing a fair comparison between models
trained using more fine or coarse data is not trivial. To address this problem, we investigated three
cost models: linear, convex, and concave. For the lineal model, we assume the cost associated to
annotate one sample (x, yi) is proportional to |Yi|. Analogously, for the convex/concave cost model,
we assume the cost of annotating a sample (x, yi) is proportional to g(|Yi|) with g(·) being strictly
convex/concave. For each budget and cost model, we created hundreds of train sets with different

7



Under review as a conference paper at ICLR 2020

Method Original Distortion 1 Distortion 2 Distortion 3 Distortion 4

Coarse (without SC) 99.6 96.3 91.3 85.3 79.2
Coarse (with SC) Ours 99.7 97.2 93.2 87.7 81.4
Middle (without SC) 99.3 92.1 79.4 66.8 58.4
Middle (with SC) Ours 99.5 95.1 87.3 79.2 65.5
Fine (without SC) 98.9 88.2 72.4 56.4 44.0
Fine (with SC) Ours 99.2 94.2 84.9 69.5 53.2

Table 2: Comparison of the same network structure, trained on the same coarse, middle, and fine data, with
and without skipped connections. 20% of fine middle and coarse samples of MNIST dataset where selected for
training. As in the previous experiments, Distortion 1-4 correspond to test distorted samples with turbulence-
like distortion (described in the supplementary material).

amounts of coarse, middle, and fine samples. Figure 4 shows the accuracy on the MNIST test set
for different budgets and cost models. It is interesting to observe that for a convex cost model,
increasing the number of coarse annotations produces better results for the same budget; while as
expected, the opposite is observed for a concave cost model. On the other hand, when the budget
is very small, a balanced combination of coarse and fine labels provides the best result. We present
additional experiments in the Figure 10 in the supplementary material.

Figure 4: Accuracy on the MNIST data when different ratios of coarse, middle, and fine samples are selected
for training. Plots report the accuracy on the prediction of the finest category (ten classes: 0− 9). If we define
n1, n2 and n3 the number of samples for which we know only the coarse, middle, and fine label respectively,
the budget associated to a training set is Bn1,n2,n3 = n1g(|Y1|)+n2g(|Y2|)+n3g(|Y3|). g represents a cost
function associated to labeling a coarse, middle, and fine sample. In this experiment, we tested three models
for g, a linear model where the cost is linear, a concave model (we chose g(u) ∝ log(u)), and a convex model
(we chose g(u) ∝ eu). For each budget B (five discrete budgets are grouped) we chose to invest more on
coarse, middle, and fine labels. The colors represent the proportion of coarse samples in the training set. Blue
represents more proportion of coarse samples, and red a larger proportion of fine labels. (Additional results are
presented in Figure 10 in the supplementary material.)

5 CONCLUSION

In this work we introduced the concept of nested learning, which improves classification accuracy
and robustness. Moreover, it allows to leverage information from datasets annotated with different
levels of granularity. Additionally, experiments suggest that nested models have a very desired be-
haviour, e.g., they gradually break as the quality of the test data deteriorates. We showed that imple-
menting nested learning using a hierarchy of information bottlenecks provides a natural framework
to also enforce calibrated outputs, where each level comes with its confidence value.

Given a fixed budget, we studied what is the most efficient way of labeling samples, assuming that
getting samples with finer label granularity is more expensive that getting samples with a coarser
annotation. Furthermore, experimental results show that if the amount of fine training samples is
constant, then adding samples with only a coarse annotation increases the performance and robust-
ness for the fine task. To recap, the introduced nested learning framework performs as expected
from our own human experience, where for good data we can provide high level inference with high
confidence; and when the data is not so good, we can still provide with high confidence some level
of inference on it. All levels of data and inferences help each other; and furthermore, we humans
learn from data of all qualities, as in our proposed framework.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Bilal Alsallakh, Amin Jourabloo, Mao Ye, Xiaoming Liu, and Liu Ren. Do convolutional neural
networks learn class hierarchy? CoRR, 2017.

Michael Behrisch, Benjamin Bach, Nathalie Henry Riche, Tobias Schreck, and Jean-Daniel Fekete.
Matrix reordering methods for table and network visualization. Comput. Graph. Forum, 35(3):
693–716, June 2016. ISSN 0167-7055. doi: 10.1111/cgf.12935. URL https://doi.org/
10.1111/cgf.12935.

Hakan Bilen and Andrea Vedaldi. Integrated perception with recurrent multi-task neural networks.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 29, pp. 235–243. 2016.

Tyler Clark, Alexander Wong, Masoom A Haider, and Farzad Khalvati. Fully deep convolutional
neural networks for segmentation of the prostate gland in diffusion-weighted mr images. In In-
ternational Conference Image Analysis and Recognition, pp. 97–104. Springer, 2017.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. Large-scale object classification using label relation graphs. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV 2014,
pp. 48–64, Cham, 2014. Springer International Publishing.

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542:115–, January 2017. URL http://dx.doi.org/10.1038/nature21056.

Rob Fergus, Hector Bernal, Yair Weiss, and Antonio Torralba. Semantic label sharing for learning
with many categories. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios (eds.), Computer
Vision – ECCV 2010, pp. 762–775, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, 2017.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. CoRR,
abs/1812.05720, 2018.

Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Nestednet: Learning nested sparse structures in deep
neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley, 2004.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Baoyuan Liu, Fereshteh Sadeghi, Marshall Tappen, Ohad Shamir, and Ce Liu. Probabilistic label
trees for efficient large scale image classification. pp. 843–850, 06 2013. doi: 10.1109/CVPR.
2013.114.

Enric Meinhardt-Llopis and Mario Micheli. Implementation of the Centroid Method for the Correc-
tion of Turbulence. Image Processing On Line, 4:187–195, 2014. doi: 10.5201/ipol.2014.105.

Michal Moshkovitz and Naftali Tishby. Mixing complexity and its applications to neural networks.
CoRR, abs/1703.00729, 2017.

9

https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.12935
http://dx.doi.org/10.1038/nature21056
http://www.cs.toronto.edu/~kriz/cifar.html


Under review as a conference paper at ICLR 2020

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. CoRR, abs/1412.1897, 2014. URL http:
//arxiv.org/abs/1412.1897.

Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In British
Machine Vision Conference, 2015.

Rajeev Ranjan, Vishal M. Patel, and Rama Chellappa. Hyperface: A deep multi-task learning
framework for face detection, landmark localization, pose estimation, and gender recognition,
2016. URL http://arxiv.org/abs/1603.01249.

O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks for biomedical image seg-
mentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume
9351 of LNCS, pp. 234–241, 2015.

Yian Seo and Kyung shik Shin. Hierarchical convolutional neural networks for fashion image clas-
sification. Expert Systems with Applications, 116:328 – 339, 2019. ISSN 0957-4174. doi:
https://do.org/10.1016/j.eswa.2018.09.022.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. CoRR, abs/1703.00810, 2017.

Fabio Spanhol, Luiz Soares de Oliveira, Caroline Petitjean, and Laurent Heutte. Breast cancer
histopathological image classification using convolutional neural networks. 07 2016. doi: 10.
1109/IJCNN.2016.7727519.

Nitish Srivastava and Ruslan R Salakhutdinov. Discriminative transfer learning with tree-
based priors. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 26, pp. 2094–
2102. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/
5029-discriminative-transfer-learning-with-tree-based-priors.
pdf.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Confer-
ence on Artificial Intelligence, 2017.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. pp.
368–377, 1999.

Isaac Triguero and Celine Vens. Labelling strategies for hierarchical multi-label classification tech-
niques. Pattern Recognition, 56:170–183, 2016.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. Hierarchical multi-label classification net-
works. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
5075–5084, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Xuehong Mao, S. Hijazi, R. Casas, P. Kaul, R. Kumar, and C. Rowen. Hierarchical cnn for traffic
sign recognition. In 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 130–135, June 2016.

10

http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1603.01249
http://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-based-priors.pdf
http://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-based-priors.pdf
http://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-based-priors.pdf


Under review as a conference paper at ICLR 2020

Zhicheng Yan, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, and Robinson Piramuthu. HD-CNN:
hierarchical deep convolutional neural network for image classification. CoRR, abs/1410.0736,
2014.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass proba-
bility estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 694–699. ACM, 2002.

Bin Zhao, Fei Li, and Eric P. Xing. Large-scale category structure aware image cat-
egorization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 24, pp. 1251–
1259. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4347-large-scale-category-structure-aware-image-categorization.
pdf.

A. Zweig and D. Weinshall. Exploiting object hierarchy: Combining models from different category
levels. In 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8, Oct 2007. doi:
10.1109/ICCV.2007.4409064.

11

http://papers.nips.cc/paper/4347-large-scale-category-structure-aware-image-categorization.pdf
http://papers.nips.cc/paper/4347-large-scale-category-structure-aware-image-categorization.pdf
http://papers.nips.cc/paper/4347-large-scale-category-structure-aware-image-categorization.pdf


Under review as a conference paper at ICLR 2020

Supplementary Material

A ADDITIONAL OUTPUT EXAMPLES

Figure 5: These results complement the example illustrated in Figure 1. The output of a standard
(end-to-end) DNN and our proposed nested learning version are compared. On the left we show
clean images from the test set of CIFAR-10 dataset, on the right, the same examples but blured. Next
to each image our prediction (for the fine, middle, and coarse level) and the prediction of a standard
(end-to-end) DNN are displayed. Both DNN share the same architecture and their performance is
compared on Table 1 (rows corresponding to “(end-to-end) D3 = 32%” and “(nested) our D1,2,3 =
20%”). As shown in Table 1 the performance of both networks is similar on clean data (i.e., data
that match the train distribution), but our approach can provide more accurate middle and coarse
predictions when the input data is corrupted, moreover, we are significantly less overconfident on
the prediction of out-of-distribution test samples.

B IMPLEMENTATION DETAILS

B.1 ARCHITECTURE

The architecture of our model is presented in Figure 6. We evaluate the same architecture for MNIST
and Fashion-MNIST as the images have the same size and number of channels. For CIFAR10, the
architecture of our model is very similar but with an increased depth of the convolutional filters.
Classifying images from CIFAR10 is indeed a harder problem than classifying images from MNIST
or Fashion-MNIST, and therefore, it requires a model with more parameters. The architecture we
use is an adaptation of the U-Net, designed to fit our proposed framework of nested information

12



Under review as a conference paper at ICLR 2020

bottlenecks. The U-Net is indeed a good starting point, as it meets most of the criteria that we
presented in Section 3. First, it consists of a convolutional network that enforces a bottleneck repre-
sentation. Second, it presents skip connections that allow information of the input to flow to deeper
components of the network.

Figure 6: Architecture of our CNN for both Fashion-MNIST and MNIST. This model is an adaptation of the
U-Net network (Ronneberger et al. (2015)) designed to fit our nested learning framework. The blue boxes repre-
sent the feature extracted by convolutional layers. We perform a global average pooling rather than a flattening
to decrease the number of parameters. After the global average pooling, the feature vector is normalized with
respect to the L2 norm (instance normalization layer). The normalized features are followed by fully connected
layers to compute the final output. The model used to test CIFAR10 set is very similar but has convolutional
layers with more kernels handle this (sightly more complex) task.

B.2 TRAINING

We train the models in an iterative way. First we optimize the weights for the coarse prediction with
the samples that are only coarsely annotated and freeze the remaining weights. Then, we optimize
the weights up to the intermediate output with the samples that are coarsely and intermediately
annotated. Finally we train the whole network, with the samples that are coarsely, intermediately,
and finely annotated. (In general, this process has as many steps as levels of granularity.) Each
training step is performed using ADAM optimizer with different learning rates: 2 × 10−3 for the
first step, 1× 10−3 for the second, and 5× 10−4 for the last. We stop the training of each step when
stagnation of the validation loss is observed.

B.3 CALIBRATION

The calibration consists of two main steps. First a “rejection” class is modeled using an uniform
distribution on the latent space. This models out-of-distribution samples and mitigates overconfident
predictions on portions of the feature space where no training data is observed. The second step
consists of temperature scaling to convert output scores into approximations of class probabilities.

13



Under review as a conference paper at ICLR 2020

The “rejection” class. For every level of granularity i and for every sample of the training dataset,
we store the normalized outputs of the global averaging layer (GAP) in a dataset Di. The samples
have size si and are normalized with respect to the L2 norm, therefore, they live in Bsi(0, 1), the
unitary sphere in Rsi centered in zero. We randomly sample ni new instances from an uniform
distribution in Bsi(0, 1). These samples (associated to a new “rejection” class) are aggregated to Di

and the fully connected layers fine tuned.3 Naturally, the larger |Di| and si, the larger ni should
be. We set ni ∝ |Di|×S(si) where S(si) is the area of the hypersphere of unitary radius in the si-
dimensional space. Figure 7 illustrates for a one dimensional toy example, how the proposed ideas
provide and efficient solution to reduce outputs overconfidence on out-of-distribution input samples.

(a)

(b) (c)

Figure 7: One dimensional toy example that illustrates the problem of prediction overconfidence for input
samples that are far from the training distribution. In this example, two classes (“1” and “0”) are considered
and we assume that the input x ∼ X is one-dimensional. (a) illustrates the empirical distribution of each
class (on green P (X|Y = 1) and yellow P (X|Y = 0)). In addition, we illustrate (blue distribution) the
uniform distribution from which we sample synthetic training instances associates the “rejection” class. Figure
(b) shows the confidence output associated to the class “1” and “0” for different values of x, for a model trained
only on the original data (standard approach). Figure (c) illustrates the output of the same DNN trained with
the samples associated to the classes “1” and “0”, plus the synthetic samples from the “rejection” class.

Temperature scaling. Temperature scaling improves calibration by converting arbitrary score val-
ues into an approximation of class probabilities. As explained in Section 3.1, we minimize the
empirical ECE metric over the training distribution. To find the optimal temperature T , we compute
the ECE over 50 values between 1 and 3 and select the one for which the ECE is minimized. If
T = 1 the model is already well calibrated. On all our experiments, the minimal ECE value was
always reached for T values strictly lower than 3.

C LABEL GROUPING

In Section 4, we showed that nested learning performs better if the taxonomy of the labels has a real
nested structure (e.g., one based on visual similarity). To group fine labels into a meaningful nested
structure, we first train a shallow neural network and classify images into the fine classes. Then
we used the confusion matrix M associated to this auxiliary classifier to establish which classes are
closer to each other.

3To this end, we used ADAM optimizer with a learning rate of 10−3.

14



Under review as a conference paper at ICLR 2020

For MNIST and Fashion-MNIST for example, we wanted to group the labels in 2 coarse categories
which also contained 2 intermediate categories. To this end, we find the 10-permutation l applied to
both the rows and columns of M , such that the non-diagonal 5 × 5 matrices of M had the lowest
possible L1-norm. We iterate this process to find the intermediate categories. It is computationally
hard to go through all the permutations, therefore, we follow the ideas proposed by Behrisch et al.
(2016) to perform matrix reordering with a reduced complexity.

Figure 8 presents the groups of labels we obtained for MNIST, Fashion-MNIST, and CIFAR10. Our
results show natural and intuitive taxonomies, see, e.g., how MNIST digits are grouped according
to a natural shape-oriented similarity, with 3 and 8 in the same intermediate class for example.

(a) Taxonomy obtained for MNIST (b) Taxonomy obtained for Fashion-MNIST

(c) Taxonomy obtained for CIFAR10

Figure 8: Nested groups of labels obtained by minimizing the non-diagonal components on the confusion
matrix of an auxiliary simple classifier.

D PERTURBATIONS

Selecting realistic and meaningful perturbations to test DNN models is a non trivial problem. For
example, adding Gaussian noise mainly affects the high frequency components of the input images
and we observed that both standard (end-to-end) and nested networks were not severely affected by
this type of perturbation. In this work we focus on structural deformations inspired by a model of
turbulence. The pseudo-code of this perturbation is presented in Algorithm 1 and was inspired in
the work of Meinhardt-Llopis & Micheli (2014). Figure 9 illustrates the distortion of an example
image from MNIST dataset for different levels of turbulence intensity.

15



Under review as a conference paper at ICLR 2020

Figure 9: Example of different perturbations applied during testing time. From left to right: the original
sample, and the distorted version with parameters (S, T ) = (1, 0.8), (S, T ) = (1, 1.0), (S, T ) = (1, 1.3), and
(S, T ) = (1, 1.5) respectively.

Algorithm 1: Turbulence distortion

Data: the input: I ∈ Rw,h, the parameters (S, T ) ∈ R2

Result: the distorted image I(S,T )
dist

Creating a vector field (u,v) for the distortion:
u, v = normal noise((w, h)), normal noise((w, h))
u, v = gaussian filter(u, S), gaussian filter(v, S)
u, v = u× T

std(u) , v ×
T

std(v)

Interpolate the image with the obtained vector field:
I
(S,T )
dist = bilinear interpolate(I, u, v)

E COMBINATION METHODS

Combining multiple classifiers is a standard approach in machine learning. However, most ap-
proaches combine similar outputs and are not designed for the specific problem of nested learning.
We compared some standard combination methods and our calibration-based combination strategy.

Combination methods can be classified into two categories. First those that combine or vote dis-
crete classification results, where classifier outputs are considered as one-hot encoding vectors. For
example, the Majority Vote (MA) which consists in aggregating the decision of multiple classifiers
and selecting the candidate that receives more votes. The second category of methods combine
classifiers continuous outputs. As we show in the following, the second class of methods are more
suitable for the combination of nested outputs.

For example, suppose that given an input sample x, the classifier outputs an estimations of the
probability associated to each coarse, middle, and fine label: PŶ1

, PŶ2
, and PŶ3

. In order to apply
standard combination methods, we need to transform the coarse and intermediate predictions into a
fine prediction and vice-versa. To transform the probability associated to a coarse label into a finer
granularity, we can assume the finer classes associated to each coarse class are equally probable, i.e.,
the probability associated to a coarse node, is divided equally into the finer nodes associated to this
label. On the other hand, to aggregate probabilities associates to a finer level into a coarser level, we
can simply add those probabilities associated to the same coarse node.

Once probabilities associated to coarse levels are propagated to the fine levels and vice-versa, we
can combine them using the mean or the product rule as described in Kuncheva (2004). Table 3
shows the result of combining nested outputs with standard combination methods and our strategy
described in Section 3.1.

Distortion Without comb. Ours Coarse & Fine Mean Product MV

Original 98.8 98.6 98.7 98.7 98.7 98.5
Distortion 2 80.8 82.8 82.1 82.2 82.4 80.1
Distortion 4 45.8 50.6 49.6 48.6 49.6 47.5

Table 3: Comparison of the fine accuracy for different combination techniques. The model is trained on
MNIST dataset with D1 = D2 = D3 = 10%

16



Under review as a conference paper at ICLR 2020

F ADDITIONAL EXPERIMENTS

Figure 10: Accuracy on the classification of the fine label for MNIST data. These results complement the
results presented in Figure 4. Figure 4 illustrates the results on clean test data grouping five levels of budgets
and for three cost models (linear, concave, and convex). In this figure, we show the performance of each
individual model. For each model we display the accuracy on the clean data (dots) as well as the accuracy on
different types of distortions. As before, the proportion of coarse and fine labels during training is illustrated
coloring each data point, blue indicates a higher proportion of coarse samples while red a higher proportion of
fine samples.

Perturbation Original

VG coarse 99.7
RG coarse 99.3
VG middle 99.5
RG middle 98.9
VG fine 98.6
RG fine 98.5

Table 4: Comparison of the visual label grouping (VG) and random label grouping (RG) in terms of accuracy
for our model trained on MNIST.

method Original Distortion 1 Distortion 2 Distortion 3 Distortion 4

Coarse (end-to-end),D3 = 32% 98.9 / 99.3 90.7 / 96.4 87.5 / 95.9 85.1 / 95.5 84.0 / 94.7
Coarse (end-to-end),D3 = 20% 99.0 / 99.3 94.5 / 96.9 90.1 / 96.1 87.3 / 94.9 85.9 / 94.5
Coarse (nested) Ours,D1,2,3 = 20% 99.2 / 99.4 96.2 / 97.6 93.1 / 96.6 89.3 / 96.0 84.7 / 95.5
Intermediate (end-to-end),D3 = 32% 94.3 / 95.8 82.1 / 90.9 77.2 / 89.5 73.0 / 88.2 69.6 / 87.1
Intermediate (end-to-end),D3 = 20% 93.7 / 95.4 84.3 / 91.7 79.5 / 90.2 74.0 / 89.0 71.3 / 88.3
Intermediate (nested) Ours,D1,2,3 = 20% 94.2 / 94.7 87.3 / 91.2 82.6 / 89.3 77.7 / 88.5 72.8 / 87.3
Fine (end-to-end),D3 = 32% 88.3 / 91.5 70.8 / 83.5 62.6 / 81.3 55.0 / 80.5 48.3 / 79.6
Fine (end-to-end),D3 = 20% 87.1 / 91.1 70.1 / 84.7 62.3 / 83.0 54.7 / 81.1 50.3 / 80.2
Fine (nested) Ours,D1,2,3 = 20% 86.7 / 87.9 73.7 / 81.3 67.6 / 77.6 57.6 / 76.4 51.2 / 74.4

Table 5: Accuracy and mean confidence (Acc%/Conf%) for Fashion-MNIST dataset. Coarse, fine, and
middle indicate the accuracy at each level of the label. End-to-end, denotes the model trained with exclusively
data annotated for the fine label. We compare two end-to-end models trained with different amounts of data
with fine labels. We first set D3 = 20%, which we increase afterwards to D3 = 32%. On the other hand,
“nested” denotes the same architecture, trained with coarse middle and fine labeled data. In this experiment we
set D1 = D2 = D3 = 20%.

17



Under review as a conference paper at ICLR 2020

Method Original Distortion 1 Distortion 2 Distortion 3 Distortion 4

Coarse (end-to-end),D3 = 16% 99.4 / 99.5 96.1 / 97.8 90.9 / 95.3 82.3 /92.6 72.0 / 90.9
Coarse (nested) Ours,D1,2,3 = 10% 99.5 / 99.5 96.9 / 97.5 92.3 / 95.4 85.9 / 93.8 79.6 / 92.1
Intermediate (end-to-end),D3 = 16% 99.1 / 99.2 94.8 / 96.9 87.5 / 93.3 74.6 / 89.8 60.7 / 88.0
Intermediate (nested) Ours,D1,2,3 = 10% 99.2 / 99.2 95.5 / 96.0 87.9 / 92.6 77.0 / 89.4 66.5 / 87.9
Fine(end-to-end),D3 = 16% 98.5 / 98.7 91.9 / 95.4 80.4 / 90.9 67.2 / 85.7 49.7 / 83.1
Fine (nested) Ours,D1,2,3 = 10% 98.6 / 98.4 92.8 / 93.5 82.8 / 87.8 67.5 / 83.0 50.6 / 80.4

Table 6: Accuracy and mean confidence (Acc%/Conf%) for the MNIST dataset. Coarse, fine, and middle
indicate the accuracy at each level of the label. End-to-end, denotes the model trained with exclusively data
annotated for the fine label. On the other hand, “nested” denotes the same architecture, trained with coarse
middle and fine labeled data. In this experiment we set D1 = D2 = D3 = 20%.

18


	Introduction
	Related Work
	Nested learning
	Implementation Challenges and Details

	Experiments and discussion
	Conclusion
	Additional output examples
	Implementation Details
	Architecture
	Training
	Calibration

	Label Grouping
	Perturbations
	Combination methods
	Additional experiments

