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ABSTRACT

Imitation learning algorithms provide a simple and straightforward approach for
training control policies via standard supervised learning methods. By maximiz-
ing the likelihood of good actions provided by an expert demonstrator, supervised
imitation learning can produce effective policies without the algorithmic complex-
ities and optimization challenges of reinforcement learning, at the cost of requiring
an expert demonstrator – typically a person – to provide the demonstrations. In
this paper, we ask: can we use imitation learning to train effective policies without
any expert demonstrations? The key observation that makes this possible is that,
in the multi-task setting, trajectories that are generated by a suboptimal policy can
still serve as optimal examples for other tasks. In particular, in the setting where
the tasks correspond to different goals, every trajectory is a successful demon-
stration for the state that it actually reaches. Informed by this observation, we
propose a very simple algorithm for learning behaviors without any demonstra-
tions, user-provided reward functions, or complex reinforcement learning meth-
ods. Our method simply maximizes the likelihood of actions the agent actually
took in its own previous rollouts, conditioned on the goal being the state that it
actually reached. Although related variants of this approach have been proposed
previously in imitation learning settings with example demonstrations, we present
the first instance of this approach as a method for learning goal-reaching policies
entirely from scratch. We present a theoretical result linking self-supervised im-
itation learning and reinforcement learning, and empirical results showing that it
performs competitively with more complex reinforcement learning methods on a
range of challenging goal reaching problems.

1 INTRODUCTION

Reinforcement learning (RL) algorithms hold the promise of providing a broadly-applicable tool
for automating control, and the combination of high-capacity deep neural network models with RL
extends their applicability to settings with complex observations and that require intricate policies.
However, RL with function approximation, including deep RL, presents a challenging optimization
problem. Despite years of research, current deep RL methods are far from a turnkey solution:
most popular methods lack convergence guarantees (Baird, 1995; Tsitsiklis & Van Roy, 1997) or
require prohibitive numbers of samples (Schulman et al., 2015; Lillicrap et al., 2015). Moreover, in
practice, many commonly used algorithms are extremely sensitive to hyperparameters (Henderson
et al., 2018). Besides the optimization challenges, another usability challenge of RL is reward
function design: although RL automatically determines how to solve the task, the task itself must be
specified in a form that the RL algorithm can interpret and optimize. These challenges prompt us
to consider whether there might exist a general method for learning behaviors without the need for
complex, deep RL algorithms.

Imitation learning is an alternative paradigm to RL that provides a simple and straightforward ap-
proach for training control policies via standard supervised learning methods. By maximizing the
likelihood of good actions provided by an expert demonstrator, supervised imitation learning can
produce effective policies without the algorithmic complexities and optimization challenges of RL.
Supervised learning algorithms in deep learning have matured to the point of being robust and reli-
able, and imitation learning algorithms have demonstrated success in acquiring behaviors robustly
and reliably from high-dimensional sensory data such as images (Rajeswaran et al., 2017; Lynch
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et al., 2019). The catch is that imitation learning methods require an expert demonstrator – typically
a human – to provide a number of demonstrations of optimal behavior. Obtaining expert demon-
strations can be challenging; the large number of demonstrations required limits the scalability of
such algorithms. In this paper, we ask: can we use ideas from imitation learning to train effective
policies without any expert demonstrations, retaining the benefits of imitation learning, but making
it possible to learn goal-directed behavior autonomously from scratch?

The key observation for making progress on this problem is that, in the multi-task setting, trajectories
that are generated by a suboptimal policy can serve as optimal examples for other tasks. In particular,
in the setting where the tasks correspond to reaching different goal states, every trajectory is a
successful demonstration for the state that it actually reaches. Similar observations have been made
in prior works as well (Kaelbling, 1993; Andrychowicz et al., 2017; Nair et al., 2018; Mavrin et al.,
2019; Savinov et al., 2018), but have been used to motivate data reuse in off-policy RL or semi-
parametric methods. Our approach will leverage this idea to obtain near-optimal goal-conditioned
policies without RL or reward functions.

The algorithm that we study is, at its core, very simple: at each iteration, we run our latest goal-
conditioned policy, collect data, and then use this data to train a policy with supervised learning.
Supervision is obtained by noting that each action that is taken is a good action for reaching the
states that actually occurred in future time steps along the same trajectory. This algorithm resembles
imitation learning, but is self-supervised. This procedure combines the benefits of goal-conditioned
policies with the simplicity of supervised learning, and we theoretically show that this algorithm cor-
responds to a convergent policy learning procedure. While several prior works have proposed train-
ing goal-conditioned policies via imitation learning based on a superficially similar algorithm (Ding
et al., 2019; Lynch et al., 2019), to our knowledge no prior work proposes a complete policy learning
algorithm based on this idea that learns from scratch, without expert demonstrations. This proce-
dure reaps the benefits of off-policy data re-use without the need for learning complex Q functions
or value functions. Moreover, we can bootstrap our algorithm with a small number of expert demon-
strations, such that it can continue to improve its behavior self supervised, without dealing with the
challenges of combining imitation learning with off-policy RL.

The main contribution of our work is a complete algorithm for learning policies from scratch via
goal-conditioned imitation learning, and to show that this algorithm can successfully train goal-
conditioned policies. Our theoretical analysis of self-supervised goal-conditioned imitation learning
shows that this method optimizes a lower bound on the probability that the agent reaches the desired
goal. Empirically, we show that our proposed algorithm is able to learn goal reaching behaviors
from scratch without the need for an explicit reward function or expert demonstrations.

2 RELATED WORK

Our work addresses the same problem statement as goal conditioned reinforcement learning (RL)
(Andrychowicz et al., 2017; Held et al., 2018; Kaelbling, 1993; Nair et al., 2018), where we aim
to learn a policy via RL that can reach different goals. Learning goal-conditioned policies is quite
challenging, especially when provided only sparse rewards. This challenge can be partially mitigated
by hindsight relabeling approaches that relabel goals retroactively (Kaelbling, 1993; Schaul et al.,
2015; Pong et al., 2018; Andrychowicz et al., 2017). However, even with relabelling, the goal-
conditioned optimization problem still uses unstable off-policy RL methods. In this work, we take
a different approach and leverage ideas from supervised learning and data relabeling to build off-
policy goal reaching algorithms which do not require any explicit RL. This allows GCSL to inherit
the benefits of supervised learning without the pitfalls of off-policy RL. While, in theory, on-policy
algorithms might be used to solve goal reaching problem as well, their inefficient use of data makes
it challenging to apply these approaches to real-world settings.

Our algorithm is based on ideas from imitation learning (Billard et al., 2008; Hussein et al., 2017)
via behavioral cloning (Pomerleau, 1989) but it is not an imitation learning method. While it is
built on top of ideas from supervised learning, we are not trying to imitate externally provided
expert demonstrations. Instead, we build an algorithm which can learn to reach goals from scratch,
without explicit rewards. A related line of work (Hester et al., 2018; Brown et al., 2019) has explored
how agents can leverage expert demonstrations to bootstrap the process of reinforcement learning.
While GCSL is an algorithm to learn goal-reaching policies from scratch, it lends itself naturally
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to bootstrapping from demonstrations. As we show in Section 5.4, GCSL can easily incorporate
demonstrations into off-policy learning and continue improving, avoiding many of the challenges
described in Kumar et al. (2019b).

Recent imitation learning algorithms propose methods that are closely related to GCSL. Lynch
et al. (2019) aim to learn general goal conditioned policies from “play” data collected by a hu-
man demonstrator, and Ding et al. (2019) perform goal-conditioned imitation learning where expert
goal-directed demonstrations are relabeled for imitation learning. However, neither of these meth-
ods are iterative, and both require human-provided expert demonstrations. Our method instead
iteratively performs goal-conditioned behavioral cloning, starting from scratch. Our analysis shows
that performing such iterated imitation learning on the policy’s own sampled data actually optimizes
a lower bound on the probability of successfully reaching goals, without the need for any expert
demonstrations.

The cross-entropy method (Mannor et al., 2003), self-imitation learning (Oh et al., 2018), reward-
weighted regression (Peters & Schaal, 2007), path-integral policy improvement (Theodorou et al.,
2010), reward-augmented maximum likelihood (Norouzi et al., 2016; Nachum et al., 2016), and
proportional cross-entropy method (Goschin et al., 2013) selectively weight policies or trajectories
by their performance during learning, as measured by then environment’s reward function. While
these may appear procedurally similar to GCSL, our method is fully self-supervised, as it does
not require a reward function, and is applicable in the goal-conditioned setting. Additionally, our
algorithm continues to perform well in the purely off-policy setting, where no new data is collected,
a key difference from other algorithms (Lynch et al., 2019; Ding et al., 2019).

A few works similar to ours in spirit study the problem of learning goal-conditioned policy without
external supervision. Zero-shot visual imitation uses an inverse model with forward consistency
to learn from novelty seeking behavior, but lacks convergence guarantees and requires learning
a complex inverse model Pathak et al. (2018). Semi-parametric methods (Savinov et al., 2018;
Eysenbach et al., 2019) learn a policy similar to ours but do so by building a connectivity graph
over the visited states in order to navigate environments, which requires large memory storage and
computation time that increases with the number of states.

3 PRELIMINARIES

Goal Reaching We consider the goal reaching in an environment defined by the tuple
〈S,A, T , ρ(s0), T, p(g)〉. S andA correspond to the state and action spaces respectively, T (s′|s, a)
to the transition kernel, ρ(s0) to the initial state distribution, T the horizon length, and p(g) to
the distribution over goal states g ∈ S . We aim to find a time-varying goal-conditioned policy
π(·|s, g, h): S × S × [T ]→ ∆(A), where ∆(A) is the probability simplex over the action space A
and h is the remaining horizon. We will say that a policy is optimal if it maximizes the probability
the specified goal is reached at the end of the episode:

J(π) = Eg∼p(g)
[
Pπg (sT = g)

]
. (1)

This problem can equivalently be cast in reinforcement learning. The modified state space
S ′ = S × S × [T ] contains the current state, goal, and the remaining horizon; the modified tran-
sition kernel T ′ ((s′, g′, h′) | (s, g, h), a) = T (s′ | s, a) · 1(d = d′, h′ = h − 1) appropriately
handles the modified state space; and the reward function r((s, g, h)) = 1(s = g, h = 0) depends
on both the goal and the time step. Because of the special structure of this formulation, off-policy
RL methods can relabel an observed transition ((s, g, h), a, (s′, g, h− 1)) to that of a different goal
g′ and different horizon h′ like ((s, g′, h′), a, (s′, g′, h′ − 1)). A common approach is to relabel
trajectories with the goal they actually reached instead of the commanded goal, and often referred
to as hindsight experience replay (Andrychowicz et al., 2017; Nair et al., 2018).

Imitation Learning We consider algorithms for goal-reaching that use behavior cloning, a stan-
dard method for imitation learning. In behavior cloning for goal-conditioned policies, an expert
policy provides demonstrations for reaching some target goals at the very last timestep, and we
aim to find a policy that best predicts the expert actions from the observations. More formally,
given a dataset D = {{s0
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time-varying policies Π, the behavior-cloned policy corresponds to

πBC = arg max
π∈Π

E(sT−h,aT−h,sT )∼D [log π(aT−h|sT−h, sT , h)] .

Goal-conditioned imitation learning (Lynch et al., 2019) investigate a similar formalism that makes
an additional assumption on the quality of the expert demonstrations: that the expert is optimal
not just for reaching sT , but also optimal for reaching all the states s1, . . . sT−1 preceding it. This
corresponding policy is

πGCIL = arg max
π∈Π

E(st,at,st+h)∼D [log πθ(at|st, st+h, h)] for t, h > 0 and t+ h ≤ T . (2)

Note that Lynch et al. (2019) implement a special case of this objective where the policy is inde-
pendent of the horizon. In the next section, we will discuss how repeatedly alternating between
data collection and goal-conditioned imitation learning can be used to learn a goal-reaching policy.
Perhaps surprisingly, this procedure optimizes the objective in Equation 1, without relying on expert
demonstrations.

4 LEARNING GOAL-CONDITIONED POLICIES WITH SELF-IMITATION

The goal-conditioned imitation learning results in prior work show that expert demonstrations can
provide supervision not only for the task the expert was aiming for, but also for reaching any state
along the expert’s trajectory (Lynch et al., 2019; Ding et al., 2019). Can we design a procedure that
uses goal-conditioned behavior cloning as a subroutine, that does not need any expert demonstra-
tions, but that nonetheless optimizes a well-defined reward function?

In this work, we show how the idea of imitation learning with data relabeling can be re-purposed
to construct a learning algorithm that is able to learn how to reach goals from scratch without any
expert demonstrations. We shed light on the reasons that imitation learning with data relabeling is
so powerful, and how building an iterative algorithm out of this procedure gives rise to a method
that optimizes a lower bound on a reinforcement learning objective, while providing a number of
benefits over standard RL algorithms.

Figure 1: Goal conditioned supervised learning: We can learn how to reach goals by simply sam-
pling trajectories, relabeling them to be optimal in hindsight and treating them as expert data, and
then performing supervised learning via behavior cloning.

4.1 GOAL REACHING VIA ITERATED IMITATION LEARNING

First, consider goal conditioned imitation learning via behavioral cloning with demonstrations
(Equation 2). This scheme works well given expert data D, but expert data is unavailable when
we are learning to reach goals from scratch. Can we use goal conditioned behavior cloning to learn
how to reach goals from scratch, without the need for any expert demonstrations?

To leverage behavior cloning when learning from scratch, we use the following insight: while an
arbitrary trajectory from a sub-optimal policy may be suboptimal for reaching the intended goal, it
may be optimal for reaching some other goal. In the goal-reaching formalism defined in Equa-
tion 1, recall a policy is optimal if it maximizes the probability that the goal is reached at the
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last timestep of an episode. Under this notion of optimality, we can use a simple data relabeling
scheme to construct an expert dataset from an arbitrary set of trajectories. Consider a trajectory
τ = {s1, a1, s2, a2, . . . , sT , aT } obtained by commanding the policy πθ(a|s, g, h) to reach some
goal g. Although the actions may be suboptimal for reaching the commanded goal g, they do suc-
ceed at reaching the states st+1, st+2, . . . that occur later in the observed trajectory. More precisely,
for any timestep t and horizon h, the action at in state st is likely to be a good action for reaching
st+h in h timesteps, and thus useful supervision for πθ(·|st, st+h, h). To obtain a concrete algo-
rithm, we can relabel all such timesteps and horizons to create an expert dataset out of suboptimal
data, according to Dτ = {(st, at, st+h, h) : t, h > 0, t+ h ≤ T}.
This relabeled dataset can then be used to perform goal-conditioned behavioral cloning to update the
policy πθ. While performing one iteration of goal conditioned behavioral cloning on the relabeled
dataset is not immediately sufficient to reach all desired goals, we will show that this procedure does
in fact optimize a lower bound on a well-defined reinforcement learning objective. As described
concretely in Algorithm 1, the algorithm proceeds as follows: (1) Sample a goal from a target goal
distribution p(g). (2) Execute the current policy π(a|s, g, h) for T steps in the environment to collect
a potentially suboptimal trajectory τ . (3) Relabel the trajectory via the procedure described above
and add the new expert tuples Dτ to the training set. (4) Perform supervised learning on the entire
dataset to update the policy π(a|s, g, h) via maximum likelihood. We term this iterative procedure
of sampling trajectories, relabelling them, and training a policy until convergence goal-conditioned
supervised learning (GCSL).

Algorithm 1 Goal-Conditioned Supervised Learning (GCSL)

1: procedure GCSL
2: Initialize policy π1(· | s, g, h) and dataset D((s, a, g, h))
3: for k = 1, 2, 3, . . . do
4: Sample g ∼ p(g) and execute πk in environment trying to reach g
5: Log trajectory τ = (s0, a0, s1, a1, . . . sT , aT )
6: Add tuples {(st, at, st+h, h) : t, h > 0, t+ h ≤ T} to the dataset D
7: Optimize the policy πk+1 ← arg maxπθ E(s,a,g,h)∼D [log πθ(a | s, g, h)]
8: end for
9: end procedure

The GCSL algorithm (described above) provides us with an algorithm that can learn to reach goals
from the target distribution p(g) without requiring any explicit reinforcement learning or reward
functions, simply using iterated behavioral cloning. The resultant goal reaching algorithm is off-
policy, uses low variance gradients, and is simple to implement and tune without the need for any
explicit reward function engineering or demonstrations. Additionally, since this algorithm is off-
policy and does not require a value function estimator, it is substantially easier to bootstrap from
demonstrations when real demonstrations are available, as our experiments will show in Section 5.4.

4.2 THEORETICAL JUSTIFICATION

While the GCSL algorithm is simple to implement, does this algorithm actually solve a well-defined
policy learning problem? In this section, we argue that GCSL maximizes a lower bound on the
probability for a policy to reach commanded goals.

We start by writing the probability that policy π conditioned on goal g produces trajectory τ as
π(τ |g) = p(s0)

∏T
h=0 π(at|st, g, h)T (st+1|st, at). We define G(τ) = sT as final state of a trajec-

tory. Recalling Equation 1, the target goal-reaching objective we wish to maximize is the probability
of reaching a commanded goal:

J(π) = Eg∼p(g)
[
Pπg (sT = g)

]
= E g∼p(g),

τ∼π(τ |g)
[1[G(τ) = g]] .

In the language of reinforcement learning, we are optimizing a multi-task problem where the reward
in each task is an indicator that a goal was reached. The distribution over tasks (goals) of interest is
assumed to be pre-specified as p(g). GCSL performs imitation learning on trajectories, commanded
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by the goals that were reached by the policy, and objective that can be written as

JGCSL(π) = Eτ∼Eg [πold(·|g)]

[
T∑
h=0

log π(at|st,G(τ), h)

]
.

Our main result shows that optimizing JGCSL(π) optimizes a lower bound on the desired objective,
J(π) (proof in Appendix B):

Theorem 4.1. Let JGCSL and J be as defined above. Then, J(π) ≥ JGCSL(π) + C, Where C is a
constant that does not depend on π.

5 EXPERIMENTS

In our experimental evaluation, we aim to answer the following questions:

1. Does GCSL effectively learn goal-conditioned policies from scratch?

2. Does the performance of GCSL improve over successive iterations?

3. Can GCSL learn goal-conditioned policies from high-dimensional image observations?

4. Can GCSL incorporate demonstration data more effectively than standard RL algorithms?

5.1 EXPERIMENTAL DETAILS

We consider a number of simulated control environments: 2-D room navigation, object pushing
with a robotic arm, and the classic Lunar Lander game, shown in Figure 2. The tasks allow us to
study the performance of our method under a variety of system dynamics, both low-dimensional
state inputs and high-dimensional image observations, and in settings with both easy and difficult
exploration. For each task, the target goal distribution corresponds to a uniform distribution over all
reachable configurations. Performance of a method is quantified by the distance of the agent to the
goal at the last timestep. We present full details about the environments, evaluation protocol, and
hyperparameter choices in Appendix A.

For the practical implementation of GCSL, we parametrize the policy as a neural network that takes
in state, goal, and horizon as input and outputs a parametrized action distribution. We find that
omitting the horizon from the input to the policy still provides good results, despite the formulation
suggesting that the optimal policy is most likely non-Markovian. We speculate that this is due to
optimal actions changing only mildly with different horizons in our tasks. Full details about the
implementation for GCSL are presented in Appendix A.1.

Figure 2: Evaluation Tasks: For each of the following tasks, we evaluate our algorithm using low-
dimensional sensory data and pixel observations: (Left) 2D Navigation, (Center) robotic pushing,
and (Right) Lunar Lander.

5.2 LEARNING GOAL-CONDITIONED POLICIES

We evaluate the effectiveness of GCSL for reaching goals on the domains visualized in Figure 2,
both from low-dimensional proprioception and from images. To better understand the performance
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Figure 3: State-based tasks: GCSL is competitive with state-of-the-art off-policy value function
RL algorithms for goal-reaching from low-dimensional sensory observations. Shaded regions denote
the standard deviation across 3 random seeds (lower is better).
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Figure 4: Image-based tasks: On three tasks with image observations, GSCL achieves similar
performance to a state-of-the-art baseline, TD3, while being substantially simpler. Shaded regions
denote the standard deviation across 3 random seeds (lower is better).

of our algorithm, we compare to two families of reinforcement learning algorithms for solving goal-
conditioned tasks. First, we consider off-policy temporal-difference RL algorithms, particular TD3-
HER (Eysenbach et al., 2019; Held et al., 2018), which uses hindsight experience replay to more
efficiently learn goal-conditioned value functions. TD3-HER requires significantly more machinery
than our simple procedure: it maintains a policy, a value function, a target policy, and a target value
function, all which are required to prevent degradation of the learning procedure. We also com-
pare with on-policy reinforcement learning algorithms such as TRPO (Schulman et al., 2015) that
cannot leverage data relabeling, but often provide more stable optimization than off-policy meth-
ods. Because these methods cannot relabel data, we provide an epsilon-ball reward corresponding
to reaching the goal. Details for the training procedure for these comparisons, along with hyperpa-
rameter and architectural choices, are presented in Appendix A.2. Videos and further details can be
found at https://sites.google.com/view/gcsl/.

We first investigate the learning performance of these algorithms from low-dimensional sensor ob-
servations, as shown in Figure 3. We find that on the pushing and lunar lander domains, GCSL is
able to reach a larger set of goals consistently than either RL algorithm. Although TD3 is able to
fully solve the navigation task, on the other domains which require synthesis of more challenging
control behavior, the algorithm makes slow, if any, learning progress. Given a limited amount of
data, TRPO performs poorly as it cannot relabel or reuse data, and so cannot match the performance
of the other two algorithms. When scaling these algorithms to image-based domains, which we
evaluate in Figure 4, we find that GCSL is still able to learn goal-reaching behaviors on several of
these tasks. albeit slower than from state. For most tasks, from both state and images, GCSL is able
to reach within 80% of the desired goals and learn at a rate comparable to or better than previously
proposed off-policy RL methods. This evaluation demonstrates that simple iterative self-imitation
is a competitive scheme for reaching goals in challenging environments which scales favorably with
dimensionality of state and complexity of behaviors.
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5.3 ANALYSIS OF LEARNING PROGRESS AND LEARNED BEHAVIORS

To better understand the learning behaviors of the algorithm, we investigate how GCSL performs
as we vary the quality and quantity of data, the policy class we optimize over, and the relabelling
technique (Figure 5). Full details for these scenarios can be found in Appendix A.4.
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Figure 5: Performance across variations
of GCSL (Section 5.3) for the pushing
domain. Plots for other domains in Ap-
pendix A.4

First, we consider how varying the policy class can af-
fect the performance of GCSL. In Section 5.1, we hy-
pothesized that optimizing over a Markovian policy class
would be performant over maintaining a non-Markovian
policy. We find that allowing policies to be time-varying
(”Time-Varying Policy” in Figure 5) can drastically speed
up training on small domains, as these non-Markovian
optimal policies can be fit more closely. However, on
domains with active exploration challenges such as the
Pusher, exploration using time-varying policies is inef-
fective, and degrades performance.

We investigate how the quality of the data in the dataset
used to train the policy affects the learned policy. We
consider two variations of GCSL: one which collects data
using a fixed policy (”Fixed Data Collection” in Figure
5) and another which limits the size of the dataset to be
small, forcing all the data to be on-policy (”On-Policy” in Figure 5). When collecting data using a
fixed policy, the learning progress of the algorithm demonstratedly decreases, which indicates that
the iterative loop of collecting data and training the policy is crucial for converging to a performant
solution. By forcing the data to be all on-policy, the algorithm cannot utilize the full set of expe-
riences seen thus far and must discard data. Although this on-policy process remains effective on
simple domains, the technique leads to slower learning progress on tasks requiring more challenging
control.

5.4 INITIALIZING WITH DEMONSTRATIONS
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Figure 6: Initializing from Demon-
strations: GCSL is more amenable to
initializing using expert demonstrations
than value-function RL methods.

Because GCSL can perform self-imitation from arbitrary
data sources, the algorithm is amenable to initialization
from prior exploration or from demonstrations. In this
section, we study how GCSL performs when incorporat-
ing expert demonstrations as initializations. Our results
comparing GCSL and TD3 in this setting corroborate the
existing hypothesis that off-policy value function RL al-
gorithms are challenging to integrate with initialization
from demonstrations Kumar et al. (2019a).

We consider the setting where an expert provides a set
of demonstration trajectories, each for reaching a differ-
ent goal. GCSL requires no modifications to incorporate
these demonstrations - it simply adds the expert data to
the initial dataset, and begins the training procedure. In
contrast, multiple prior works have proposed additional
algorithmic changes to off-policy TD-based methods to
incorporate data from expert demonstrations (Kumar et al., 2019a). We compare the performance of
GCSL to one such variant of TD3-HER in incorporating expert demonstrations on the robotic push-
ing environment in Figure 6 (Details in Appendix A.5). Although TD3 achieves better performance
with the demonstrations than when learning from scratch, it drops in performance at the beginning
of training, which means TD3 regresses from the initial behavior-cloned policy, an undesirable char-
acteristic for initializing from demonstrations. In contrast, GCSL scales favorably, learns faster than
from scratch, and effectively incorporates the expert demonstrations. We believe this benefit largely
comes from not needing to train an explicit critic, which can be unstable when trained using highly
off-policy data such as demonstrations (Kumar et al., 2019b).
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6 DISCUSSION AND FUTURE WORK

In this work, we proposed GCSL, a simple algorithm for learning goal-conditioned policies that
uses imitation learning, while still learning autonomously from scratch. This method is exception-
ally simple, relying entirely on supervised learning to learn policies by relabeling its own previously
collected data. This method can easily utilize off-policy data, seamlessly incorporate expert demon-
strations when they are available, and can learn directly from image observations. Although several
prior works have explored similar algorithm designs in an imitation learning setting (Ding et al.,
2019; Lynch et al., 2019), to our knowledge our work is the first to derive a complete iterated algo-
rithm based on this principle for learning from scratch, and the first to theoretically show that this
method optimizes a lower bound on a well-defined reinforcement learning objective.

While our proposed method is simple, scalable, and readily applicable, it does have a number of
limitations. The current instantiation of this approach provides limited facilities for effective explo-
ration, relying entirely on random noise during the rollouts to explore. More sophisticated explo-
ration methods, such as exploration bonuses (Mohamed & Rezende, 2015; Storck et al., 1995), are
difficult to apply to our method, since there is no explicit reward function that is used during learning.
However, a promising direction for future work would be to reweight the sampled rollouts based on
novelty to effectively incorporate a novelty-seeking exploration procedure. A further direction for
future work is to study whether the simplicity and scalability of our method can make it possible to
perform goal-conditioned reinforcement learning on substantially larger and more varied datasets.
This can in principle enable wider generalization, and realize a central goal in goal-conditioned
reinforcement learning — universal policies that can succeed at a wide range of tasks in diverse
environments.
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A EXPERIMENTAL DETAILS

A.1 GOAL-CONDITIONED SUPERVISED LEARNING (GCSL)

GCSL iteratively performs maximum likelihood estimation using a dataset of relabelled trajectories
that have been previously collected by the agent. Here we present details about the policy class,
data collection procedure, and other design choices. We parametrize a time-invariant policy using
a neural network which takes as input state and goal, and returns probabilities for a discretized
grid of actions of the action space. For the state-based domains, the neural network is a feedforward
network with two hidden layers of size 400 and 300 respectively. For the image-based domains, both
the observation image and the goal image are first preprocessed through three convolutional layers,
with kernel size 5, 3, 3 and channels 16, 32, 32 respectively. When executing in the environment,
data is sampled according to an exploratory policy which increases the temperature of the current
policy: πexplore(a|s, g) ∝ π(a|s, g)α. The replay buffer stores trajectories and relabels on the fly,
with the size of the buffer subject only to memory constraints.

A.2 RL COMPARISONS

We perform experimental comparisons with TD3-HER (Fujimoto et al., 2018; Andrychowicz et al.,
2017). We relabel transitions as ((s, g), a, (s′, g)) gets relabelled to ((s, g′), a, (s′, g′)), where g′ =
g with probability 0.1, g′ = s′ with probability 0.5, and g′ = st for some future state in the trajectory
st with probability 0.4. As described in Section 3, the agent receives a reward of 1 and the trajectory
ends if the transition is relabelled to g′ = s′, and 0 otherwise. Under this formalism, the optimal Q-
function, Q ∗ (s, a, g) = exp(−T (s, g)), where T (s, g) is the minimum expected time to go from s
to g. Both the Q-function and the actor for TD3 are parametrized as neural networks, with the same
architecture (except final layers) for state-based domains and image domains as those for GCSL.

We also compare to TRPO (Schulman et al., 2015), an on-policy RL algorithm. Because TRPO is
on-policy, we cannot relabel goals, and so we provide a surrogate ε-ball indicator reward function:
r(s, g) = 1(d(s, g) < ε), where ε is chosen appropriately for each environment. To maximize the
data efficiency of TRPO, we performed a coarse hyperparameter sweep over the batch size for the
algorithm. Just as with TD3, we mimic the same neural network architecture for the parametrizations
of the policies as GCSL.

A.3 TASK DESCRIPTIONS

For each environment, the goal space is identical to the state space. For the image-based experi-
ments, images were rendered at resolution 84× 84× 3.

2D Room Navigation This environment requires an agent to navigate to points in an environment
with four rooms that connect to adjacent rooms. The state space has two dimensions, consisting of
the cartesian coordinates of the agent. The agent has acceleration control, and the action space has
two dimensions. The distribution of goals p(g) is uniform on the state space, and the agent starts in
a fixed location in the bottom left room.

Robotic Pushing This environment requires a Sawyer manipulator to move a freely moving block
in an enclosed play area with dimensions 40 cm × 20 cm. The state space is 4-dimensional,
consistsing of the cartesian coordinates of the end-effector of the sawyer agent and the cartesian
coordinates of the block. The Sawyer is controlled via end-effector position control with a three-
dimensional action space. The distribution of goals p(g) is uniform on the state space (uniform block
location and uniform end-effector location), and the agent starts with the block and end-effector both
in the bottom-left corner of the play area.

Lunar Lander This environment requires a rocket to land in a specified region. The state space
includes the normalized position of the rocket, the angle of the rocket, whether the legs of the rocket
are touching the ground, and velocity information. Goals are sampled uniformly along the landing
region, either touching the ground or hovering slightly above, with zero velocity.
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A.4 ABLATIONS

In Section 5.3, we analyzed the performance of the following variants of GCSL (Figure 7).

1. Inverse Model - This model relabels only states and goals that are one step apart:
{(st, at, st+h, h) : t > 0, h = 1}

2. On-Policy Only the most recent 10000 transitions are stored and trained on.

3. Fixed Data Collection Data is collected according to a uniform policy over actions.

4. Time-Varying Policy Policies are are conditioned on the remaining horizon. Alongside
the state and goal, the policy gets a reverse temperature encoding of the remaining horizon
as input.
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Figure 7: Performance across variations of GCSL (Section 5.3) for all three experimental domains.

A.5 INITIALIZING WITH DEMONSTRATIONS

We train an expert policy for robotic pushing using TRPO with a shaped dense reward function, and
collect a dataset of 200 trajectories, each corresponding to a different goal. To train GCSL using
these demonstrations, we simply populate the replay buffer with these trajectories at the beginning
of training, and optimize the GCSL objective using these trajectories to warm-start the algorithm.
Initializing a value function method using demonstrates requires significantly more attention: we
perform the following procedure. First, we perform goal-conditioned behavior cloning to learn an
initial policy πBC . Next, we collect 200 new trajectories in the environment using a uniform data
collection scheme. Using this dataset of 400 trajectories, we perform policy evaluation on πBC to
learn QπBC using policy evaluation via bootstrapping. Having trained such an estimate of the Q-
function, we initialize the policy and Q-function to these estimates, and run the appropriate value
function RL algorithm.

B PROOF OF THEOREM 4.1

We will assume a discrete state space in this proof, and denote a trajectory as τ =
{s0, a0, . . . , sT , aT }. Let the notation G(τ) = sT denote the final state of a trajectory, which
represents the goal that the trajectory reached. As there can be multiple paths to a goal, we let
τg = {τ : G(τ) = g} denote the set of trajectories that reach a particular goal g. We abbrevi-
ate a policy’s trajectory distribution as π(τ |g) = p(s0)

∏T
t=0 π(at|st, g)T (st+1|st, at). The target

goal-reaching objective we wish to optimize is the probability of reaching a commanded goal,

J(π) = Eg∼p(g),τ∼π(τ |g)[1[G(τ) = g]]

The distribution over tasks (goals) is assumed to be pre-specified as p(g). GCSL optimizes the fol-
lowing objective, where the log-likelihood of the actions conditioned on the goals actually reached
by the policy, G(τ):

JGCSL(π) = Eτ∼Eg[πold(·|g)]

[
T∑
t=0

log π(at|st,G(τ))

]
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To analyze how this objective relates to J(π), we first analyze the relationship between J(π) and a
surrogate objective, given by

Jsurr(π) = Eτ∼p(g)

∑
τ∈τg

πold(τ |g) log π(τ |g)


As Jsurr(π) and J(π) have the same gradient for all π, the differ by some π-independent constant
C1, i.e. J(π) = Jsurr(π) + C1.

We can now lower-bound the surrogate objective via the following:

Jsurr(π) = Eτ∼p(g)

∑
τ∈τg

πold(τ |g) log π(τ |g)


= Eg∼p(g)

[∑
τ

1[G(τ) = g]πold(τ |g) log π(τ |G(τ))

]
=
∑
g

p(g)
∑
τ

log π(τ |G(τ))πold(τ |g)1[G(τ) = g]

=
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)1[G(τ) = g]

=
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)−
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)1[G(τ) 6= g]

≥
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)

= Eτ∼Eg[πold(τ |g)][log π(τ |G(τ))].

The final line is our goal-relabeling objective: we train the policy to reach goals we reached g′. The
inequality holds since log π(τ) is always negative. The inequality is loose by a term related to the
probability of not reaching the commanded goal.

Since the initial state and transition probabilities do not depend on the policy, we can simplify
log π(τ |G(τ)) as (by absorbing non π-dependent terms into C2):

Eτ∼Eg [πold(τ |g)][log π(τ |G(τ))] = Eτ∼Eg [πold(τ |g)]

[
log p(s0) +

T∑
t=0

log π(at|st,G(τ)) + log T (st+1|st, at)

]

= Eτ∼Eg [πold(τ |g)]

[
T∑
t=0

log π(at|stG(τ))

]
+ C2

= JGCSL(π) + C2.

Combining this result with the bound on the expected return completes the proof, namely that
J(π) ≥ JGCSL(π) + C1 + C2.
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