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ABSTRACT

We propose an inductive matrix completion model without using side information.
By factorizing the (rating) matrix into the product of low-dimensional latent em-
beddings of rows (users) and columns (items), a majority of existing matrix com-
pletion methods are transductive, since the learned embeddings cannot generalize
to unseen rows/columns or to new matrices. To make matrix completion induc-
tive, content (side information), such as user’s age or movie’s genre, has to be used
previously. However, high-quality content is not always available, and can be hard
to extract. Under the extreme setting where not any side information is available
other than the matrix to complete, can we still learn an inductive matrix comple-
tion model? In this paper, we investigate this seemingly impossible problem and
propose an Inductive Graph-based Matrix Completion (IGMC) model without
using any side information. It trains a graph neural network (GNN) based purely
on local subgraphs around (user, item) pairs generated from the rating matrix and
maps these subgraphs to their corresponding ratings. Our model achieves highly
competitive performance with state-of-the-art transductive baselines. In addition,
since our model is inductive, it can generalize to users/items unseen during the
training (given that their ratings exist), and can even transfer to new tasks. Our
transfer learning experiments show that a model trained out of the MovieLens
dataset can be directly used to predict Douban movie ratings and works surpris-
ingly well. Our work demonstrates that: 1) it is possible to train inductive matrix
completion models without using any side information while achieving state-of-
the-art performance; 2) local graph patterns around a (user, item) pair are effective
predictors of the rating this user gives to the item; and 3) we can transfer models
trained on existing recommendation tasks to new tasks without any retraining.

1 INTRODUCTION

Matrix completion (Candès & Recht, 2009) is one common formulation of recommender systems,
where rows and columns of a matrix represent users and items, respectively, and predicting users’
interest in items corresponds to filling in the missing entries of the rating matrix. By assuming a
low-rank rating matrix, many of the most popular matrix completion algorithms use factorization
techniques that decompose a rating rij into w>i hj , the inner product of user i’s and item j’s la-
tent feature vectors wi and hj , respectively, which have achieved great successes (Adomavicius &
Tuzhilin, 2005; Schafer et al., 2007; Koren et al., 2009; Bobadilla et al., 2013)

However, matrix factorization is intrinsically transductive, meaning that the learned latent features
(embeddings) for users/items are not generalizable to users/items unseen during the training. When
the rating matrix has changed values or has new rows/columns added, it often requires a complete
retraining to get the new embeddings. To make matrix completion inductive, Inductive Matrix Com-
pletion (IMC) has been proposed, which leverages content (side information) of users and items
(Jain & Dhillon, 2013; Xu et al., 2013). In IMC, a rating is decomposed by rij = x>i Qyj , where
xi and yj are content feature vectors of user i and item j, respectively, and Q is a learnable ma-
trix modeling the feature interactions. To accurately predict missing entries, IMC methods have
strong constraints on the content quality, which often leads to inferior performance due to the lack
of high-quality content. Other content-based recommender systems (Lops et al., 2011) face similar
problems. In some extreme settings, there is even no content available, such as a website where
users are completely anonymous. In these cases, inductive matrix completion seems impossible.
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Figure 1: We extract a local enclosing subgraph around each training rating (dark green), and train a
GNN to map the subgraphs to the ratings. Each enclosing subgraph is induced by the target user and
item associated with the rating as well as their h-hop neighbors (here h=1). From the subgraphs, a
GNN can learn mixed graph patterns useful for rating prediction. We show some possible examples
of the learned patterns in the GNN box. We use the trained GNN to complete other missing entries.

In this paper, we propose a novel inductive matrix completion method that does not use any content,
while achieving highly competitive performance with state-of-the-art transductive methods. The
key that frees us from using content is graph pattern. If for each observed rating we add an edge
between the corresponding user and item, we can build a bipartite graph from the rating matrix.
Subsequently, predicting unknown ratings converts equivalently to predicting labeled links in this
bipartite graph. This transforms matrix completion into a link prediction problem (Liben-Nowell &
Kleinberg, 2007), where graph patterns play a major role in determining link existences.

A major class of link prediction methods are heuristic methods, which predict links based on some
heuristic scores. For example, the common neighbors heuristic count the common neighbors be-
tween two nodes to predict links, while the Katz index (Katz, 1953) uses a weighted sum of all the
walks between two nodes. See (Liben-Nowell & Kleinberg, 2007) for an overview. These heuristics
can be seen as some predefined graph structure features calculated based on the local or global graph
patterns around links, which have achieved great successes due to their simplicity and effectiveness.

However, these traditional link prediction heuristics only work for simple graphs where nodes and
edges both only have a single type. Can we find some heuristics for labeled link prediction in
bipartite graph? Intuitively, such heuristics should exist. For example, if a user u0 likes an item v0,
we may expect to see very often that v0 is also liked by some other user u1 who shares a similar
taste to u0. By similar taste, we mean u1 and u0 have together both liked some other item v1. In
the bipartite graph, such a pattern is realized as a “like” path (u0 →like v1 →liked by u1 →like v0). If
there are many such paths between u0 and v0, we may infer that u0 is highly likely to like v0. Thus,
we may count the number of such paths as an indicator of how likely u0 likes v0. In fact, many
neighborhood-based recommender systems (Desrosiers & Karypis, 2011) rely on similar heuristics.

Of course we can try to manually define many such intuitive heuristics and test their effectiveness. In
this work, however, we take a different approach that automatically learns suitable heuristics from
the given bipartite graph. To do so, we first extract an h-hop enclosing subgraph for each training
user-item pair (u, v), which is defined to be the subgraph induced from the bipartite graph by nodes
u, v and the neighbors of u and v within h hops. Such local subgraphs contain rich information about
the rating that u may give to v. For example, the number of (u0 →like v1 →liked by u1 →like v0)
paths can just be computed from the 1-hop enclosing subgraph around (u0, v0). By feeding these
enclosing subgraphs to a graph neural network (GNN), we train a graph regression model that maps
each subgraph to the rating that its center user gives to its center item.

Figure 1 illustrates the overall framework. Due to the superior graph learning ability, a GNN can
learn highly expressive graph structure features useful for inferring the ratings without restricting
the features to predefined heuristics. Our Inductive Graph-based Matrix Completion (IGMC) model
is inductive, meaning that it can generalize to unseen users/items without retraining. Note that
IGMC does not address the extreme cold-start problem, as it still requires an unseen user-item pair’s
enclosing subgraph (i.e., the user and item should at least have some interactions with neighbors
so that the enclosing subgraph is not empty). We compare IGMC with state-of-the-art transductive
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baselines on five benchmark matrix completion datasets. Without using any content, IGMC achieves
the smallest RMSEs on four out of five datasets, beating those baselines using side information. Our
model is also equipped with excellent transfer learning ability. We show that an IGMC model
trained on the MovieLens-100K dataset can be directly used to predict Douban movie ratings and
even outperform baselines trained specifically on Douban. We also analyze our model’s behavior
on sparse rating matrices. Under extremely sparse cases (0.001 of original ratings are kept), our
model outperforms state-of-the-art transductive baseline by a large margin. Further, our visualization
experiments confirm that local enclosing subgraphs are indeed strong predictors of ratings.

2 RELATED WORK

Graph neural networks Graph neural networks (GNNs) are a new type of neural networks for
learning over graphs (Scarselli et al., 2009; Bruna et al., 2013; Duvenaud et al., 2015; Li et al., 2015;
Kipf & Welling, 2016; Niepert et al., 2016; Dai et al., 2016; Hamilton et al., 2017; Zhang et al.,
2018). There are two types of GNNs: Node-level GNNs use message passing layers to iteratively
pass messages between each node and its neighbors in order to extract a feature vector for each
node encoding its local substructure. Graph-level GNNs additionally use a pooling layer such as
summing which aggregates node feature vectors into a graph representation so that graph-level tasks
such as graph classification/regression become feasible. Due to the superior representation learning
ability for graphs, GNNs have achieved state-of-the-art performance on semi-supervised node clas-
sification (Kipf & Welling, 2016), network embedding (Hamilton et al., 2017), graph classification
(Zhang et al., 2018), and link prediction (Zhang & Chen, 2018), etc.

GNNs for matrix completion The matrix completion problem has been studied using GNNs.
Monti et al. (2017) develop a multi-graph CNN (MGCNN) model to extract user and item latent
features from their respective nearest-neighbor networks. Later, Berg et al. (2017) propose graph
convolutional matrix completion (GC-MC) to directly operate on the user-item bipartite graph to
extract user and item latent features using a GNN. The SpectralCF model of (Zheng et al., 2018)
uses a spectral-GNN on the bipartite graph to learn node embeddings. Although using GNNs for
matrix completion, all these models are still transductive – MGCNN and SpectralCF require graph
Laplacians which do not generalize to new tasks, while GC-MC uses one-hot encoding of node IDs
as their initial features input to the GNN, thus cannot generalize to unseen users/items. A recent
inductive graph-based recommender system, PinSage (Ying et al., 2018a), replaces the node ID
initial features in GC-MC with node content features, and is successfully used in recommending
related pins in Pinterest. Although being inductive, PinSage relies heavily on the rich visual and text
content associated with the pins, which is not often accessible in other recommendation tasks. In
comparison, our IGMC model is inductive and does not rely on any content. All previous approaches
use node-level GNNs to extract features for nodes, while our IGMC uses a graph-level GNN to learn
representations for subgraphs. We will discuss this crucial difference in more details in section 4.

Link prediction based on graph patterns Learning supervised heuristics (graph patterns) has
been studied for link prediction in simple graphs. Zhang & Chen (2017) propose Weisfeiler-Lehman
Neural Machine (WLNM), which learns graph structure features using a fully-connected neural
network on the subgraphs’ adjacency matrices. Later, they improve this work by replacing the fully-
connected neural network with a GNN and achieves state-of-the-art link prediction results (Zhang
& Chen, 2018). Our work generalizes this line of research from predicting link existence in simple
graphs to predicting values of links in bipartite graphs (i.e., matrix completion). In (Chen et al.,
2005; Zhou et al., 2007), traditional link prediction heuristics are adapted to bipartite graphs and
show promising performance for recommender systems. Our work differs in that we do not use
any predefined heuristics, but learn general graph structure features using a GNN. Another similar
work to ours is (Li & Chen, 2013), where graph kernels are used to learn graph structure features.
However, graph kernels require quadratic time and space complexity to compute and store the kernel
matrices thus are unsuitable for modern recommender systems.

3 INDUCTIVE GRAPH-BASED MATRIX COMPLETION (IGMC)

We now present our Inductive Graph-based Matrix Completion (IGMC) framework. We use G to
denote the undirected bipartite graph constructed from the given rating matrix R. In G, a node is
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Algorithm 1 ENCLOSING SUBGRAPH EXTRACTION

1: input: h, target user-item pair (u, v), the bipartite graph G
2: output: the h-hop enclosing subgraph Gh

u,v for (u, v)
3: U = Ufringe = {u}, V = Vfringe = {v}
4: for i = 1, 2, . . . , h do
5: U ′fringe = {ui : ui ∼ Vfringe} \ U
6: V ′fringe = {vi : vi ∼ Ufringe} \ V
7: Ufringe = U ′fringe, Vfringe = V ′fringe
8: U = U ∪ Ufringe, V = V ∪ Vfringe

9: Let Gh
u,v be the vertex-induced subgraph from G using vertices U, V

10: Remove edge (u, v) from Gh
u,v .

11: end for
12: return Gh

u,v

Note: {ui : ui∼Vfringe} is the set of nodes that are adjacent to at least one node in Vfringe with any edge type.

either a user (denoted by u, corresponding to a row in R) or an item (denoted by v, corresponding
to a column in R). Edges can exist between user and item, but cannot exist between two users or
two items. Each edge (u, v) has a value r = Ru,v , corresponding to the rating that u gives to v. We
useR to denote the set of all possible ratings, and use Nr(u) to denote the set of u’s neighbors that
connect to u with edge type r.

3.1 ENCLOSING SUBGRAPH EXTRACTION

The first part of the IGMC framework is enclosing subgraph extraction. For each observed rating
Ru,v , we extract an h-hop enclosing subgraph around (u, v) fromG. Algorithm 1 describes how we
extract h-hop enclosing subgraphs. We will feed these enclosing subgraphs to a GNN and regress
on their ratings. Then, for each testing (u, v) pair, we again extract its h-hop enclosing subgraph
from G, and use the trained GNN model to predict its rating. Note that after extracting a training
enclosing subgraph for (u, v), we should remove the edge (u, v) because it is the target to predict.

3.2 NODE LABELING

The second part of IGMC is node labeling. Before we feed an enclosing subgraph to the GNN, we
first apply a node labeling to it, which gives an integer label to every node in the subgraph. The
purpose is to use different labels to mark nodes’ different roles in a subgraph. Ideally, our node
labeling should be able to: 1) distinguish the target user and target item between which the target
rating is located, and 2) differentiate user-type nodes from item-type nodes. Otherwise, the GNN
cannot tell between which user and item to predict the rating, and might lose node-type information.
To satisfy these conditions, we propose a node labeling as follows: We first give label 0 and 1 to
the target user and target item, respectively. Then, we determine other nodes’ labels according to at
which hop they are included in the subgraph in Algorithm 1. If a user-type node is included at the ith
hop, we will give it a label 2i. If an item-type node is included at the ith hop, we will give it 2i+ 1.
Such a node labeling can sufficiently discriminate: 1) target nodes from “context” nodes, 2) users
from items (users always have even labels), and 3) nodes of different distances to the target rating.

Note that this is not the only possible way of node labeling, but we empirically verified its excellent
performance. The one-hot encoding of these node labels will be treated as the initial node features
of the subgraph when fed to the GNN. Note that our node labels are determined completely inside
each enclosing subgraph, thus are independent of the global bipartite graph. Given a new enclosing
subgraph, we can as well predict its rating even if all of its nodes are from a different bipartite graph.
This is because IGMC uses pure graph patterns within local enclosing subgraphs to predict ratings
without leveraging any global information specific to the bipartite graph. Our node labeling is also
different from using the global node IDs as in GC-MC (Berg et al., 2017). Using one-hot encoding
of global IDs is essentially transforming the first message passing layer’s parameters into latent
node embedding associated with each particular ID (equivalent to an embedding layer). Such a
model cannot generalize to nodes whose IDs are out of range, thus is transductive.
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3.3 GRAPH NEURAL NETWORK ARCHITECTURE

The third part of IGMC is to train a graph neural network (GNN) model predicting ratings from
the enclosing subgraphs. In previous node-based approaches such as GC-MC, a node-level GNN
is applied to the entire bipartite graph to extract node embeddings. Then, the node embeddings of
u and v are input to an inner-product or bilinear operator to reconstruct the rating on (u, v). In
contrast, here we apply a graph-level GNN to the enclosing subgraph around (u, v) to directly map
the subgraph to the rating. There are thus two components in our GNN: 1) message passing layers
that extract a feature vector for each node in the subgraph, and 2) a pooling layer to summarize a
subgraph representation from node features.

To handle different edge types, we adopt the relational graph convolutional operator (R-GCN)
(Schlichtkrull et al., 2018) as our GNN’s message passing layers, which has the following form:

xl+1
i = Wl

0x
l
i +

∑
r∈R

∑
j∈Nr(i)

1

|Nr(i)|
Wl

rx
l
j , (1)

where xl
i denotes node i’s feature vector at layer l, Wl

0 and {Wl
r|r ∈ R} are learnable parameter

matrices. Since neighbors j connected to i with different edge types r are processed by different
parameter matrices Wl

r, we are able to learn from the rich graph patterns inside the edge types, such
as the average rating the target user gives to items, the average rating the target item receives, and by
which paths the two target nodes are connected, etc. We stack L message passing layers with tanh
activations between two layers. Node i’s feature vectors from different layers are concatenated as
its final representation hi:

hi = concat(x1
i ,x

2
i , . . . ,x

L
i ). (2)

Next, we pool the node representations into a graph-level feature vector. There are many choices
such as summing, averaging, SortPooling (Zhang et al., 2018), DiffPooling (Ying et al., 2018b), etc.
In this work, however, we use a different pooling layer which concatenates the final representations
of only the target user and item as the graph representation:

g = concat(hu,hv), (3)

where we use hu and hv to denote the final representations of the target user and target item, re-
spectively. Our particular choice is due to the extra importance that these two target nodes carry
compared to other context nodes. Although being very simple, we empirically verified its better
performance than summing and other advanced pooling layers for our matrix completion tasks.

After getting the final graph representation, we use an MLP to output the predicted rating:

r̂ = w>σ(Wg), (4)

where W and w are parameters of the MLP which map the graph representation g to a scalar rating
r̂, and σ is an activation function (we take ReLU in this paper).

3.4 MODEL TRAINING

Loss function We minimize the mean squared error (MSE) between the predictions and the ground
truth ratings:

L =
1

|{(u, v)|Ωu,v = 1}|
∑

(u,v):Ωu,v=1

(ru,v − r̂u,v)2, (5)

where we use ru,v and r̂u,v to denote the true rating and predicted rating of (u, v), repsectively, and
Ω is a 0/1 mask matrix indicating the observed entries of the rating matrix R.

Adjacent rating regularization The R-GCN layer (1) used in our GNN has different parameters
Wr for different rating types. One drawback here is that it fails to to take the magnitude of ratings
into consideration. For instance, a rating of 4 and a rating of 5 in MovieLens both indicate that the
user likes the movie, while a rating of 1 indicates that the user does not like the movie. Ideally,
we expect our model to be aware of the fact that a rating of 4 is more similar to 5 than 1 is. In R-
GCN, however, ratings 1, 4 and 5 are only treated as three independent edge types – the magnitude
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and order information of the ratings is completely lost. To fix that, we propose an adjacent rating
regularization (ARR) technique, which encourages ratings adjacent to each other to have similar
parameter matrices. Assume the ratings in R exhibit an ordering r1, r2, . . . , r|R| which indicates
increasingly higher preference that users have for items. Then, the ARR regularizer is:

LARR =
∑

i=1,2,...,|R|−1

‖Wri+1
−Wri‖2F , (6)

where ‖·‖F denotes the Frobenius norm of a matrix. The above regularizer restrains the parameter
matrices of adjacent ratings from having too much differences, which not only regularizes the model
parameters, but also helps the optimization of those infrequent ratings by transferring knowledge
from their adjacent ratings. The final loss function is given by:

Lfinal = L+ λLARR, (7)

where λ trades-off the importance of the MSE loss and the ARR regularizer.

4 GRAPH-LEVEL GNN VS. NODE-LEVEL GNN
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Compared to previous graph matrix completion ap-
proaches such as PinSage and GC-MC, one impor-
tant difference of IGMC is that it uses a graph-level
GNN to map the enclosing subgraph around the tar-
get user and item to their rating (left figure (a)), in-
stead of using a node-level GNN on the bipartite
graphG to learn target user’s and item’s embeddings
and use the node embeddings to get the rating (left
figure (b)). One drawback of the latter node-based
approach is that the learned node embeddings are
essentially encoding the rooted subtrees around the

two nodes independently, which loses the interactions and correspondences between the nodes of
the two trees. For example, from the two subtrees of the left figure (b) we do not really know whether
the two target nodes are just isolated from each other like in (b) or actually densely connected like
in (a); these two cases both look identical to a node-based approach.

In comparison, a graph-level GNN can discriminate the two cases through a sufficient number of
message passing rounds. Since the learning is confined to the subgraph, stacking multiple graph
convolution layers will learn more and more refined local structural features which can adequately
discriminate up to all subgraphs that the Weisfeiler-Lehman algorithm can discriminate (Xu et al.,
2018). However, for node-based approaches, since there is no subgraph boundary, stacking multi-
ple graph convolutions will only extend the convolution range to unrelated distant nodes and push
all nodes in the bipartite graph to have similar embeddings. This is why previous node-based ap-
proaches typically only use one or two message passing layers (Berg et al., 2017; Ying et al., 2018a).

5 EXPERIMENTS

We conduct experiments on five common matrix completion datasets: Flixster (Jamali & Es-
ter, 2010), Douban (Ma et al., 2011), YahooMusic (Dror et al., 2011), MovieLens-100K and
MovieLens-1M (Miller et al., 2003). For ML-100K, we train and evaluate on the canonical
u1.base/u1.test train/test split. For ML-1M, we randomly split it into 90% and 10% train/test
sets. For Flixster, Douban and YahooMusic we use the preprocessed subsets and splits provided
by (Monti et al., 2017). Dataset statistics are summarized in Table 1. We implemented IGMC using
pytorch geometric (Fey & Lenssen, 2019). We tuned model hyperparameters based on cross vali-
dation results on ML-100K, and used them across all datasets. The final architecture uses 4 R-GCN
layers with 32, 32, 32, 32 hidden dimensions. Basis decomposition with 4 bases is used to reduce the
number of parameters in Wr (Schlichtkrull et al., 2018). The final MLP has 128 hidden units and
a dropout rate of 0.5. We use 1-hop enclosing subgraphs for all datasets, and find them sufficiently
good. We find using 2 or more hops can slightly increase the performance but take much longer
training time. For each enclosing subgraph, we randomly drop out its adjacency matrix entries with
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Table 1: Statistics of each dataset.

Dataset Users Items Ratings Density Rating types
Flixster 3,000 3,000 26,173 0.0029 0.5, 1, 1.5, ..., 5
Douban 3,000 3,000 136,891 0.0152 1, 2, 3, 4, 5
YahooMusic 3,000 3,000 5,335 0.0006 1, 2, 3, ..., 100
ML-100K 943 1,682 100,000 0.0630 1, 2, 3, 4, 5
ML-1M 6,040 3,706 1,000,209 0.0447 1, 2, 3, 4, 5

Table 2: RMSE test results on Flixster, Douban and YahooMusic.

Model Inductive Content Flixster Douban YahooMusic
GRALS no yes 1.245 0.833 38.0
sRGCNN no yes 0.926 0.801 22.4
GC-MC no yes 0.917 0.734 20.5

IGC-MC yes yes 0.999±0.062 0.990±0.082 21.3±0.989
F-EAE yes no 0.908 0.738 20.0
PinSage yes yes 0.954±0.005 0.739±0.002 22.9±0.629
IGMC (ours) yes no 0.872±0.001 0.721±0.001 19.1±0.138

a probability of 0.2 during the training. We set the λ in (7) to 0.001. We train our model using the
Adam optimizer (Kingma & Ba, 2014) with a batch size of 50 and an initial learning rate of 0.001,
and multiply the learning rate by 0.1 every 20 epochs for ML-1M, and every 50 epochs for all other
datasets. We will make all the code publicly available.

5.1 FLIXSTER, DOUBAN AND YAHOOMUSIC

For these three datasets, we compare our IGMC with GRALS (Rao et al., 2015), sRGCNN (Monti
et al., 2017), GC-MC (Berg et al., 2017), F-EAE (Hartford et al., 2018), and PinSage (Ying et al.,
2018a). Among them, GRALS is a graph regularized matrix completion algorithm. GC-MC and
sRGCNN are transductive node-level-GNN-based matrix completion methods. F-EAE uses a fac-
torized exchangeable autoencoder to perform permutation-equivariant operations on the matrix to
reconstruct the ratings, which is an inductive model without using content, similar to our IGMC.
PinSage is an inductive node-level-GNN-based model using content, which is originally used to
predict related pins and is adapted to predicting ratings here. We further implemented an inductive
GC-MC model (IGC-MC) which replaces the one-hot encoding of node IDs with the content fea-
tures to make it inductive. The content in these datasets are presented in the form of user and item
graphs. We summarize whether each algorithm is inductive and whether it uses content in Table 2.

We train our model for 40 epochs, and save the model parameters every 10 epochs. The final predic-
tions are given by averaging the predictions from epochs 10, 20, 30 and 40. We repeat the experiment
five times and report the average RMSEs. The baseline results are taken from (Hartford et al., 2018).
Table 2 shows the results. Our model achieves the smallest RMSEs on all three datasets without us-
ing any content, significantly outperforming all the compared baselines, regardless of whether they
are transductive or inductive. Further, except F-EAE, all the baselines have used content informa-
tion to assist the matrix completion. This further highlights IGMC’s great performance advantages
without relying on content.

5.2 ML-100K AND ML-1M

We further conduct experiments on MovieLens datasets. Side information is present for both users
(age, gender, occupation, etc.) and movies (genres). For ML-100K, we compare against matrix
completion (MC) (Candès & Recht, 2009), inductive matrix completion (IMC) (Jain & Dhillon,
2013), geometric matrix completion (GMC) (Kalofolias et al., 2014), as well as GRALS, sRGCNN,
GC-MC, F-EAE and PinSage. We train IGMC for 80 epochs and report the ensemble performance
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Table 3: RMSE test results on MovieLens-100K (left) and MovieLens-1M (right).

Model Inductive Content ML-100K
MC no no 0.973
IMC no yes 1.653
GMC no yes 0.996
GRALS no yes 0.945
sRGCNN no yes 0.929
GC-MC no yes 0.905
IGC-MC yes yes 1.142
F-EAE yes no 0.920
PinSage yes yes 0.951
IGMC yes no 0.905

Model Inductive Content ML-1M
PMF no no 0.883
I-RBM no no 0.854
NNMF no no 0.843
I-AutoRec no no 0.831
CF-NADE no no 0.829
GC-MC no no 0.832

IGC-MC yes yes 1.259
F-EAE yes no 0.860
PinSage yes yes 0.906
IGMC yes no 0.857

of epochs 50, 60, 70 and 80. For ML-1M, besides the baselines GC-MC, F-EAE and PinSage, we
further include state-of-the-art algorithms including PMF (Mnih & Salakhutdinov, 2008), I-RBM
(Salakhutdinov et al., 2007), NNMF (Dziugaite & Roy, 2015), I-AutoRec (Sedhain et al., 2015) and
CF-NADE (Zheng et al., 2016). We train IGMC for 40 epochs and report the ensemble performance
of epochs 25, 30, 35 and 40. The experiments are repeated five times and the average results are
reported in Table 3 (standard deviations are less than 0.001). As we can see, IGMC achieves the best
performance on ML-100K, in parallel with GC-MC despite that IGMC is an inductive model, while
GC-MC is transductive and additionally uses content information. For ML-1M, IGMC cannot catch
up with state-of-the-art transductive models such as CF-NADE and GC-MC, but outperforms other
inductive models. We will analyze this dataset further in section 5.3.

5.3 SPARSE RATING MATRIX ANALYSIS
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Figure 2: ML-1M results under different spar-
sity ratios.

To gain insight into when inductive graph-based
matrix completion is more suitable than transduc-
tive methods, we compare IGMC with GC-MC on
ML-1M under different sparsity levels of the rating
matrix. We sequentially decrease the sparsity ra-
tio by randomly keeping only 0.2, 0.1, 0.05, 0.01,
and 0.001 of the original training ratings. Then, we
train both models on the sparsified rating matrices,
and evaluate on the original test set. Figure 2 shows
the results. As we can see, although IGMC falls
behind GC-MC initially with full ratings, it starts
to perform better after the sparsity ratio is less than
20%. The advantage becomes even greater under
extremely sparse cases. This seems to indicate that
IGMC is a better choice than transductive methods

when there is not a large amount of training data, which is particularly suitable for the initial rating
collection phase of a recommender system. It also suggests that transductive matrix completion
relies more on the dense user-item interactions than inductive graph-based matrix completion does.

5.4 TRANSFER LEARNING

A great advantage of an inductive model is its potential for transferring to other tasks. We conduct a
transfer learning experiment by applying the IGMC model trained on ML-100K to Flixster, Douban
and YahooMusic. Among the three datasets, only Douban has exactly the same rating types as ML-
100K (1,2,3,4,5). Thus for Flixster and YahooMusic, we bin their edge types into groups 1 to 5
before feeding into the ML-100K model, and multiply the YahooMusic predictions by 20 to account
for the different scales. Despite all the compromises, the transferred IGMC model achieves excellent
performance (Table 4). We also show the transfer learning results of other two inductive models,
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Table 4: RMSE of transferring the model trained on ML-100K to Flixster, Douban and YahooMusic.

Model Inductive Content Flixster Douban YahooMusic
IGC-MC yes no 1.290 1.144 25.7
F-EAE yes no 0.987 0.766 23.3
IGMC (ours) yes no 0.906 0.759 20.1

IGC-MC and F-EAE. Note that an inductive model using content features (such as PinSage) is not
transferrable, due to the different feature spaces between MovieLens and the target datasets. Thus for
IGC-MC, we replace its content features with node degrees. As we can see, IGMC outperforms the
other two models by large margins in terms of transfer learning ability. Furthermore, the transferred
IGMC even outperforms a wide range of baselines trained especially on each dataset (Table 2).

5.5 VISUALIZATION

Finally, we visualize 10 testing enclosing subgraphs with the highest and lowest predicted ratings
for Flixster, Douban, YahooMusic, and ML-100K, respectively, in Figure 3. As we can see, there are
substantially different patterns between high-score and low-score subgraphs, which is why IGMC
can predict ratings merely from these subgraphs. For example, high-score subgraphs typically show
both high user average rating and high item average rating, while low-score subgraphs often have
mixed ratings from non-target users and have low user average rating.

5.1549 (5.0) 5.1310 (5.0) 5.1228 (5.0) 5.1114 (5.0) 5.1024 (5.0)

1.2549 (2.5) 1.3428 (1.0) 1.4539 (1.0) 1.5269 (0.5) 1.5854 (1.0)
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Flixster

5.1592 (5.0) 5.1220 (5.0) 5.0800 (5.0) 5.0786 (5.0) 5.0747 (5.0)

0.9843 (1.0) 1.2112 (1.0) 1.2177 (3.0) 1.2712 (1.0) 1.2919 (1.0)
1

2

3

4

5

Douban

97.3488 (100.0) 96.3127 (100.0) 95.9891 (100.0) 94.2005 (100.0) 93.3268 (100.0)

36.2802 (58.0) 36.3007 (49.0) 37.7167 (30.0) 38.8241 (30.0) 38.9172 (70.0)
1
6
11
16
21
27
32
37
42
47
53
58
63
68
73
79
84
89
94
100

YahooMusic

5.3567 (5.0) 5.3247 (5.0) 5.3034 (5.0) 5.2903 (5.0) 5.2066 (5.0)

0.6982 (1.0) 0.8490 (1.0) 0.8496 (2.0) 0.8527 (1.0) 0.8584 (1.0)
1

2

3

4

5

ML-100K

Figure 3: Testing enclosing subgraphs for Flixster, Douban, YahooMusic, and ML-100K. Top 5 and
bottom 5 are subgraphs with the highest and lowest predicted ratings, respectively. In each subgraph,
red nodes in the left are users, blue nodes in the right are items; the bottom red and blue nodes are
the target user and item; the predicted rating and true rating (in parenthesis) are shown underneath.
We visualize edge ratings using the color map shown in the right. Higher ratings are redder.

6 CONCLUSION

In this paper, we have proposed Inductive Graph-based Matrix Completion (IGMC). Instead of
learning transductive latent features, IGMC learns local graph patterns related to ratings inductively
based on graph neural networks. We show that IGMC has highly competitive performance compared
to transductive matrix completion baselines. In addition, IGMC is transferrable to new tasks without
any retraining, a property much desired in those recommendation tasks that have few training data.
We believe IGMC will open a new direction for matrix completion and recommender systems.
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