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1 Background1

1.1 Resampled Base Distribution2

Learned Accept/Reject Sampling (LARS) approximates a d-dimensional distribution q(z) by3

reweighting a proposal distribution. The reweightings are learned through a parametrized accep-4

tance function. The parameter is ϕ, which determines the shape of the acceptance function. If a5

sample of π is given, it is accepted with a certain probability, otherwise, it is rejected, and a new6

sample is drawn until one of the proposed samples is accepted. This means:7

p∞(z) =
π(z)aϕ(z)

Z
with Z :=

∫
π

(z)aϕ(z)dz. (1)

One can also reduce the reject rates by a truncation parameter. The trick here is to accept the T-th8

sample, if the first T-1 samples are rejected. This is independent of the value provided by LARS.9

With this, the sampling distribution becomes, given αT := (1− Z)T−1 :10

pT (z) = (1− αT )
aϕ(z)π(z)

Z
+ αTπ(z) where Z ≈ 1

S

S∑
s=1

aϕ(zs). (2)

We note that reducing rejection rates are desirable in order to reduce the computational overhead. Z11

is often approximated due to intractability. As parameters of the acceptance function cause changes12

in Z, zs needs to be recomputed in every training iteration.13

The resample base distributions (RSB) relies on LARS. LARS can be used as a proposal to avoid14

topological mismatches of the flows. Then, density could become the aforementioned sampling15

distribution. The log-likelihood using such distributions can be derived as:16

logp(x) = logπ(z) + log
(
αT + (1− αT

aϕ(z)

Z
)

)
− log|detJFθ

(z)|. (3)

Fθ is the flow transformation. The intuition is that by learning the parameters of the base distribution17

while keeping it computationally feasible with LARS, the base distribution is modified so that the18

topology mismatch problem can be addressed [1].19

1.2 Information Bottleneck for Normalizing Flows20

The Information Bottleneck (IB) for Normalizing Flows (NFs) with class conditional base distribu-21

tion, and its derivation, closely follows Ardizzone et al. [2]. They originally derived this quantity22

for the class-conditional Gaussian Mixture Models (GMMs).23
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Generally, the IB [3] is defined as24

LIB = I(U,Z)− βI(Z, Y ) (4)

with Mutual Information (MI) I and trade-off parameter β. To derive the learning objective pre-25

sented in the main part two key steps are required: (1) we substitute MI I with the so-called mutual26

cross-information Î , and (2) we inject Gaussian noise in the otherwise lossless transformation be-27

tween U and Z.28

The mutual cross-information Î [2] is defined as29

Î(A,B) = Ea,b∼p(A,B)

[
log

q(a, b)

q(a)q(b)

]
(5)

where q represents the approximative distribution of the true density p. We then replace both occur-30

rences of I in Equation (4) with Î . Moreover, for simplicity, we assume that q(Y ) = p(Y ), and in31

our experiments, we model p(Y ) uniformly.32

The bijection Tϕ is loss-less by design and, thus, the joint distributions p(U,Z) and p(U,Z) are33

not valid Radon-Nikodym densities rendering I and Î undefined. To circumvent the issue and as34

indicated above (2), we artificially introduce noise ϵ ∼ N (0, σ2I) and model Zϵ = T−1
ϕ (U + ϵ)35

instead. Then, dropping all terms that are independent of the model or vanish for σ → 0, we obtain36

(see Ardizzone et al. [2] for full details)37

Î(U,Zϵ) = Ep(u),p(ϵ)

[
− log

∑
y′

(pψ(z|y′))− log |det(JT−1
ϕ

(u + ϵ))|

]
, (6)

Similarly, Î(Y, Zϵ) resolves to38

Î(Y, Zϵ) = Ep(y) [− log p(y)]︸ ︷︷ ︸
=const.

+Ep(Z,Y ),p(ϵ)

[
log

pψ(T
−1
ϕ (u + ϵ)|y)p(y)∑

y′(pψ(T
−1
ϕ (u + ϵ)|y′)p(y′))

]

= Ep(Z,Y ),p(ϵ)

[
log

pψ(z|y)p(y)∑
y′(pψ(z|y′)p(y′))

]
+ const.

(7)

with z = T−1
ϕ (u + ϵ). The overall objective combines Equation (6) and Equation (7) to39

LIBNF = Î(U,Z)− βÎ(Z, Y ) (8)

In summary, with Î(U,Z) we minimize the marginalized density p(u) subject to the noise term ϵ.40

On the other hand, LIBNF optimizes for predictive performance, again subject to noise ϵ.41

2 Implementation Details42

2.1 Synthetic Density Estimation43

We follow a resource constraint setup to allow for conclusions about practical mobile applications.44

Specifically, we use a Real NVP [4] with four layers for the cRSB and five layers for the MoG45

with randomly initialized trainable mean and variance. The difference in layers accounts for the46

extra compute that is required for the cRSB. For the NSF we use two layers each since the cRSB47

overhead is negligible here. In the MoG’s we model a class-conditional Gaussian N (µc,σcI) with48

diagonal variance matrix.49

2.2 Out-of-Distribution (OOD) detection for 2D Object Detection50

For object detection, we implement our method with the Glow [5] architecture. Besides, we also51

ablate on this with different ones such as Neural Spline Flows (NSF) [6]. On object detection task,52

we train our flows based on logits generated by the pre-trained Faster-RCNN [7] object detectors53
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Table 1: Implementation Details for density estimation.
hyper-params cRSB MoG

IB loss β(0.1); σ(0.01) β(0.1); σ(0.01)
learning rate 1e− 3 1e− 3

training epoch 10, 000 25, 000
optimizer Adamax Adamax
batch size 1024 1024

provided by Miller et al. [8] for fair comparison 1. We summarize the training details for the54

results presented in the main paper in Table 2 and Table 3. Regarding the trainability for the base55

distribution in Mixture of Gaussians (MoG), we found minor difference between setting it trainable56

and untrainable and the major impacting factor for performance improvement and training stability57

is the distance between means for initialization. Therefore we seek to tune this hyper-parameter and58

leave the base distribution untrainable.59

Table 2: Implementation Details for Glow on Pascal-VOC-OS.
hyper-params cRSB IB GMM IB cRSB CLS GMM CLS RSB GMM Gaussian

base
Dropout(0.1); T (100);
ϵ(0.05); a(·) : 3× 128;

distance-scale for
means initialization:10

Dropout(0.1); T (100);
ϵ(0.05); a(·) : 3× 128;

distance-scale for
means initialization:10

Dropout(0.1); T (100);
ϵ(0.01); a(·) : 3× 128;

distance-scale for
means initialization:10 —

flow arch 16× [4× 64] 16× [4× 64] 16× [4× 64] 16× [4× 64] 16× [4× 64] 16× [4× 64] 16× [4× 64]

IB loss β(30.0); σ(0.5) β(50.0); σ(0.5) — — — — —

learning rate 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4

training epoch 400 400 200 400 200 400 400

optimizer Adam Adam Adam Adam Adam Adam Adam

batch size 1024 1024 1024 1024 1024 1024 1024

Table 3: Implementation Details for Glow on MS-COCO-OS.
hyper-params cRSB IB GMM IB cRSB CLS GMM CLS RSB GMM Gaussian

base
Dropout(0.1); T (100);
ϵ(0.01); a(·) : 3× 128;

distance-scale for
means initialization:10

Dropout(0.1); T (100);
ϵ(0.05); a(·) : 3× 128;

distance-scale for
means initialization:10

Dropout(0.1); T (100);
ϵ(0.01); a(·) : 3× 128;

distance-scale for
means initialization:10 —

flow arch 8× [4× 128] 8× [4× 128] 8× [4× 128] 8× [4× 128] 8× [4× 128] 8× [4× 128] 8× [4× 128]

IB loss β(30.0); σ(0.1) β(50.0); σ(0.5) — — — — —

learning rate 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4

training epoch 200 200 200 200 200 200 200

optimizer Adamax Adamax Adamax Adamax Adamax Adamax Adamax

batch size 512 1024 1024 1024 1024 1024 1024

2.3 Real Robot Deployment60

We used the open-sourced implementation 2 for training and testing the object detector yolov7 [9]61

based on datasets described in Section 3.3. Specifically, we trained the architecture of yolov7-e6e62

with a learning rate 1e−2, weight decay 5e−4, batch size 2, image size 720×720 and SGD optimizer63

for 50 epochs. The detector was then deployed on the embedded computing module NVIDIA Jetson64

Orin on our aerial manipulation robot.65

An aerial manipulation system is composed of a mobile platform, capable of moving in the 3D world.66

Carrying a robotic manipulator, such systems extend the mobility of robotic manipulators. Several67

applications are envisioned. Amongst them, in this paper, we ground our method in applications of68

robotic inspection and maintenance. The perception system has to understand its surroundings se-69

mantically, and here, deep learning-based methods are the current golden standards. Unfortunately,70

learning-based methods often assume that the test samples are generated from the same distribution71

as the training data. This assumption is routinely violated in the real world, and out-of-distribution72

detectors aim to identify such failure cases of learning-based methods.73

1https://github.com/dimitymiller/openset detection
2https://github.com/WongKinYiu/yolov7
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For the implementation details, our in-house developed robot consists of one stereo camera, one74

monocular camera, one RBG-D camera, and a LiDAR sensor. In this work, since the semantics of75

the scenes may rely on vision as its main modalities, we utilize one monocular camera to detect76

the objects of interest, which are an industrial valve, and an inspection robotic crawler for oil and77

gas pipes in refineries. For computing, the robot is equipped with two NVIDIA Jetson Orin. In78

the experiments adapted, the real images were captured in a mock-up facility, and tested with the79

NVIDIA Jetson ORIN on the robot. The experimental data were collected with 30W mode with80

JETPACK 5.1.1. Auvidea carrier board is used.81

3 Datasets82

In this section, we provide more details on the datasets used in the experiments.83

3.1 2-D Density Estimation84

In each training epoch, we sample a new batch according to the subsequent unnormalized log den-85

sities following Stimper et al. [1]. For Two Moons, we use86

− (∥u∥ − 1)2

0.08
− (|u0| − 2)

2

0.18
+ log

(
1 + e−

4u0
0.09

)
(9)

and define the class assignments in y ∈ {0, 1} via p(y|u) = u1 > 0. In words, the class is 1 for87

positive y-values and 0 otherwise. The Two Rings distribution is defined as88

log

[
2∑
i=1

(
32

π
exp

{
−32(∥u∥ − i− 1)2

})]
(10)

where p(y|u) = u0 > 0. Here we split classes along the y-axis. Last, the Circle of Gaussians is89

given by90

log

 8∑
i=1

 9

2π(2−
√
2)

exp

−
9
((

u0 − 2 sin
(
2π
8 i

))2
+
(
u1 − 2 cos

(
2π
8 i

))2)
4− 2

√
2


 (11)

where we assign each Gaussian plot in an alternating scheme to the classes y ∈ {0, 1}. Concretely,91

we split the classes according to sin(4·(atan2(u1, u0)+
π
8 )) > 0. For this, we use the atan2(u1, u0)92

function that is available in many programming environments. We follow the IEEE convention for93

value combinations like u0 = u1 = 0.94

3.2 OOD detection for 2D Object Detection95

Following the experimental protocol used in [8], we first construct the open-set object detection96

data set as they did for Pascal-VOC [10] and MS-COCO [11], dubbed as Pascal-VOC-OS and MS-97

COCO-OS . The idea behind is to exclude the effects of the unknown objects in the backgrounds for98

object detector training, since the object detector is inherently trained to ignore the background ob-99

jects seen during training. We summarize the detailed information regarding the training, validation100

and test set of the adapted object detection datasets in Section 3.2. It contains the sizes of correct101

and false predictions from the detector, i.e. True Positives (TP) and False Positives (FP). The FP102

here are from the OOD data which should not be detected by the detector.103

For convenience in training NFs, we further extract the features (logits in our case) from all the104

detections predicted from the object detector. We then filter out the detections with low quality105

and keep the meaningful detections by setting thresholds for the Intersection-Over-Union (0.5) and106

confidence score (0.2). The purpose behind is to simplify the problem and focus on only meaningful107

False Positive (FP) predictions predicted by the detector.108
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Table 4: Information of Pascal-VOC-OS and MS-COCO-OS
Pascal-VOC-OS MS-COCO-OS

ID train set first 15 classes from Pascal-Voc2007&2012 train first 50 classes from MS-COCO2017 train
ID val set first 15 classes from Pascal-Voc2007&2012 val first 50 classes from MS-COCO2017 val
Test set 20 classes from Pascal-Voc2007 test 80 classes from MS-COCO2017 test

#TP in training set 18318 251202
#TP in val set 7601 55593

#ID FP in val set 348 2287
#TP in test set 8288 16148

#ID FP in test set 213 784
#OOD FP in test set 660 1068

Figure 1: Exemplar images from training and test set used in the real robot experiment.

3.3 OOD detection on Real Robot109

The synthetic images used for training in this part were generated by BlenderProc [12]. The test110

set contains real images collected in our lab. Some examplar images are shown in Figure 1. We111

summarize the sizes of the used training and test data in Section 3.3.112

Table 5: Training and test data for real robot experiments
#images in Sim train set 907
#images in Sim test set 855
#images in Real test set 2078

#ID True Positives in test set 1326
#OOD False Positives in test set 1898
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(a) p(u|y = 0),
ground truth

(b) p(u|y = 1),
ground truth

(c) pϕ,ψ(u),
MoG w/o IB

(d) pϕ,ψ(u),
MoG w/ IB

(e) pϕ,ψ(u),
cRSB w/o IB

(f) pϕ,ψ(u),
cRSB w/ IB

(g) p(u|y = 0),
ground truth

(h) p(u|y = 1),
ground truth

(i) pϕ,ψ(u),
MoG w/o IB

(j) pϕ,ψ(u),
MoG w/ IB

(k) pϕ,ψ(u),
cRSB w/o IB

(l) pϕ,ψ(u),
cRSB w/ IB

(m) p(u|y = 0),
ground truth

(n) p(u|y = 1),
ground truth

(o) pϕ,ψ(u),
MoG w/o IB

(p) pϕ,ψ(u),
MoG w/ IB

(q) pϕ,ψ(u),
cRSB w/o IB

(r) pϕ,ψ(u),
cRSB w/ IB

Figure 2: Comparison of generative modeling capabilities pϕ,ψ(u) including training w/o and w/
IB.

4 Density Estimation113

In Figure 2, we provide a comparison of the (marginal) density estimation capabilities for the three114

density estimation datasets of NFs with MoG as well as Conditional Resampled Base Distributions115

(cRSB) base distributions, trained w/o as well as w/ IB. In Figure 3-6, we illustrate the marginal and116

class-conditional feature as well as base distributions.117

The main conclusions are (1) training with IB objective results in better modeling capabilities of118

the marginal distribution pϕ,ψ(u); (2) training w/o IB objective not only results in more filaments119

between the modes but also causes spiky tendrils at areas where the class conditional distributions120

are touching; (3) results with our cRSB base distributions are essentially filament free; (4) training121

with IB allows for slight overlaps in the class conditional densities pϕ,ψ(u|y) as well as pϕ,ψ(z|y).122

In other words, here we improve the modeling capabilities of the marginal distribution pϕ,ψ(u) at123

the cost of imperfect modeling of the class-conditional structure.124
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(a) pϕ,ψ(u) (b) pϕ,ψ(u|y=0) (c) pϕ,ψ(u| = 1) (d) pψ(z) (e) pψ(z|y = 0) (f) pψ(z|y = 1)

(g) pϕ,ψ(u) (h) pϕ,ψ(u|y=0) (i) pϕ,ψ(u| = 1) (j) pψ(z) (k) pψ(z|y = 0) (l) pψ(z|y = 1)

(m) pϕ,ψ(u) (n) pϕ,ψ(u|y=0) (o) pϕ,ψ(u| = 1) (p) pψ(z) (q) pψ(z|y = 0) (r) pψ(z|y = 1)

Figure 3: Marginalized and class-conditional feature as well as base distributions for MoG trained
w/o IB.

(a) pϕ,ψ(u) (b) pϕ,ψ(u|y=0) (c) pϕ,ψ(u| = 1) (d) pψ(z) (e) pψ(z|y = 0) (f) pψ(z|y = 1)

(g) pϕ,ψ(u) (h) pϕ,ψ(u|y=0) (i) pϕ,ψ(u| = 1) (j) pψ(z) (k) pψ(z|y = 0) (l) pψ(z|y = 1)

(m) pϕ,ψ(u) (n) pϕ,ψ(u|y=0) (o) pϕ,ψ(u| = 1) (p) pψ(z) (q) pψ(z|y = 0) (r) pψ(z|y = 1)

Figure 4: Marginalized and class-conditional feature as well as base distributions for MoG trained
w/ IB.
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(a) pϕ,ψ(u) (b) pϕ,ψ(u|y=0) (c) pϕ,ψ(u| = 1) (d) pψ(z) (e) pψ(z|y = 0) (f) pψ(z|y = 1)

(g) pϕ,ψ(u) (h) pϕ,ψ(u|y=0) (i) pϕ,ψ(u| = 1) (j) pψ(z) (k) pψ(z|y = 0) (l) pψ(z|y = 1)

(m) pϕ,ψ(u) (n) pϕ,ψ(u|y=0) (o) pϕ,ψ(u| = 1) (p) pψ(z) (q) pψ(z|y = 0) (r) pψ(z|y = 1)

Figure 5: Marginalized and class-conditional feature as well as base distributions for cRSB trained
w/o IB.

(a) pϕ,ψ(u) (b) pϕ,ψ(u|y=0) (c) pϕ,ψ(u| = 1) (d) pψ(z) (e) pψ(z|y = 0) (f) pψ(z|y = 1)

(g) pϕ,ψ(u) (h) pϕ,ψ(u|y=0) (i) pϕ,ψ(u| = 1) (j) pψ(z) (k) pψ(z|y = 0) (l) pψ(z|y = 1)

(m) pϕ,ψ(u) (n) pϕ,ψ(u|y=0) (o) pϕ,ψ(u| = 1) (p) pψ(z) (q) pψ(z|y = 0) (r) pψ(z|y = 1)

Figure 6: Marginalized and class-conditional feature as well as base distributions for cRSB trained
w/ IB.
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(a) p(y), ground truth (b) MoG w/o IB:
argmaxc pϕ,ψ(c|u)

(c) MoG w/ IB:
argmaxc pϕ,ψ(c|u)

(d) cRSB w/o IB:
argmaxc pϕ,ψ(c|u)

(e) cRSB w/ IB:
argmaxc pϕ,ψ(c|u)

(f) p(y), ground truth (g) MoG w/o IB:
argmaxc pϕ,ψ(c|u)

(h) MoG w/ IB:
argmaxc pϕ,ψ(c|u)

(i) cRSB w/o IB:
argmaxc pϕ,ψ(c|u)

(j) cRSB w/ IB:
argmaxc pϕ,ψ(c|u)

(k) p(y), ground truth (l) MoG w/o IB:
argmaxc pϕ,ψ(c|u)

(m) MoG w/ IB:
argmaxc pϕ,ψ(c|u)

(n) cRSB w/o IB:
argmaxc pϕ,ψ(c|u)

(o) cRSB w/ IB:
argmaxc pϕ,ψ(c|u)

Figure 7: Comparison of predictive capabilities argmaxc pϕ,ψ(c|u) including training w/o and w/
IB for a sample of size 1,024 that was drawn from the target distribution.

5 Generative Classification125

In Figure 7, we plot the ground truth assignments for a sample drawn from the respective data126

distribution along with the most likely class assignment argmaxc pϕ,ψ(c|u) over varying base dis-127

tribution and training objectives. Despite the perceptually different results in the density estimation128

(Section 4), all models classify the input data remarkably well. This highlights the importance of129

the IB objective since it allows to govern the tradeoff between the quality of density estimation and130

predictive capabilities.131
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