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A  NOTATIONS

Throughout this supplementary material, we will adopt the following notions. (1) Let {ek}kK:l be
the standard basis of R. To distinguish, we use {e,, ;}™; to denote the standard basis of R". (2)
We write 1,, the all-one vector of dimension m. (3) For two sequence of numbers ay,,b, > 0
depending on n, we write a,, > b, or b, < a, if b,/a, = o(1l) asn — oo; and a, =< b,
is there exists constants C, ¢ > 0 such that ¢b,, < a,, < Cb,,. (4) Let O(K — 1) be group of all
(K —1)x (K —1) orthogonal matrices. (5) For any matrix M € R™*™ letits SVDbe M = UDV".
We adopt the notion that sgn(M) = UV’. (6) We denote the (7, j)-th entry of a matrix M as M (i, j)
or M;;, and the i-th component of a vector u as u(7) or u,. (7) We denote ¢, C the generic constants
which may vary from line to line.

B THE ERROR RATE OF SCORE

B.1 PROOF OF THEOREM[3.1]

The proof of Theorem [3.1| can be separated into two parts. First, we connect the Hamming error
with the error rates of SCORE vectors R where

R = diag(&) (&, €k)

with & denoted as the eigenvector associated with the k-th largest eigenvalue ( in magnitude) of (NZ,
for 1 < k < K. The result is collected in the following lemma and the proof is postponed to next
subsection.

Lemma B.1 Let R be the SCORE vectors obtained from the observed network (either A or A© N ).
Denote by R, the counterpart for §). Suppose that minpco k-1 [[RO — R||% = o(n). Then, the
Hamming error r,, satisfies

n
ro=nT Y fw - mlh <n”t  min RO~ R
i=1

Next, we claim the error rate n~ ' mingoeo(x—1)} |[RO — R||% by applying SCORE algorithm. The
key technical component is to conduct delicate eigenvector analysis and especially employ leave-
one-out technique to derive sharp entry-wise eigenvector bounds for £;. We present the result below,
and the proof is relegated into Section

Lemma B.2 Let R denote the SCORE vectors by employing SCORE directly on A. Under the
assumptions in Theorem it holds that with probability 1 — o(n™3),

[(N —1,1,) 0 Q| + M\ (Q)
(@)

n~' min |RO-R|%<C
OeO(K—-1)
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Therefore, Theorem [3.1] follows directly from Lemmas and B2] In particular, if A satisfies
DCBM, by definition, N — 1,,1/,. Then, ||(N — 1,1})) o Q|| = 0, which yields that

A (Q)

- (ﬁscore) <C o )
[ A ()2

To complete the proof, we show the proofs of Lemmas [B.T] and [B.Z]in the subsequent two subsec-
tions.

B.2 PROOF OoF LEMMA [B.1]

The proof is similar to the proof of Theorem 2.2 SCORE (Jin, 2015), we provide the details below for
readers’ convenience. Without loss of generality, let us assume O = Ik for simplicity. According
to (Jin, 2015), R contains exactly K distinct rows. Let r(y), -+ , (k) be the K distinct rows in R.
To claim the bound, we first show that

7y —rell > a

for some constant ¢; > 0. To see this, we note that (&1,&,--+,&x) = (£,21) = OIB
for some B = (by,ba, - ,brx) € REXE. Then, it follows that BB’ = (II'©2%1)~! =
Pdiag([Yicc, 07171 - [Xice, 0717 1) P’ for some permutation matrix P. Thanks to the con-

ditions that 8; =< § and ny =< n for all 1 < k < K, the conditional number of BB’ is constant
and
Amin(BB') < Amax(BB') < —
n6?
In particular, as §&; = ©IIby, it is not hard to derive from OIIPII'©¢&; = A\, OIIb; that
PII'O%TIb, = A\ by

Therefore, b; is the first right eigenvector of P(II'©2II). Under the condition in , b (k)| <
1/vVnf2forall 1 < k < K. As aresult,
[&1(0)] = 0:/ V2 =< 1/v/n, e}, Zall < C/v/n (1)

and
Amin (dlag(bl)le) Z Co

for some ¢y > 0. Notice that
R = H[diag(bl)*l(b% - ,bK)] — H(Tzl)’ . 7TEK))I
Therefore,
7y — rpll = lleidiag(by) "B — ¢idiag(b1) " B > vV2Amin(diag(b1) "1 B) > v2¢

for some ¢y > 0. We define ¢c; = 2¢qg. Let Vi,--- Vi denote the disjoint index sets cor-
responding to 7(1), - ,7(x). The K-means algorithm aims to find a partition of the nodes
S* = (51752, R ,SK) such that

K
S* = argminz Z 7 —mel?,  my = Z 7, forl <k < K.

k=114i€Sk 1€Sk
Define the output centers are mj, - - - ,m},. We introduce a matrix M = (m/,--- ,m/,)’ such that
m; = my, if 7€ 8,

Thus, N N R
|IR—M|% <||R-R|z and |R—M|% <4|R- R|%

Let T := {i: ||f; — ri]| < V2c0/8, ||mi —ri|| < V2co/8 and T, = TN Vj for 1 < k < K. We
first prove that the nodes in Z are correctly recovered. It suffices to show that for any ¢ € Zy, 5 € Z,,

m; =m; ifandonlyif k=~¢. 2)
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To see this, consider k # ¢, then |75, — r¢|| > /2c. It further yields that for i € Zy, j € Z,
I =gl = i = 750} = lms = rall = lmy = 5] = V2eo - 3/4

Suppose that Z;, # ) for all 1 < k < K, then for every k, we select a point 45, and its corresponding
m;, . It follows that

Iy, = mi | > Nlra, = 7ig | = lmiy, =il = llmi, =73, || > V2¢o - 3/4
By doing so, we fix the K distinct rows in M. Thus, based on the above arguments, for any two
rows in M, their {5 norm distance is either 0 or larger than V2¢ -3 /4. For any i, j € Ty, since
lmi —my| < [lmi — rell + llmy — 7all < V2o /4,
it must hold that m; = m;.
To complete the proof of (), we need to claim Zj, # () forall 1 < k& < K. We will prove by

contradiction. Suppose there exist k¢ such that Zy, = 0. It follows that

D lIF = rill? + [lmi = ril|* > Vi leo/32 > én
1€ Vi,

under the assumption that ny, = n forall 1 < k < K. This implies that || R—R||%+|| M —R||2. > én.
Moreover,

IR — Rl = én/5

which contradicts to ||[R — R||% < n. As aresult, T # () forall 1 < k < K. We thus finish the
proof that nodes in Z are exactly recovered.

Next, to finish the proof, we show that
9| < IR - RII%
Note that for i € Z¢, either ||#; — r;|| > V/2¢o/8 or ||m; — 4| > v/2¢0/8. Since |[M — R||% <

4R - R||%, we can obtain that

R—R|3 | |IM-R|}: 160,

= Ve T (Vacopy < @

Consequently,

ra = i —milli+ Yl — milh < 207°) < C1||R - Rl
1€l 1€Z¢

We thereby conclude the proof.

B.3 PROOF OF LEMMA[B.2]

We define (S\k, é %) be the k-th largest eigen-pair of A (in magnitude) for 1 < k& < K. For simplicity,
write =1 := (&, ,&k). Without loss of generality, we assume that sgn(£1&;) = 1. Let O :=
sgn(Z1Z1). By definition,
IRO — R|[% = ||diag(&1) " (210 — E1) — [diag(&) ™" — diag(&1) '] =3
< C(|ding(&) " Gr0 — Z)[[} + || [ding(é) " — ding(e) " |Ea3)
< C(|ldiag(1) 1 (E10 — Z) [} + 1 - &1 diag(é) ~ diag(€1) ' Z113-0 )
3)

According to the RHS, we need to prove an upper bounds for || 2,0 — Z; || and ||, — & ||, and

further show that £, (i)| =< 1/v/n for 1 < i < n.
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First, we claim upper bounds for ||£;0 — Z|| and ||€; — &, |. Using sine-theta theorem (Davis &
Kahan, [1970; Yu et al., 2015), we have

14~ A=
A1(2) \AK( )|
Since A = Q+ (N —1,1,) 0 Q — diag(N o Q) + W = Q + W, we thus bound

min{||& - &I, [Ei& )} < C

—
=1

14 = Q) < [[(NV = 1,17,) 0 Q| + [|diag(N o )| + [W]| < (N = 1,1},) 0 Q| + CVnb?
with probability 1 — o(n~3). Here we used the derivation
[diag(N o D)|| < |[diag(@)]| < CO%, W] < CVnb?

by the non-asymptotic bounds on the norm of random matrices in (Bandeira & Van Handel, [2016).
It is worth mentioning that A1 (Q2) = A1 (P(II'©2I1)) < nf?. As a result,

&y < oIV =11 e Ol Y (@)

A1 ()

o e <ol )o 8l + /@ “
Ak ()]

min{||& — &), |E]

[

Next, we aim to show that |£; (i)| < 1/y/n for 1 < i < n. Given that |¢1(i)| < 1/y/nforl < i <n,
it suffices to show that ||&; — &1 ||max << 1/4/n. To see this, we consider the eigen-perturbation that

€ — & = (AT E — )&+ AT Erdiag(a, -+, A )ELEL + AT ITWE
By the first inequality in () and the Wey!’s inequality, we bound

- ~ A
Aengid - 1< o(BA g ) < o424 g g )

-1 QI +4/2(Q)

M (9)

and

<IN L) o8+ @)

AT Mdiag(Ne, -+, Ar)ZL& | < |IELE ~
' A ()

Based on these, we arrive at
C (N =1,1) 0l + /M (Q) e}, ,WE,|
&) < —= — +
vn A1 (9) ng?

for 1 < i < n, due to the fact that [\, — \| < [[A — Q] < A = nf? and

max [[€1 || max, max; ||e;, ;Z|| < C/+/n. Then, it suffices to derive an upper bound for e;ﬁ&.
We first decompose

leh W] < e, i (N = 1,17,) 0 Q&1 | + |ef, ;diag(N 0 Q)| + €], ;Wi | < 6I€1(3)] + e}, ;W]

|€1(i) —

Let él) be the first eigenvector of A®) = Q — diag(Q) + W where W is obtained by zeroing
out the ¢-th row and column of W. Then,

lel, WE < el WED | + Vnb2|& — €7 5)
By Bernstein inequality, we bound
lel, WED| < C(\B2EV12 10g(n) + 1€ | imax log(n))
< C(6y/108(1) + [|€: [lmax log(n) + I — & || log(n)) 6)
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simultaneously for all 1 < i < n, with probability 1 — o(n=3).

To proceed, we analyze Hél) — £1|| below. By sine-theta theorem,

) - @ — A)¢ lenie, Wl [Wenel, &l
(Z) _ < ||(A _ )£1|| < ’ ’ﬂ,} 1 77n,z
&7 =&l <C — <C - +C =
les, WL oY n02|; (i)|
=C nH2 +0C L @

Combining (3)-(7) gives
len Wéi| < C(0y/10g(n) + [[€1]lmax log(n)

Consequently,

W 1,102 N @) )
1€1(7) — &1(0)| < % )\1(6) 4 ”

+— (63/10g(n) + [1€1 | max log(n))

By decomposing |§:1(Z)| < & (d)] + ‘51(2) —&1(7)| and ||§1||max < &1l max + Hgl — &1 | max, We
further have

- C |[(N-1,1)) QH C\/ og log(n)
[§1(6) = & (0)] < = =
vn nf nf
Taking maximum and rearranging both sides, it follows that with probability 1 — o(n=3),
' C IV = 1,1) 08| | C/log(n)
- max <— — o 1
161 = &1llmax < NG 5 < 1/Vn
under the condition that v nf2 > Clog(n) and ||(N —1,1/,) o Q|| < nf2. This completes the proof
of |£1(7)| < 1/y/nforl <i<mn.
Therefore, we deduce from , @) that with probability 1 — o(n~3),
N —1,1")0 Q%+ M\ (Q
o IOV =1,10) 0 02 4 X, (@)
Ak (Q)[?

)+ 161 — Eallimax— 5~

IR0 - R} < Cn(|E0 - B)F + & - &) <

We thus finish the proof.

B.4 A REMARKON |[(N —1,1")0 Q]

We discuss the relation of |[(N — 1,1’,) o Q|| with the eigenvalues of €2 and €2 in the following
lemma.

Lemma B.3 The following inequalities hold.

[V = 1,10) 0 Q| <IN = 1,1, a1 (€2)

M1 (Q)] < (N = 1,17) 0 Q]
Proof B.1 Notice that ¢ < min; ; N(i,j) < ||N|[max < 1for some constant ¢ > 0. Then, (1,1, —
N)oS) is a symmetric matrix with positive entries. By Perron’s theorem (see (Horn & Johnson, |1985))

for example), the first eigenvector; denoted by w1, is a positive vector and M\1((1,1,, — N) o (NZ) =
(N —1,1)) o Q]|. It follows that

(N —1,1.) 0 Q| = v, (1,1, — N) o Quy = Zm D (5)(1 — Nij) Qi

<IN = 102, s - > wa ()ua ()25
4,J

< ||N - 1n1;z||max)‘1(ﬁ)-
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Next, we show the second inequality. Recall the decomposition
Q=NoQ=0+(N-1,1,)00Q.
By Weyl’s inequality (see (Horn & Johnson| |1985) for example),
Mr+1(Q) = A1 ()] < 112 = Q) S (N = 1,17,) 0 QY
Since Mg 41(€) = 0, we conclude that

M1 ()] S (N = 1,17) 0 Q|

C THE ERROR RATE OF R-SCORE

In this section, we mainly prove Lemma[3.T]and Theorem 3.2} We streamline the proofs as follows:

(1) We show the error rate of SCORE vectors by R-SCORE, i.e., 2 up to some or-
thogonal transformation. This, together with Lemma[B-T|concludes the proof of Lemma[3.1]
(see Section[C.);

(2) We prove the error rate of refitting 6 and P (see Sections[C.2]and [C.3);

(3) Third, we investigate the error rate of N, more precisely, ||(N @ N — 1,1,) o Q| and
IN © N - 1,1 ||F (see Section;

(4) Combining all the previous results, together with Lemma we complete the proof of
Theorem 3.2 (see Section[C.9));

(5) We also provide the brief proof of the Corollary[3.1] as it follows simply from Theorem[3.2}

The details are provided in the subsequent subsections.

C.1 PROOF OF LEMMA 31

Recall the assumption that N satisties
1,1, o N — 1,1/, = OIIPII'®
such that with probability 1 — o(n=3),
1P — Pllmax < min{1, Amin(P)0"}, [T = T (v/7 At (P)) 710 — 0,

and

for some constant ¢, C' > 0. It follows that ]\Afij = ( + é é 7l P#; ;)1 > C for some constant
0<C<land N;; <1forall0<i,j <n.

Let ()\k, &) be the k-th largest eigen-pair of A © N (in magnitude) for 1 < k < K. For brevity,
write 2, = (527 NS K) Denote by (Ag, &) and Z; the counterparts for the low-rank matrix
Q = OIIPII'O. Without loss of generality, we assume both £, and & are positive. Under these
notations, the SCORE vectors of A and Q) are defined as

R - (7217,F2, o f )/ = diag(é]')_lé\ 1 R = (7”1,7"2,' o ,Tn)/ = diag(&l)_lEl

We bound the error of R — R by the eigenvalues of A. Consider the SVD o E = =UDV’. Define
0 := sgn(ulul) — UV'. Our model assumptions gives that A1 (€2) — | X2(€2)| > ¢A1(Q). Applying
sine-theta theorem (Davis & Kahanl, [1970; Yu et al., [2015), we have

Ao N - Q|

: _laeR-9|
A1(92)

12,0 — &
|Ar ()]

min{|[& — &l, [E1& 0} < ©

We write

AoGN=Q+(NoN-1,1/)0Q —diag(No Qo N)+ Wo N:=Q+W
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It follows that
W[ < [(NoN -1,1},) 0 Q|| + ||diag(N 0 Q @ N)|| + |[W @ N
<(NoN-1,1)0Q]+ |[WoNo(NoN—1,1,)| + CVnb?2
To obtain the RHS, we bound
|diag(N 0 Q@ N)||r < Cl|Qmax < CF?

and
IWoN||<[[WoN||+|WoNo(NaoN-1,1,)]|
<CVnd2+|WoNo(NoN-1,1.)|

where we used non-asymptotic bounds on the norm of random matrices in (Bandeira & Van Handel,
2016) since W @ N is a symmetric random matrix with independent upper triangular entries and

each entry in N of constant order. We further study ||W @ No (N o N — 1,1)]| as follows. Notice
that
No@N —1,1/, = (BIIPII'© — OIIPII'®) o N

by the definition of N and N. Therefore, it suffices to bound
|W o (BIIPII'© — OIIPII'O))|

Next, we decompose

P N

|W o (BIIPII'6 — OIIPII'O)||
= |W o OII(P — P)II'O| + |W o O(1 — M) PII'O|| + |W o OIIP(IT — 1) 6|
+|[Wo (6 — O)IPII'O| + |W o OIIPIT' (6 — )|
— T+ T+ T+ Tat Ts

We bound each term separately below. For 77, we have
Ti = [6(W o TI(P — P)I)O|| < CO*||W o TI(P — P)I|| < CO2||P = Pllmax | W |
< 16| P = P|lmax
where ||[W||r < /n||W| < Cnf with probability 1 — o(n ™).
The analysis for bounding 75 and 73 is similar, we provide the details for 7 only.

T = ||O(W o (Il — M)PII")O|| < CH*|W o (IT — H)Pﬁ’H < CO*||W o (Il — ) PIT||

<ce® [y > w3 ;) P#j)?

LRET
<CO [N N WE 4| P2,
LRET ]

< CO|W |2 o0 | TT — 0|
< 62/ nf2||II — 11|

The last step is due to fact that [|e;, ;W || <V n#?2 simultaneously for all 1 < i < n with probability

1 — o(n~3) by Bernstein 1nequahty From here to the end of this subsection, with a slight abuse of
notation, we will use {e; }?"_; to denote the standard basis of R™ for simplicity.

Next, for 74 and 75, the analysis is also analogous, and we show the bound for 7 in detail and omit
the proof for 7.

Ti = [(© — ©)(W o ITPII)B|| < CH*||W o IIPIT'|| < CH>V/ nf?
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where we bound ||V o TIPII’|| < v/n#? by non-asymptotic bound for random matrices since
[IIIPII || max < C and W o IIPII’ is symmetric random matrix with independent upper triangu-
lar entries.

Combining the discussions above, we have
|W o (BIIPII'6 — OLIPII'O)|| < c(né3uz3 — Plumax + 02V/n82||TT — T1]| + éQ\/@)
This further gives rise to
W] < I(N @ N —1,1,) 0 Q|| + |W o (BILPI'S — OIIPII'O)| + CV/nf?
< (N0 N =1,13) 0 0 4 C (| P = Pllyax + 02V |l - 11| + v/nf?)
< Ak ()]
under the assumptions that
IP = Pllmax < Auin(P)/0 [T =TI < Vidmin(P)/0 (N @ N —1,1},) 0 Q| < [Ax ()]
and Vnd2\pin (P) > c3log(n).

We note that M (Q) = nf? and A ()| =< 162 Amin (P)]. In addition, we have the decomposition
QON =Q+(NoN—-1,1/)00. Since [ NON —1,1/) o Q|| < |Ak ()| with high probability,
we obtain that . ~

M(QON) = \M(Q)(1+0(1), forl <k<K.

Consequently, recall the definition that 7, = n63||P — P||max + 02Vn@2||I1 — II
(NN = 1,10) 0 Qf + 7, + /M () "
0

min{[|§; — & ||, 216 < C o) —

CH(N@N ~1,1)0 s?|| + T 4 1/ A(Q)
|)\K(Q)‘

, We obtain

=o(1) ®)

with probability 1 — o(n=3).
To proceed, we need to study the entry-wise error for él —&.By (Ao Z\A])él = ;\151 and Ao N =
Q + W, we derive
&1—& = (A& — D& + AT Erdiag(ha, -+ A)ZhE + AT TWE
We can bound

S_1y g8 143 )2 [ s
‘)‘1 1)‘15151 - 1| < C(‘)‘l 1()‘1 - Al)‘ + |€1£1 - 1|) < C(Tﬁ) + W)

NON —1,1,)0 Q| + 7 + /M (O
SCII( ) 0 Ql + 7 4+ 1/ M(Q)

A1(2)

and

(N2 N —1,1.) 0 Q|| + 7 + /A1 (Q)
/\1(5)

AT diag(a, - A)EL ]| < 2SI < C
These give rise to

) - ) < IO Z1a20) 00 Fr @ 1T
1 1 B Al(ﬁ) Vn nf?

since ||Z,(4)|| < 1/y/n and & (i) < 1/v/n following from the assumptions on €2 (see ) .

€))
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What remains to bound |e;W€1 |/nf2. Using the definition of W, we first have
|€/W£1|
<|ef[(NoN —1,1,) 0 Q&1 | + |(N 0 Q@ N)ubi (4)] + |ej(W @ N)&i |

< [[€;[(BTIPII'S — OILPIIS) o O 0 N |1 &llmax + 92(% 1616 = &) + |es(W 2 N

< né‘*(% + 16 = Ellmax) + 52(% 1) — &)) + e (W @ N)é,|

Here we crudely bound
lel[(N @ N —1,12) 0 Q|1 < ||,[(BILPII'® — OIIPII'O) 0 Q o N]|; < Cnb?*.

and | N o QO Nlmax < C[|Q|max < CO? by the fact that all entries in N and N are lowered bound
by a positive constant.

(W®N)gl
les(W @ N)é | < |es(W @ N)é| +|eiW @ No (N o N —1,1,)&|

We study the second term below. Note that W@ No(NON —1,,1/,) = Wo(OILPII'©—OIIPII'®).
We bound

W@ No(NoN —1,1,)6| < |el(WoOlI(P — P)II'O)& | + |ef(W o O(II — I) PII'O)E, |
+ |e/(W o OIIP(II — II) @)§1| +|ei(W o (6 — O)TIPII'O), |
+ |€}(W o OIIPIT' (O — ©))&,|

Regarding the last term on the RHS, i.e., , we have

For each term, we further have

|ef(W o OTI(P — P)II'®),| < [;O(W o TI(P — P)I)O& | < 67[|e;W o TI(P — P)IT[[1[|& [lmax
< 02||e; Wl eTL(P — P)IT[[||€1]lmax < 70> P = Pllmax|é1 [|max

lei(W o O(IT — I PII')& | < CBlle;W |l[|ef(IT — T PII'S) 0 & || < CO° || W[[|(TT = IT) PIY | max] |4 |
< CP||elW || < CO*\V/nf?

le}(W o BIIP(IT — T)/8)é,| < Cl|e;W |||, ITP(TT — T1)'8) 0 &1|| < C82||e;W]| < CE2V/ nf?

[e4(W 0 (6 — O)IPI'O)E | < |0; — 6|} (W o TIPII)OE | < CO|[el(W o IIPIV) || < CO*V/nf?

le/(W 0 OIIPII' (6 — ©))&,| < Ch;|el(W o IIPII)(O — ©),| < C82||es(W o IIPIT)|| < C§2V/nf?

Combining all these inequalities, we arrive at

w;;fll < (G2 + 60 = 60)) + O + 0P = Pl (= + s = €1l
. Sﬁ N |<W§N>€! w0

In the sequel, we analyze |e§ (WoN)& | by leave-one-out technique. Let £ Ei) be the first eigenvector
of
AD o N =Q—diag(Q) + WD o N

where W () is obtained by zeroing out the i-th row and column of W. Without loss of generality,
we assume sgn (&) (z)) = 1. Thus,

|ei(W @ N)éi| < |ebi(W @ N)ED| + [les(W @ N)||IE — €7
< C(0/1080n) + €7 ma og(n) + Vb2 |éy — €7))
< C(8/10g(n) + €1 lmax log(n) + Vnd2)é — &)
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where we applied Bernstein inequality on e} (W @ N)& Y) as e,(W @ N) is independent of & 1i). And
the last step is due to the derivation

1€ max 10g(n) < (1€ llmax + €Y7 = &1 lmax) 10g(1) < [|€1 [lmax log(n) + € — & || V/no?

under the condition that V'n#2\in (P) > c3log(n). Next, by sine-theta theorem, we bound

. (i — W@ @ N + diag f
Hgl_é)ng ”( - ( )) 1”
nb
 lleiciW o )& + W o Njeeigall  [((NON ~1.15) 0 )|
- nb? nb?
WoNo(NoN —1,1")¢ C
JIweNe o N -1aé) , © )
n6? n

where we used the decomposition
W=(NoN-1,1,) 0 Q—diag(No Qo N)+ WON+W o No(No N —1,1,)
and the crude bound
| [diag(©) — diag(N 0 Q @ N)]& || < CE?|1& || < CH?

following from N @ N < C' with high probability and ||S~2Hmax < C6?. To proceed, we further
bound

I(NoN-1,1)0Qd| _IINoN-1,1,)00] _ [NoN - 1,1, r

no? - n? - n

And we analyze the upper bound for [W @ N o (N @ N — 1,,1/,)é1 | below. By definition,

(12)

IWoNo(No R - 1,18 = VZ (S oMo N - 1,11),60))
< \/z SN R -1,1,)2 - Y (W 0 N2 ()

Z N@N—l 1/ U maxz W®N2”£1”max

<IN - 1n1;||F||«sl|max\/mng<W@N>3j
J

where in the second step we used Cauchy-Schwarz inequality. Regarding the last factor inside the
square root, for each fixed ¢, it is a sum of independent r.v.s, so we can use Bernstein inequality to
get its high probability bound. Specifically, fixed an ¢, as N is deterministic and each entry of N is
= 1, we can derive the meanof 3 (W @ N )i; s given by

E(W @ N)? 0,0; < nb*;
2EWONG=2

J
And the variance can be estimated by
> var(Wo N)j; < E(W o N)j < Cnf”.
J J

Consequently, by Bernstein inequality, it is not hard to derive

‘ ST(W 0 N)% —E(W @ N)%| < Cy/nb2log(n) + Clog(n) < Cné?
J

with probability 1 — o(n~*). Then, combining all i, it gives that

maxz W@N) < Cnb?
j

10
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with probability 1 — o(n ). We thus obtain that
IWoNo(NoN-1,1,)4| <CINoN - 1,1}[|r - vnb]|€1]|max (13)

Next, we study the bound of |[e;e,(W @ N)& 4+ (W @ N)eeléi1 ]| below.
lei;(W @ N)ér + (W @ N)eeié |
< |ei(W @ N)éi| + [|ej(W @ N)|[|€(3)]

<C(9\/10g )+ [|€1 [l max log(n) + Vnd2||&; — 51)H+ Vnb2|€, (i ) (14)

Combining (TT)) - (14), we get
S i log(n N log(n é — W
I - &0 < O (2B 4 il B 4 L2

nb n6?2 n62
|§1( I €1 lmax|N @ N — 1n1%|F>
\/ no? Vn?
Rearranging both sides gives that
2 oy < of Vios(n) 1+ |NoN-1,1,|F
I - &0 < O (L2 4 s T
Consequently,
W o NG| _ (V1080 [éslmaxlog(n) |, [1& — €7
n6?2 nod n6?2 VnH2
vieg(n) log(n)  [NoN—1,1;[r
< O Y222 4 illmax | + ]
no nf2 no

Plugging this and (T0) into (9), we have
H(N®N—1 U)o +m+yM@ 1 0f
==
A (Q) vnoVn
a2 L anp 1 s Cizon o
+ O +01P = Pl ( 7 + 6 = Ellmax) + 1)~ 6:0)
Viog(n) 2 log(n) _|IN@©N —1,1;[|r
+ O n + ||§1Hmax|: N2 + n2 :|
no nf no

Rearranging both sides, together with ||«£A1||max < ||£1Hmax+Hfl—€1||max < C/\/ﬁ+||£1—§1||max,
gives rise to

[€1(8) — &1(0)

€1(1) — &1(9)] <

[(NON=1,1.)0 Q| + 7 log(n) |NoN-11|r - - = 1
<C — "R 0+ 0| P — Pllmax ) —
B ( 162 + 02 t 102 +0+0 | )\/ﬁ

NoN-1,1, log
+C(|| nég ”F +92+9HP P”max“‘ ( ))Hgl lemax

We further take maximum for both sides. Under the conditions that [|(N © N — 1,1/,) o Q|| < nf2,

|IN@N —1,1,||p < nf?and nf? > C(log(n))2, together with 8]| P — P||max < Amin(P) < C
and @ = o(1), it yields that with probability 1 — o(n=3),

1é— el (||(N ON—1,1,)0 Q| + 7, L Vlosm) IN@ N-1.1,r
max > \/> 7192 \/@ n02

+ 0%+ 0|P = Pllnax)

1
L —=
NG

11
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Further by |&; (i)| =< 1/y/n for 1 < i < n, we deduce that |&; (i)| < 1/y/nfor1 <i < n.
Now, by the definition of ﬁ, we can derive
|RO - RI% = |[diag(é) ™ (210 — =) - [diag(é1) ™" — diag(é1) "] =13

< C(|ldiag(é) ™ (B10 ~ D)} + || [diag(é) ! - diag(&) |Z1l13)
< O(nlE0 ~ 2} + I — &0 |ding(6))  ding(6) 130
< C(nllE10 ~EJ} +n & - &)

By (B), we conclude that

[((NON —1,1,) 0 Q| + 72 + A (Q)

k(@

with probability 1 — o(n~2). Now, combining the above result with Lemma we conclude the
proof of Lemma 3.1}

IRO — R||% < Cn

C.2 THE ERROR RATE OF 6

In this subsection, we prove the error rate for refitting 6 under the assumptions in Theorem [3.2] The
results is collected in the following Lemma.

Lemma C.1 Under the assumptions in Theorem it holds that with probability 1 — o(n™3),

}é,_9v|<C’(\/log /n—|—7’n/§>, if =7

}0 — Prpob; ’ < C’( (log(n )/n9_2)1/4 + \/ﬁ), if T =epFeg, =m,.

where r,, is the Hamming error of the il by directly SCORE and {ek}le represents the standard
basis of RX.

We prove Lemma [C.1] below.
Recall the refitting formula for 6:

> irred,, Aii(L— Ajt) Ay
Zj;éteé'k‘i(l = Aij)Aj(1— Ay)

>
o
I

15)

where i € Cj, and Spi = =C \ {i}. Using the error rate of II from SCORE, i.e., |[II — II||; < nry,
we first crudely bound the numerator and denominator in the expression of 0 Let 1, and 1 denote
the k0th column of II and I, respectively.

> Ayl A A

JAtES ;

e;,iAdiag(ik)(lnl’ —-I,—A) dlag( )Aen’i

= e;M.Adiag(1k)(1n1’ — I,, — A)diag(1y,) Aen i + €}, ;Adiag(1), — 1) (1,1), — I, — A)diag(1x) Aen
+ e'mAdiag(ik)( -1, — A)dlag(Ak — 1) Aen

For the second and third terms on the RHS above, we bound

e Ading (1 — 1) (1,1}, ~ I, — A)iag (1) Aey i + ¢} Adiag (11) (1,1, — I — A)ding (i — 14) Aeq
< 2] Al - Ading (11— 1)

< Cnf?||iy — 1)1 < Cn@?||II - 10|, < Cn’r,0?

fL’L

12
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where to obtain the third line, we used
ler i Alll =Y~ A =Y Qij+ Y Wiy =n” + O(y/nb?log(n))
J#i j#i j#i
e, s Adiag (1x — 1x) 1 < lle), i Allmaxll e = Lrlly < 11k — 1elly

simultaneously for all 1 < i < n, with probability 1 — o(n~3). Here Bernstein inequality is

employed to derive
’ Z Wil <O Zvar(Wl-j) log(n) 4 log(n)) < C'y/n6?log(n)

J#i J#i

by noting that W;; is with mean 0 and variance
VaI‘(Wij) = Qi]’(l — Ql]) S Gﬂj
and the condition n62% > C log(n). Therefore,

‘ Z Aij ]t Am - Z Al] jt)Atz

J#teS) JALESk

< Cn%r,0°. (16)

simultaneously for all 1 < i < n, with probability 1 — o(n~3). Similarly, we can show that
| Y G- ApA- A0 - Y (- Ay (i - An)
jAtES) ; JALESk i
< Ck = 1glh - n6? < |1 - 10||1n6% < n?r,62. (17)
To proceed, we study Z#tesk‘i A;;j(1 —Aj)Ay and Zj#esk’i(l — A;;)A; (1 — Ay;) instead.

Recall the decomposition A = Q — diag(€2) — W. For the numerator, we decompose

Do Al - Ap) A

JFALESk,:
= Z Qi (1 — Q) + Z — Q1) Qi + Qi (W) Qs + Q5 (1 — Q) Wy
JHALESK JHALESK
+ Z W’Lj jt Qtz + ng( th)Wti + Wzg(]- - th)Wti
JFLESk,i
+ Z Wzg jt Wtz
J#tESk,i
Z ng ]t Qtz + ZTla + Z T2a + T3
JALESk,: a=1 a=1

We analyze each term on the RHS above one by one. Note that W;; is with mean 0 and variance
V&I‘(Wij) = sz(l - Qz]) S 9193

and the trivial bound [W;; 37, (1 — Q;4) | < n? (similarly for each summand in 75 and T}3).
By Bernstein inequality,

Ty < C’ \/Z(‘) 9 th)Qti)2 log(n) + né? log(n)) < CnéQ( n#? log(n) + log(n))
tséJ

| < 20( 3 0,0,(92)2(s)? 1og(n)+1og(n)) < C(nf°\/1og(n) + log(n))

J<t

J#t

T3] < C \/Z 0:0; Z Q5 (1 log( ) + no? log(n)) < Cnf?(y/nb2log(n) + log(n))

13
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simultaneously for all 1 < i < n, with probability 1 — o(n~3). Consequently,

3
’ Z Tia| < Cnb?y/nb2log(n).
a=1

following from the condition that nf?> > C'log(n), which is implied by condition in the
manuscript.

Regarding T5, for a = 1,2,3 and T3, their large deviation bounds can be tackled by decoupling
inequality for U-statistics in|de la Pena & Montgomery-Smith| (1995). Specifically, implied by this
technique, the large deviation bound of 7»; is dominated by that of
f21 = Z Wij(_Wj(tl))Qti
JFtESk,i

where W (1) is an i.i.d. copy of W. Thanks to this independence, we first condition on W (") and use
Bernstein inequality to get

|T21| < C[\/ Z (9,97( Z Qtin(tl log + max‘ Z Qtz ]t
J

j €Sk, t#jE€Sk,i t#jE€Sk,i

1og(m)]

Next, by Bernstein inequality again, we obtain

Z Qtz

t#5ESk i

( nf6log(n) + 62 log(n))

Combining the above inequalities, we arrive at
|To1| < C(nf'og(n) + Vnb26%(log(n))*/?).
simultaneously for all 1 < i < n, with probability 1 — o(n~3). Therefore,

Ty | < C(nf*og(n) + Vnb26°(log(n))*/?) .

In the same manner, we can show that

|Taa| < C(nf*og(n) + Vnb20*(log(n))>?),  |Tes| < Cnb?log(n)

As a result,

< Cnblog(n) .

3
‘ Z T2a
a=1

under the condition n6? > C'log(n) and § < C.

Lastly, we prove the large deviation bound for 75. Using decoupling inequality for U-statistics, it
suffices to prove a large deviation bound for 75 with

1 2
= > wy-wiw
JFLESk,i

Here W) and W(?) are two i.i.d. copies of . Condition on W (1), W (), by Bernstein inequality,

Tl<o( > 00, > wiPWE) ogn) +max| Y wi ()

€Sk t£5 €Sk 7 t4jE€Su
In addition, for Zt £iESka W(l)Wt(l ), each summand is independent of each other. By Bernstein
inequality, we can similarly get

Z W I)W(Q
t#JESk,i

( nf4log(n) + log(n))

14
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Consequently,
T3] < c(né3 log(n) + n§2(1og(n))3/2)
This, by nf? > C log(n) and 6 < C, further implies
T3] < Cn§210g(n)

simultaneously for all 1 < i < n, with probability 1 — o(n~?). Based on the large deviation bounds
for 22:1 Tia, 2221 Ty, and T3, we therefore conclude that

S AU - A= > Q1= Q)i + 0y ((n67)*2/log(n))  (18)
J#LESk,i J#tESk,i

simultaneously for all i, where the probability is 1 — o(n~=3).

Next, we analyze the denominator 3, 5, (1 — A;j)Aj¢(1 — Ay;) . Analogously, we decompose

Z (1—A;5)A;(1 - Ay)

JALESk,i
= > (=951 - Q)
JHALESK
+ ) (1= Q)R (= W) + (1= Qi) We (1 = Qi) + (=Wiy)Qe(1 = Q)
J#tESk,:
+ Z - Wit(=Wii) + (= Wi )Wje (1 — Q) + (=Wiy) Qe (= W)
J#LESk i
+ > (—Whs)
JF#LESk,i
= Z (17913)9 ( Qtz +Z7-1a+z7—2a*T3
j;étesk,i a=1 a=1

Similarly to >°_, 71, and 2°_, Ty,, we can derive

|Ti1] < Cnb*\/nd2log(n), |Tiz| < Cné\/m, |T13] < Cnb*\/nh2log(n)

|T21] < CnB%log(n), |Tae| < Cnb?log(n), |Tas| < Cné*log(n)

by Bernstein inequality and decoupling inequality. Since the details are rather similar, we omit the
details. The above estimates, together with |T5| < Cnf?log(n), give rise to

D (I—AAu(l—Au) = Y (1=Q5)Q(1 — Q) + Oy ([(n6%)*? 4 nb]/log(n) )
JALESk,i JALESk,i
(19)

simultaneously for all 1 < i < n, with probability 1 — o(n=3).

Combining (T6), (T7), (I8) and (I9) into (T3)), we can further derive that

é, — Zj?ftes'k,i Aij(l - Ajt)Ati
l Zj?étGS'k,q:(l - AlJ)A ( Am)

Zj?étESk,i QZ ( QJt)QtZ +0 ( 3/2 V log + Tl27‘n92)
Ej#tesk,i(l — Qi) (1 — Q) + Op([(n )3/2 + nf)/log(n) + nzrn§2)

Zj;ﬁteskﬁi Qij(l - th)Qti _
- Qi5)2(1 — Qi) + 0p(8v/log(n)/n+12) (20)

Ej;étESk,i (1 o

15
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simultaneously for all 1 < i < n, where the high probability is at least 1 — o(n~3). Here we used
the crude estimate

ST (- Q)21 - Q) = (n)’
JALESk,i
under the assumption that the number of nodes in each community is balanced and the diagonal
entries of P are one so that ), oc 0;0; if j,t € Cy.

To proceed, we separate the analysis into two cases: (1) T = mg = eg; 2) T, = ex # ex, = .
This is because the leading term in 6; may vary with the two different cases.

For case (1), i € Cy, it follows that
Zj#tesk,¢ Qij(l - th)Qti . Zj;éfesk NZJNJthe 9 040; —9
Ej#esk i(l — Q)2 (1 — Q) Z#tesk N;;N;tN;0;0; ’

which is also claimed by Lemma[2.2]. In light of this, further with the condition in Theorem [3.2]that
ry, & 02 (note that r,, =< d,,), we conclude that

0; = 0; + O, (\/log(n)/n +1,/0) . 1)
simultaneously for all 1 < i < n, where the high probability is at least 1 — o(n=3).

For case (2), i ¢ Ci. Therefore, Q;; = N;;0;0; - Py where Ni; = (1 + 0,0, - Pyyp) ™", for all
j € C. As aresult,

Zj;étesk,i Qij(l - th)va' _ Z]#esk NzJNJtNtv‘g 6 0¢0; - Pkok
> jztes, (1= Qi) (1 - Q) > jztes, , NijNjtNub;0;
Note that Py, = 7} Pm; under this case and || P||max < C. We therefore conclude that
A ~ \/1 /0
b; = ¢/ (TIPIT)e,, :0; + Op(min{ (log(n)/nd?)/* + /i, Og )/ ra/ })
’ (P )e,
(P )ey, 3 + O, (B(log(n) /nd®) /4 + /) (22)

simultaneously for all 1 < i < n, where the high probability is at least 1 — o(n~3). By and
(22), we complete the proof.

_ p2p2
aipkgk'

C.3 THE ERROR RATE OF P
In this subsection, we prove the error rate of P, which is presented in the following lemma.

Lemma C.2 Under the assumptions in Theorem it hold with probability 1 — o(n=3) that

~ log(n Tn
||P_PHmax§C( TLQEQ) +é72)

where r,, denotes the Hamming error by directly applying SCORE.

Recalling the refitting formula of P,

= Zie@ Zje@ Aij

Py = = (23)
Zie@ Zje@ 0:0;(1 — Aij)
for k # £. We can rewrite it as
~ 1Al
Pre = —= k/ S
1,6(1,1, — A)O1,
For the numerator, we derive
1AL, = 1,Q1 4+ U W1, + (1) — 1)/ Al + 1, A1, — 1) + (I — 1) A1, — 1))
= 1,91, + O,(nf+/log(n) + n*r,0°) (24)

16



Published as a conference paper at ICLR 2025

where the high probability is at least 1 — o(n~3). Here to get the RHS, we used the following
estimates which can be obtained by employing Bernstein inequality,

|1;€W1g|<0(\/ Z 0;0; Pr¢log(n) + log(n )<C(n9\/Pkglog ) + log(n )

1€Cy,j€Ce
len,iALe — €5, 921 < O Z 0:0;10g(n) + log(n)) < C(1/n62log(n) + log(n)),
J€ECe
| En, LQlf| < Cnb*.

simultaneously for all 1 < i < nand 1 < k,¢ < K, with probability 1 — o(n~2). Note that the
second and third inequalities also imply that max;(e;, ; A1,) < C6? and furthermore,

’(ik — 1k)/Alg’ S ||i}C — 1;€||1 max(e;)iAln) S C’I’L2Tn(§2
K3

|(ik — 1k),A(i£ — lg)| S Hik — 1]¢||1 mlax( A]_n) < Cn 7’7,92

n,i

Next for denominator, we first have
/61,1, — 4)01,
=1,0(1,1, — A)01, + (I — 1,)'6(1,1), — A)01, +1,0(1,1, — A)O(1, — 1,)
=1,0(1,1, — A)B1s + 0, (n*r,0?)
Write A = © — diag(ﬁPH’ )©. We further derive

' O(1, A)O1, =1} diag(IIPI)O(1,1,, — A)Odiag(ILPII)1,
+1,A(1,1, — )@u + 1 diag(IIPI)O(1,1,, — A)Al,
=Ji+ o+ J;3

We analyze each term on the RHS as follows.
Ji = 1,diag(IIPI)O(1, 1/, — A)Odiag(I1PII)1,
= 1, diag(ILPI1)O(1,,1/, — Q)Odiag(IIPI)1, — 1} diag(ILPII)©W Odiag(IIPII)1,
where with probability 1 — o(n=3), since 1,1/, — 2 = 1,1/, — Qo N = N,
15 diag(ILPIT)© N ©diag(ILPII)1,
1,ONO1, + 1) (diag(ILPI) — I,,)ONOdiag(IIPII)1, + 1, O NO(diag(IIPII) — I,,)1,
Z 0:0;N;; + Op (n2rn§2) = n?f?

1€Cr,jECy

and
|1} diag(ILPIN)OW Odiag(ILPII)1,| < ||W||||1}diag(ILPIN)O|> < nf>V/nh? .

The last step of the above inequality is due to the non-asymptotic theory of random matrix which
gives ||[W| < vnf? with high probability. As a result,

J1 = Z HinNij + Op(TLQ’I“néQ) + Op((n§2)3/2) .

1€Cy,j€Cp

To proceed, we note that

AL = > lhi—6l+ > |6 —#Pmby|

1€C T =T PE€CK T £

§C’n( logén)—f—%n/é)—f'c (9<10g9(2))1/4+m)
< Cy/nlog(n) + Cnr, /0

17
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For Js,
|Jo] = [1,A(1,1), — A)O1,| < C||1,All1n0 < Cny/nb?log(n) + n’r, .
For J3,
|J3] = |1}, diag(ILPI)O(1,1), — A)AL| < C||1,A[[1n8 < Cny/nd? log(n) + n?r, .
Consequently,

/01,1, — A)6i, = Z 0;0,N;; + O, (n\/nH_Q log(n) + RZTn)

1€Cy,j€Cy

This, with (24), gives rise to
>icc, jec, 0103 Nij P + O,p(nd+/log(n) + n?r,6?)
S iccrecs 003 Nij + Op (n/nd log(n) + n2r, )
= Pie + Op(V/1og(n)/(nf) + 1 + \[log(n) /2 + 1,,/6)

= Pro + OP(\/W-F Tn/§2)

simultaneously for all 1 < k # ¢ < K, where the probability is at least 1 — o(n~3). This completes
the proof.

Py =

C.4 THE ERROR RATE OF N

In this subsection, we prove bounds for [N @ N — 1,1/ || and |[(N @ N — 1,,1/,) o €| under the
assumptions in Theorem [3.2] The results are provided as below.

Lemma C.3 Suppose the assumptions in Theorem[3.2 hold. Then,
(NN —1,1)||r < c( n@2 log(n) + nir, + né%ﬁrn) < M (Q)
I(NON —1,1.)0Q < 0(9’2 nd2 log(n) + nf2r, + né‘*,ﬂ) < (@)
with probability 1 — o(n=3).
We prove Lemma [C.3] below.
By definition,
NoN —1,1, = (OIIPII'6 — OIIPII'O) o N
It follows that
eh (NoN—1,1])en;
<l ;(BIIPII'6 — OIIPII'O)e,
< el (OI(P — P)II'O)e, ; + ¢, ;(O(Il — M)PII'O)e, ; + ¢, ;(OIP(Il — I1)'O)e,,;
+e,, ;(BIIPII'E — BIIPII'O)e,

By the error rates for refitting 6 and P, i.e.,

~ log(n T . log(n Tn e
1P~ Pl < 0(\ 228 7Y g —pg < oy B 4 ) iew =

and
16; — Pug 0:] < o(é(log(n)/n§2)1/4 T \/E) if 77 = e, i = exg, k % ko

18
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—3)

We can derive that with probability 1 — o(n ™"/, simultaneously for all 1 <3, j < n,

0 if 7, = #;

O, (éx/log(n)/n + Tn) if ; # 7;

0 N if ﬁz = T;
n,i Op (02) if ; 75 T
= ~ 0 if7, =m,;
e (OIIP(Il —II)'O)e, ;| = = o J 25
[ (OIPAL=I)'O)ens| =4 0 (@2) iz, £, 25)
and
|/, ,(BTIPIT'® — OIIPIT'O)e,, ;| = Op (? Vieg(n)/n + T") T =m % =% (2
' Op<92) ifﬁi;«émorﬁj#wj
Here we used the fact that f’kk =P, =1.
Combining the above estimates together, we obtain that
(No N - 1,15,)ij = Op(? Viog(n)/n + T”) £ = mi, &y = 7
OP(GZ) ifﬁi#morﬁj%ﬁj
Therefore, in light of ||TT — IT||; < nry, it yields that
INoN = 1,1,||p = Y (NoN);-1)?+ > (N @ N)y —1)2

i,j:ﬁ'i:ﬂ'i,ﬁ'j:ﬂ'j i7.7'57A|'i75ﬂ'i Or‘ﬁ'j;éﬂ'j

< C\/n2 (6+/1og(n)/n + rn)2 + n2r, 04
< C(0+y/nlog(n) + nry, +nb>/ry,)

with probability 1 — o(n~2). Due to the conditions that

< 6% =0, nd* > log(n),
we easily see that
INON —1,1,||r < C(/nlog(n) + nr, +nb2/r ) < M(Q)
since A1 (Q) = nf2.
Next, we consider ||[(N @ N — 1,1),) o Q||. Note that
NN —1,1/, = (6IIPII'6 — OIIPII'O) o

We consider || (éﬁﬁﬁ’@ — OIIPII'O) o Qo N|| instead. Since the rank of OIIPII'O — OIIPII'O
is at most 2K, we bound

[(NoN-1,1,)0Q| < ZNoQ (BIIPTI'6 — @HPH’@)

gHNonmAGHﬁT@—@HPEGM:
< V2K ||N 0 Q| max || OILPII'® — OIIPII'O)|
< C§?*||OIIPII'6 — OIPIT'O|
To proceed, we study the upper bound of ||OIIPII'© — OIIPII'O||. Note that
|BIIPII'® — OIIPII'O| < ||OIIPII'O — OIIPII'6||r < V2K ||OIIPII'O — OIIPII'O||
It suffices to study the upper bound of ||@ﬁﬁﬁ’ © — o1 PII ©|| r, which by previous arguments

and (26), is given by
|OIIPII'® — OIIPII'O| » < C(0/nlog(n) + nry, +nb>\/ry, )
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We thus conclude that
[(NoN-1,1,)0Q| < C(6%/nb2log(n) + nb>r, +nd*\/ry)
Our assumptions in Theorem [3.2]says that
\/Tﬁ)\min(P) > Clog(n), 7n < Amin(P), 7Tn < A (P)/60*
Using these conditions, together with [Ag (Q)| = 162 Amin (P), we easily derive that
(N o N —1,1,) 0 Q|| < C(82/nb2log(n) + nb?r, +nb /) < Ak (Q))]

This finishes the proof of error rates for N.

C.5 PROOF OF THEOREM [3.2]

We now prove Theorem [3.2] using the results in Sections[C.3]and [C-4] and Lemma 3.1}

To begin with, we verify the additional conditions in Lemma [3.1] (i.e., (I9] ) and (20])) under
the assumptions in Theorem Notice that r, =< 4, where §, = max{||(N — 1,1/) o

Q|12, A\ ((NZ)}//\%(Q) Specifically, in Section we have shown that

~ log(n Tn
||P_PHmax§C( TZHEZ) +972)

From the assumptions in Theorem [3.2] we have
V02 Agin(P) > Clog(n), 1, < min{|Amin(P)]6,6°}

It follows that || P — P||max = o(1) and

log(n)
nf?

n

Auin(P) = o(1),

Amnin (P)[ 710 = o(1).

Next, thanks to r,, < &, < A\2. (P)/6?,

T = TE|(v/7 [Amin(P)) 710 < Cv/Arn (Vi Amin (P)]) 710 < 1.

Therefore, the conditions in (I9) are satisfied. It was mentioning that in Section we have
validated . Lastly, by Lemma and the conditions that n6? > log(n),r, < 6%, we easily

see that §; < C4.

Therefore, we can apply the results in Lemma [3.1] which gives that

NON—1,1)0 Q|2+ 72 + A1 (Q)]
Pre@f

Tn (ﬁT’SCOT‘S) S C[H (

where 7, = /103 [\/n||P — P||max + ||[TI5"¢ — TI|].

Furthermore, we plug in the upper bounds of |\]3—P||max and || (N@N— 1,1/,)0Q]| in Sections
andand note that ||[TI*°" — T1|| < C'\/nr,, < Cv/nd,. Elementary computations lead to

I(NON—1,1")0Q|?+72 < C<n§4 log(n) + n?02%6% + n2§65n)

Thereby, we conclude the proof of Theorem 3.2}
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C.6 PROOF OF COROLLARY [3.1]

Using the assumptions that Ay, (P) > C for a constant C' > 0, we see that the condition of §,, in
Theorem [3.2]is reduced to -
5p < 62

Also, we can derive
[(N = 1,1],) 0 Q[2/A%(Q) < ||(N —1,1},) QII2/XA%(Q) < CO* < 62 =0

|
and
3 /22 (O 1 02
M)/ Ak (Q) < — <07,
nd
by the assumption that nf* — oco. Therefore, by Theorem [3.1] we obtain that

5 = 1o (Tie0re) < c(# + §4>

and §,, < 62. Then, the conditions in Theorem are satisfied. Therefore,
~ C ~ _ _ _
ra (i) < = (X (9) + 00" log(n) + n*6%5 + n?6°%,)
Ak ()

IN

n204 (néQ +n0*log(n) + n?02[1/(n?)* + 6%] + n?0°[1/n6* + 54])

where we used f = o(1) and nf* — co. We thus complete the proof of Corollary
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