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A NOTATIONS

Throughout this supplementary material, we will adopt the following notions. (1) Let {ek}Kk=1 be
the standard basis of RK . To distinguish, we use {en,i}ni=1 to denote the standard basis of Rn. (2)
We write 1m the all-one vector of dimension m. (3) For two sequence of numbers an, bn > 0
depending on n, we write an ≫ bn or bn ≪ an if bn/an = o(1) as n → ∞; and an ≍ bn
is there exists constants C, c > 0 such that cbn < an ≤ Cbn. (4) Let O(K − 1) be group of all
(K−1)×(K−1) orthogonal matrices. (5) For any matrix M ∈ Rm×m, let its SVD be M = UDV ′.
We adopt the notion that sgn(M) = UV ′. (6) We denote the (i, j)-th entry of a matrix M as M(i, j)
or Mij , and the i-th component of a vector u as u(i) or ui. (7) We denote c, C the generic constants
which may vary from line to line.

B THE ERROR RATE OF SCORE

B.1 PROOF OF THEOREM 3.1

The proof of Theorem 3.1 can be separated into two parts. First, we connect the Hamming error
with the error rates of SCORE vectors R where

R = diag(ξ1)
−1(ξ2, · · · , ξK)

with ξk denoted as the eigenvector associated with the k-th largest eigenvalue ( in magnitude) of Ω̃,
for 1 ≤ k ≤ K. The result is collected in the following lemma and the proof is postponed to next
subsection.

Lemma B.1 Let R̂ be the SCORE vectors obtained from the observed network (either A or A⊘ N̂ ).
Denote by R, the counterpart for Ω̃. Suppose that minO∈O(K−1) ∥R̂O − R∥2F = o(n). Then, the
Hamming error rn satisfies

rn = n−1
n∑

i=1

∥π̂i − πi∥1 ≤ n−1 min
{O∈O(K−1)}

∥R̂O −R∥2F

Next, we claim the error rate n−1 min{O∈O(K−1)} ∥R̂O−R∥2F by applying SCORE algorithm. The
key technical component is to conduct delicate eigenvector analysis and especially employ leave-
one-out technique to derive sharp entry-wise eigenvector bounds for ξ1. We present the result below,
and the proof is relegated into Section B.3.

Lemma B.2 Let R̃ denote the SCORE vectors by employing SCORE directly on A. Under the
assumptions in Theorem 3.1, it holds that with probability 1− o(n−3),

n−1 min
O∈O(K−1)

∥R̃O −R∥2F ≤ C
∥(N − 1n1

′
n) ◦ Ω̃∥2 + λ1(Ω̃)∣∣λK(Ω̃)

∣∣2
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Therefore, Theorem 3.1 follows directly from Lemmas B.1 and B.2. In particular, if A satisfies
DCBM, by definition, N − 1n1

′
n. Then, ∥(N − 1n1

′
n) ◦ Ω̃∥ = 0, which yields that

rn(Π̂
score) ≤ C

λ1(Ω̃)

|λK(Ω̃)|2
.

To complete the proof, we show the proofs of Lemmas B.1 and B.2 in the subsequent two subsec-
tions.

B.2 PROOF OF LEMMA B.1

The proof is similar to the proof of Theorem 2.2 SCORE (Jin, 2015), we provide the details below for
readers’ convenience. Without loss of generality, let us assume O = IK for simplicity. According
to (Jin, 2015), R contains exactly K distinct rows. Let r(1), · · · , r(K) be the K distinct rows in R.
To claim the bound, we first show that

∥r(k) − r(ℓ)∥ ≥ c1

for some constant c1 > 0. To see this, we note that (ξ1, ξ2, · · · , ξK) = (ξ1,Ξ1) = ΘΠB
for some B = (b1, b2, · · · , bK) ∈ RK×K . Then, it follows that BB′ = (Π′Θ2Π)−1 =
Pdiag([

∑
i∈C1

θ2i ]
−1, · · · , [

∑
i∈CK

θ2i ]
−1)P ′ for some permutation matrix P . Thanks to the con-

ditions that θi ≍ θ̄ and nk ≍ n for all 1 ≤ k ≤ K, the conditional number of BB′ is constant
and

λmin(BB′) ≍ λmax(BB′) ≍ 1

nθ̄2

In particular, as ξ1 = ΘΠb1, it is not hard to derive from ΘΠPΠ′Θξ1 = λ1ΘΠb1 that

PΠ′Θ2Πb1 = λ1b1

Therefore, b1 is the first right eigenvector of P (Π′Θ2Π). Under the condition in (17), |b1(k)| ≍
1/

√
nθ̄2 for all 1 ≤ k ≤ K. As a result,

|ξ1(i)| ≍ θi/
√
nθ̄2 ≍ 1/

√
n, ∥e′n,iΞ1∥ ≤ C/

√
n (1)

and
λmin(diag(b1)

−1B) ≥ c0

for some c0 > 0. Notice that

R = Π[diag(b1)
−1(b2, · · · , bK)] = Π(r′(1), · · · , r

′
(K))

′

Therefore,

∥r(i) − r(j)∥ = ∥e′idiag(b1)−1B − e′jdiag(b1)
−1B∥ ≥

√
2λmin(diag(b1)

−1B) ≥
√
2c0

for some c0 > 0. We define c1 = 2c0. Let V1, · · · , VK denote the disjoint index sets cor-
responding to r(1), · · · , r(K). The K-means algorithm aims to find a partition of the nodes
S∗ = (S1, S2, · · · , SK) such that

S∗ = argmin

K∑
k=1

∑
i∈Sk

∥r̂i −mk∥2, mk =
∑
i∈Sk

r̂i for 1 ≤ k ≤ K.

Define the output centers are m∗
1, · · · ,m∗

K . We introduce a matrix M = (m′
1, · · · ,m′

n)
′ such that

mi = m∗
k, if i ∈ Sk

Thus,
∥R̂−M∥2F ≤ ∥R̂−R∥2F and ∥R−M∥2F ≤ 4∥R̂−R∥2F

Let I := {i : ∥r̂i − ri∥ ≤
√
2c0/8, ∥mi − ri∥ ≤

√
2c0/8} and Ik = I ∩ Vk for 1 ≤ k ≤ K. We

first prove that the nodes in I are correctly recovered. It suffices to show that for any i ∈ Ik, j ∈ Iℓ,

mi = mj if and only if k = ℓ. (2)
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To see this, consider k ̸= ℓ, then ∥rk − rℓ∥ ≥
√
2c0. It further yields that for i ∈ Ik, j ∈ Iℓ

∥mi −mj∥ ≥ ∥ri − rj∥ − ∥mi − ri∥ − ∥mj − rj∥ ≥
√
2c0 · 3/4

Suppose that Ik ̸= ∅ for all 1 ≤ k ≤ K, then for every k, we select a point ik and its corresponding
mik . It follows that

∥mik −miℓ∥ ≥ ∥rik − riℓ∥ − ∥mik − rik∥ − ∥miℓ − riℓ∥ ≥
√
2c0 · 3/4

By doing so, we fix the K distinct rows in M . Thus, based on the above arguments, for any two
rows in M , their ℓ2 norm distance is either 0 or larger than

√
2c0 · 3/4. For any i, j ∈ Ik, since

∥mi −mj∥ ≤ ∥mi − rk∥+ ∥mj − rk∥ ≤
√
2c0/4,

it must hold that mi = mj .

To complete the proof of (2), we need to claim Ik ̸= ∅ for all 1 ≤ k ≤ K. We will prove by
contradiction. Suppose there exist k0 such that Ik0

= ∅. It follows that∑
i∈Vk0

∥r̂i − ri∥2 + ∥mi − ri∥2 ≥ |Vk0
|c0/32 ≥ c̃n

under the assumption that nk ≍ n for all 1 ≤ k ≤ K. This implies that ∥R̂−R∥2F+∥M−R∥2F ≥ c̃n.
Moreover,

∥R̂−R∥2F ≥ c̃n/5

which contradicts to ∥R̂ − R∥2F ≪ n. As a result, Ik ̸= ∅ for all 1 ≤ k ≤ K. We thus finish the
proof that nodes in I are exactly recovered.

Next, to finish the proof, we show that

|Ic| ≤ ∥R̂−R∥2F

Note that for i ∈ Ic, either ∥r̂i − ri∥ >
√
2c0/8 or ∥mi − ri∥ >

√
2c0/8. Since ∥M − R∥2F ≤

4∥R̂−R∥2F , we can obtain that

|Ic| ≤ ∥R̂−R∥2F
(
√
2c0/8)2

+
∥M −R∥2F
(
√
2c0/8)2

≤ 160

c20
∥R̂−R∥2F

Consequently,

rn =
∑
i∈I

∥π̂i − πi∥1 +
∑
i∈Ic

∥π̂i − πi∥1 ≤ 2|Ic| ≤ C1∥R̂−R∥2F

We thereby conclude the proof.

B.3 PROOF OF LEMMA B.2

We define (λ̃k, ξ̃k) be the k-th largest eigen-pair of A (in magnitude) for 1 ≤ k ≤ K. For simplicity,
write Ξ̃1 := (ξ̃2, · · · , ξ̃K). Without loss of generality, we assume that sgn(ξ̃′1ξ1) = 1. Let O :=

sgn(Ξ̃′
1Ξ1). By definition,

∥R̃O −R∥2F = ∥diag(ξ̃1)−1(Ξ̃1O − Ξ1)−
[
diag(ξ̃1)

−1 − diag(ξ1)
−1

]
Ξ1∥2F

≤ C
(
∥diag(ξ̃1)−1(Ξ̂1O − Ξ1)∥2F + ∥

[
diag(ξ̃1)

−1 − diag(ξ1)
−1

]
Ξ1∥2F

)
≤ C

(
∥diag(ξ̃1)−1(Ξ̃1O − Ξ1)∥2F + ∥ξ̃1 − ξ1∥2∥diag(ξ̃1)−1diag(ξ1)

−1Ξ1∥22→∞

)
(3)

According to the RHS, we need to prove an upper bounds for ∥Ξ̃1O − Ξ1∥F and ∥ξ̃1 − ξ1∥, and
further show that |ξ̃1(i)| ≍ 1/

√
n for 1 ≤ i ≤ n.
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First, we claim upper bounds for ∥Ξ̃1O − Ξ∥F and ∥ξ̃1 − ξ1∥. Using sine-theta theorem (Davis &
Kahan, 1970; Yu et al., 2015), we have

min{∥ξ̃1 − ξ1∥, ∥Ξ′
1ξ̃1∥} ≤ C

∥A− Ω̃∥
λ1(Ω̃)

∥Ξ̃1O − Ξ1∥F ≤ C
∥A− Ω̃∥
|λK(Ω̃)|

Since A = Ω̃ + (N − 1n1
′
n) ◦ Ω̃− diag(N ◦ Ω̃) +W = Ω̃ + W̃ , we thus bound

∥A− Ω̃∥ ≤ ∥(N − 1n1
′
n) ◦ Ω̃∥+ ∥diag(N ◦ Ω̃)∥+ ∥W∥ ≤ ∥(N − 1n1

′
n) ◦ Ω̃∥+ C

√
nθ̄2

with probability 1− o(n−3). Here we used the derivation

∥diag(N ◦ Ω̃)∥ ≤ ∥diag(Ω̃)∥ ≤ Cθ̄2, ∥W∥ ≤ C
√

nθ̄2

by the non-asymptotic bounds on the norm of random matrices in (Bandeira & Van Handel, 2016).
It is worth mentioning that λ1(Ω̃) = λ1(P (Π′Θ2Π)) ≍ nθ̄2. As a result,

min{∥ξ̃1 − ξ1∥, ∥Ξ′
1ξ̃1∥} ≤ C

∥(N − 1n1
′
n) ◦ Ω̃∥+

√
λ1(Ω̃)

λ1(Ω̃)

∥Ξ̃1O − Ξ1∥F ≤ C
∥(N − 1n1

′
n) ◦ Ω̃∥+

√
λ1(Ω̃)

|λK(Ω̃)|
(4)

Next, we aim to show that |ξ̃1(i)| ≍ 1/
√
n for 1 ≤ i ≤ n. Given that |ξ1(i)| ≍ 1/

√
n for 1 ≤ i ≤ n,

it suffices to show that ∥ξ̃1 − ξ1∥max ≪ 1/
√
n. To see this, we consider the eigen-perturbation that

ξ̃1 − ξ1 = (λ̃−1
1 λ1ξ

′
1ξ̃1 − 1)ξ1 + λ̃−1

1 Ξ1diag(λ2, · · · , λK)Ξ′
1ξ̃1 + λ̃−1

1 W̃ ξ̃1 .

By the first inequality in (4) and the Weyl’s inequality, we bound

|λ̃−1
1 λ1ξ

′
1ξ̃1 − 1| ≤ C

( |λ̃1 − λ1|
λ1

+ |ξ′1ξ̃1 − 1|
)
≤ C

(∥A− Ω̃∥
λ1

+ ∥ξ̃1 − ξ1∥2
)

≤ C
∥(N − 1n1

′
n) ◦ Ω̃∥+

√
λ1(Ω̃)

λ1(Ω̃)

and

∥λ̃−1
1 diag(λ2, · · · , λK)Ξ′

1ξ̃1∥ ≤ ∥Ξ′
1ξ̃1∥ ≤ C

∥(N − 1n1
′
n) ◦ Ω̃∥+

√
λ1(Ω̃)

λ1(Ω̃)

Based on these, we arrive at

|ξ̃1(i)− ξ1(i)| ≤
C√
n

∥(N − 1n1
′
n) ◦ Ω̃∥+

√
λ1(Ω̃)

λ1(Ω̃)
+

∣∣e′n,iW̃ ξ̃1
∣∣

nθ̄2

for 1 ≤ i ≤ n, due to the fact that |λ̃1 − λ1| ≤ ∥A − Ω̃∥ ≪ λ1 ≍ nθ̄2 and
max ∥ξ1∥max,maxi ∥e′n,iΞ∥ ≤ C/

√
n. Then, it suffices to derive an upper bound for e′n,iW̃ ξ̃1.

We first decompose

|e′n,iW̃ ξ̃1| ≤ |e′n,i(N − 1n1
′
n) ◦ Ω̃ξ̃1|+ |e′n,idiag(N ◦ Ω̃)ξ̃1|+ |e′n,iWξ̃1| ≤ θ̄2|ξ̃1(i)|+ |e′n,iWξ̃1|

Let ξ̃(i)1 be the first eigenvector of A(i) = Ω − diag(Ω) +W (i) where W (i) is obtained by zeroing
out the i-th row and column of W . Then,

|e′n,iWξ̃1| ≤ |e′n,iWξ̃
(i)
1 |+

√
nθ̄2∥ξ̃1 − ξ̃

(i)
1 ∥ (5)

By Bernstein inequality, we bound

|e′n,iWξ̃
(i)
1 | ≤ C(

√
θ̄2∥ξ̃(i)1 ∥2 log(n) + ∥ξ̃(i)1 ∥max log(n))

≤ C(θ̄
√
log(n) + ∥ξ̃1∥max log(n) + ∥ξ̃(i)1 − ξ̃1∥ log(n)) (6)
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simultaneously for all 1 ≤ i ≤ n, with probability 1− o(n−3).

To proceed, we analyze ∥ξ̃(i)1 − ξ̃1∥ below. By sine-theta theorem,

∥ξ̃(i)1 − ξ̃1∥ ≤ C
∥(A(i) −A)ξ̃1∥

nθ̄2
≤ C

∥en,ie′n,iWξ̃1∥
nθ̄2

+ C
∥Wen,ie

′
n,iξ̃1∥

nθ̄2

≤ C
|e′n,iWξ̃1|

nθ̄2
+ C

√
nθ̄2|ξ̃1(i)|
nθ̄2

(7)

Combining (5)-(7) gives

|e′n,iWξ̃1| ≤ C(θ̄
√
log(n) + ∥ξ̃1∥max log(n))

Consequently,

|ξ̃1(i)− ξ1(i)| ≤
C√
n

∥(N − 1n1
′
n) ◦ Ω̃∥+

√
λ1(Ω̃)

λ1(Ω̃)
+

C|ξ̃1(i)|
n

+
C

nθ̄2
(θ̄
√

log(n) + ∥ξ̃1∥max log(n))

By decomposing |ξ̃1(i)| ≤ |ξ1(i)| + |ξ̃1(i) − ξ1(i)| and ∥ξ̃1∥max ≤ ∥ξ1∥max + ∥ξ̃1 − ξ1∥max, we
further have

|ξ̃1(i)− ξ1(i)| ≤
C√
n

∥(N − 1n1
′
n) ◦ Ω̃∥

nθ̄2
+

C
√
log(n)

nθ̄
+ ∥ξ̃1 − ξ1∥max

log(n)

nθ̄2

Taking maximum and rearranging both sides, it follows that with probability 1− o(n−3),

∥ξ̃1 − ξ1∥max ≤ C√
n

∥(N − 1n1
′
n) ◦ Ω̃∥

nθ̄2
+

C
√
log(n)

nθ̄
≪ 1/

√
n

under the condition that
√
nθ̄2 ≥ C log(n) and ∥(N−1n1

′
n)◦Ω̃∥ ≪ nθ̄2. This completes the proof

of |ξ̃1(i)| ≍ 1/
√
n for 1 ≤ i ≤ n.

Therefore, we deduce from (3), (4) that with probability 1− o(n−3),

∥R̃O −R∥2F ≤ Cn
(
∥(Ξ̃1O − Ξ)∥2F + ∥ξ̃1 − ξ1∥2

)
≤ Cn

∥(N − 1n1
′
n) ◦ Ω̃∥2 + λ1(Ω̃)

|λK(Ω̃)|2

We thus finish the proof.

B.4 A REMARK ON ∥(N − 1n1
′
n) ◦ Ω̃∥

We discuss the relation of ∥(N − 1n1
′
n) ◦ Ω̃∥ with the eigenvalues of Ω̃ and Ω in the following

lemma.

Lemma B.3 The following inequalities hold.

∥(N − 1n1
′
n) ◦ Ω̃∥ ≤ ∥N − 1n1

′
n∥maxλ1(Ω̃)

|λK+1(Ω)| ≤ ∥(N − 1n1
′
n) ◦ Ω̃∥

Proof B.1 Notice that c < mini,j N(i, j) ≤ ∥N∥max < 1 for some constant c > 0. Then, (1n1
′
n −

N)◦Ω̃ is a symmetric matrix with positive entries. By Perron’s theorem (see (Horn & Johnson, 1985)
for example), the first eigenvector, denoted by u1, is a positive vector and λ1((1n1

′
n − N) ◦ Ω̃) =

∥(N − 1n1
′
n) ◦ Ω̃∥. It follows that

∥(N − 1n1
′
n) ◦ Ω̃∥ = u′

1(1n1
′
n −N) ◦ Ω̃u1 =

∑
i,j

u1(i)u1(j)(1−Nij)Ω̃ij

≤ ∥N − 1n1
′
n∥max ·

∑
i,j

u1(i)u1(j)Ω̃ij

≤ ∥N − 1n1
′
n∥maxλ1(Ω̃) .

5
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Next, we show the second inequality. Recall the decomposition

Ω = N ◦ Ω̃ = Ω̃ + (N − 1n1
′
n) ◦ Ω̃ .

By Weyl’s inequality (see (Horn & Johnson, 1985) for example),

|λK+1(Ω)− λK+1(Ω̃)| ≤ ∥Ω− Ω̃∥ ≤ ∥(N − 1n1
′
n) ◦ Ω̃∥

Since λK+1(Ω̃) = 0, we conclude that

|λK+1(Ω)| ≤ ∥(N − 1n1
′
n) ◦ Ω̃∥

C THE ERROR RATE OF R-SCORE

In this section, we mainly prove Lemma 3.1 and Theorem 3.2. We streamline the proofs as follows:

(1) We show the error rate of SCORE vectors by R-SCORE, i.e., ∥R̂ − R∥2F up to some or-
thogonal transformation. This, together with Lemma B.1 concludes the proof of Lemma 3.1
(see Section C.1);

(2) We prove the error rate of refitting θ and P (see Sections C.2 and C.3);

(3) Third, we investigate the error rate of N , more precisely, ∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥ and

∥N ⊘ N̂ − 1n1
′
n∥F (see Section C.4);

(4) Combining all the previous results, together with Lemma B.1, we complete the proof of
Theorem 3.2 (see Section C.5 );

(5) We also provide the brief proof of the Corollary 3.1, as it follows simply from Theorem 3.2.

The details are provided in the subsequent subsections.

C.1 PROOF OF LEMMA 3.1

Recall the assumption that N̂ satisties

1n1
′
n ⊘ N̂ − 1n1

′
n = Θ̂Π̂P̂ Π̂′Θ̂

such that with probability 1− o(n−3),

∥P̂ − P∥max ≪ min{1, λmin(P )θ̄−1}, ∥Π̂−Π∥(
√
nλmin(P ))−1θ̄ → 0,

and
θ̂i ≤ Cθ̄, θ̄ = o(1)

for some constant c, C > 0. It follows that N̂ij = (1 + θ̂iθ̂j π̂
′
iP̂ π̂j)

−1 > C for some constant
0 < C < 1 and N̂ij ≤ 1 for all 0 < i, j < n.

Let (λ̂k, ξ̂k) be the k-th largest eigen-pair of A ⊘ N̂ (in magnitude) for 1 ≤ k ≤ K. For brevity,
write Ξ̂1 := (ξ̂2, · · · , ξ̂K). Denote by (λk, ξk) and Ξ1 the counterparts for the low-rank matrix
Ω̃ = ΘΠPΠ′Θ. Without loss of generality, we assume both ξ̂1 and ξ1 are positive. Under these
notations, the SCORE vectors of A and Ω̃ are defined as

R̂ = (r̂1, r̂2, · · · , r̂n)′ = diag(ξ̂1)
−1Ξ̂1, R = (r1, r2, · · · , rn)′ = diag(ξ1)

−1Ξ1

We bound the error of R̂−R by the eigenvalues of A. Consider the SVD of Ξ̂′
1Ξ = UDV ′. Define

O := sgn(Ξ̂′
1Ξ1) = UV ′. Our model assumptions gives that λ1(Ω̃)− |λ2(Ω̃)| ≥ cλ1(Ω̃). Applying

sine-theta theorem (Davis & Kahan, 1970; Yu et al., 2015), we have

min{∥ξ̂1 − ξ1∥, ∥Ξ′
1ξ̂1∥} ≤ C

∥A⊘ N̂ − Ω̃∥
λ1(Ω̃)

∥Ξ̂1O − Ξ1∥F ≤ C
∥A⊘ N̂ − Ω̃∥

|λK(Ω̃)|

We write

A⊘ N̂ = Ω̃ + (N ⊘ N̂ − 1n1
′
n) ◦ Ω̃− diag(N ◦ Ω̃⊘ N̂) +W ⊘ N̂ := Ω̃ + W̃

6
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It follows that

∥W̃∥ ≤ ∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ ∥diag(N ◦ Ω̃⊘ N̂)∥+ ∥W ⊘ N̂∥

≤ ∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ ∥W ⊘N ◦ (N ⊘ N̂ − 1n1

′
n)∥+ C

√
nθ̄2

To obtain the RHS, we bound

∥diag(N ◦ Ω̃⊘ N̂)∥F ≤ C∥Ω̃∥max ≤ Cθ̄2

and

∥W ⊘ N̂∥ ≤ ∥W ⊘N∥+ ∥W ⊘N ◦ (N ⊘ N̂ − 1n1
′
n)∥

≤ C
√
nθ̄2 + ∥W ⊘N ◦ (N ⊘ N̂ − 1n1

′
n)∥

where we used non-asymptotic bounds on the norm of random matrices in (Bandeira & Van Handel,
2016) since W ⊘ N is a symmetric random matrix with independent upper triangular entries and
each entry in N of constant order. We further study ∥W ⊘N ◦ (N ⊘ N̂ −1n1

′
n)∥ as follows. Notice

that
N ⊘ N̂ − 1n1

′
n = (Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ) ◦N

by the definition of N and N̂ . Therefore, it suffices to bound

∥W ◦ (Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ)∥

Next, we decompose

∥W ◦ (Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ)∥
= ∥W ◦ Θ̂Π̂(P̂ − P )Π̂′Θ̂∥+ ∥W ◦ Θ̂(Π̂−Π)P Π̂′Θ̂∥+ ∥W ◦ Θ̂ΠP (Π̂−Π)′Θ̂∥

+ ∥W ◦ (Θ̂−Θ)ΠPΠ′Θ̂∥+ ∥W ◦ΘΠPΠ′(Θ̂−Θ)∥
=: T1 + T2 + T3 + T4 + T5

We bound each term separately below. For T1, we have

T1 = ∥Θ̂(W ◦ Π̂(P̂ − P )Π̂′)Θ̂∥ ≤ Cθ̄2∥W ◦ Π̂(P̂ − P )Π̂′∥ ≤ Cθ̄2∥P̂ − P∥max∥W∥F
≤ nθ̄3∥P̂ − P∥max

where ∥W∥F ≤
√
n∥W∥ ≤ Cnθ̄ with probability 1− o(n−3).

The analysis for bounding T2 and T3 is similar, we provide the details for T2 only.

T2 = ∥Θ̂(W ◦ (Π̂−Π)P Π̂′)Θ̂∥ ≤ Cθ̄2∥W ◦ (Π̂−Π)P Π̂′∥ ≤ Cθ̄2∥W ◦ (Π̂−Π)P Π̂′∥F

≤ Cθ̄2
√ ∑

i:π̂i ̸=πi

∑
j

W 2
ij [(π̂i − πi)′Pπ̂j ]2

≤ Cθ̄2
√ ∑

i:π̂i ̸=πi

∑
j

W 2
ij · 4∥P∥2max

≤ Cθ̄2∥W∥2→∞∥Π̂−Π∥

≤ θ̄2
√

nθ̄2∥Π̂−Π∥

The last step is due to fact that ∥e′n,iW∥ ≤
√
nθ̄2 simultaneously for all 1 ≤ i ≤ n with probability

1 − o(n−3) by Bernstein inequality. From here to the end of this subsection, with a slight abuse of
notation, we will use {ei}ni=1 to denote the standard basis of Rn for simplicity.

Next, for T4 and T5, the analysis is also analogous, and we show the bound for T4 in detail and omit
the proof for T5.

T4 = ∥(Θ̂−Θ)(W ◦ΠPΠ′)Θ̂∥ ≤ Cθ̄2∥W ◦ΠPΠ′∥ ≤ Cθ̄2
√
nθ̄2

7
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where we bound ∥W ◦ ΠPΠ′∥ ≤
√
nθ̄2 by non-asymptotic bound for random matrices since

∥ΠPΠ′∥max ≤ C and W ◦ ΠPΠ′ is symmetric random matrix with independent upper triangu-
lar entries.

Combining the discussions above, we have

∥W ◦ (Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ)∥ ≤ C
(
nθ̄3∥P̂ − P∥max + θ̄2

√
nθ̄2∥Π̂−Π∥+ θ̄2

√
nθ̄2

)
This further gives rise to

∥W̃∥ ≤ ∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ ∥W ◦ (Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ)∥+ C

√
nθ̄2

≤ ∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ C

(
nθ̄3∥P̂ − P∥max + θ̄2

√
nθ̄2∥Π̂−Π∥+

√
nθ̄2

)
≪ |λK(Ω̃)|

under the assumptions that

∥P̂ − P∥max ≪ λmin(P )/θ̄ ∥Π̂−Π∥ ≪
√
nλmin(P )/θ̄ ∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥ ≪ |λK(Ω̃)|

and
√
nθ̄2λmin(P ) ≥ c3 log(n) .

We note that λ1(Ω̃) ≍ nθ̄2 and |λK(Ω̃)| ≍ nθ̄2|λmin(P )|. In addition, we have the decomposition
Ω⊘N̂ = Ω̃+(N⊘N̂−1n1

′
n)◦Ω̃. Since ∥(N⊘N̂−1n1

′
n)◦Ω̃∥ ≪ |λK(Ω̃)| with high probability,

we obtain that
λk(Ω⊘ N̂) = λk(Ω̃)(1 + o(1)), for 1 ≤ k ≤ K.

Consequently, recall the definition that τn = nθ̄3∥P̂ − P∥max + θ̄2
√
nθ̄2∥Π̂−Π∥, we obtain

min{∥ξ̂1 − ξ1∥, ∥Ξ′
1ξ̂1∥} ≤ C

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ τn +

√
λ1(Ω̃)

λ1(Ω̃)
= o(1)

∥Ξ̂1O − Ξ∥F ≤ C
∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥+ τn +

√
λ1(Ω̃)∣∣λK(Ω̃)

∣∣ = o(1) (8)

with probability 1− o(n−3).

To proceed, we need to study the entry-wise error for ξ̂1 − ξ1. By (A⊘ N̂)ξ̂1 = λ̂1ξ̂1 and A⊘ N̂ =

Ω̃ + W̃ , we derive

ξ̂1 − ξ1 = (λ̂−1
1 λ1ξ

′
1ξ̂1 − 1)ξ1 + λ̂−1

1 Ξ1diag(λ2, · · · , λK)Ξ′
1ξ̂1 + λ̂−1

1 W̃ ξ̂1 .

We can bound

|λ̂−1
1 λ1ξ

′
1ξ̂1 − 1| ≤ C(|λ−1

1 (λ̂1 − λ1)|+ |ξ′1ξ̂1 − 1|) ≤ C
( ∥W̃∥
λ1(Ω̃)

+
∥W̃∥2

λ1(Ω̃)2

)

≤ C
∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥+ τn +

√
λ1(Ω̃)

λ1(Ω̃)

and

∥λ̂−1
1 diag(λ2, · · · , λK)Ξ′

1ξ̂1∥ ≤ ∥Ξ′
1ξ̂1∥ ≤ C

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ τn +

√
λ1(Ω̃)

λ1(Ω̃)

These give rise to

|ξ̂1(i)− ξ1(i)| ≤ C
∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥+ τn +

√
λ1(Ω̃)

λ1(Ω̃)
· 1√

n
+

|e′iW̃ ξ̂1|
nθ̄2

(9)

since ∥Ξ1(i)∥ ≤ 1/
√
n and ξ1(i) ≍ 1/

√
n following from the assumptions on Ω̃ (see (1)) .

8
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What remains to bound |e′iW̃ ξ̂1|/nθ̄2. Using the definition of W̃ , we first have

|e′iW̃ ξ̂1|
≤

∣∣e′i[(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃]ξ̂1

∣∣+ ∣∣(N ◦ Ω̃⊘ N̂)iiξ̂1(i)
∣∣+ ∣∣e′i(W ⊘ N̂)ξ̂1

∣∣
≤ ∥e′i[(Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ) ◦ Ω̃ ◦N ]∥1∥ξ̂1∥max + θ̄2

( 1√
n
+ |ξ̂1(i)− ξ1(i)|

)
+

∣∣ei(W ⊘ N̂)ξ̂1
∣∣

≤ nθ̄4
( 1√

n
+ ∥ξ̂1 − ξ∥max

)
+ θ̄2

( 1√
n
+ |ξ̂1(i)− ξ1(i)|

)
+

∣∣ei(W ⊘ N̂)ξ̂1
∣∣

Here we crudely bound

∥e′i[(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃]∥1 ≤ ∥e′i[(Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ) ◦ Ω̃ ◦N ]∥1 ≤ Cnθ̄4 .

and ∥N ◦ Ω̃⊘ N̂∥max ≤ C∥Ω̃∥max ≤ Cθ̄2 by the fact that all entries in N and N̂ are lowered bound
by a positive constant.

Regarding the last term on the RHS, i.e.,
∣∣ei(W ⊘ N̂)ξ̂1

∣∣, we have∣∣ei(W ⊘ N̂)ξ̂1
∣∣ ≤ ∣∣ei(W ⊘N)ξ̂1

∣∣+ ∣∣e′iW ⊘N ◦ (N ⊘ N̂ − 1n1
′
n)ξ̂1

∣∣
We study the second term below. Note that W⊘N◦(N⊘N̂−1n1

′
n) = W◦(Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ).

We bound∣∣e′iW ⊘N ◦ (N ⊘ N̂ − 1n1
′
n)ξ̂1

∣∣ ≤ |e′i(W ◦ Θ̂Π̂(P̂ − P )Π̂′Θ̂)ξ̂1|+ |e′i(W ◦ Θ̂(Π̂−Π)P Π̂′Θ̂)ξ̂1|

+ |e′i(W ◦ Θ̂ΠP (Π̂−Π)′Θ̂)ξ̂1|+ |e′i(W ◦ (Θ̂−Θ)ΠPΠ′Θ̂)ξ̂1|
+ |e′i(W ◦ΘΠPΠ′(Θ̂−Θ))ξ̂1|

For each term, we further have

|e′i(W ◦ Θ̂Π̂(P̂ − P )Π̂′Θ̂)ξ̂1| ≤ |e′iΘ̂(W ◦ Π̂(P̂ − P )Π̂′)Θ̂ξ̂1| ≤ θ̄2∥e′iW ◦ Π̂(P̂ − P )Π̂′∥1∥ξ̂1∥max

≤ θ̄2∥e′iW∥∥e′iΠ̂(P̂ − P )Π̂′∥∥ξ̂1∥max ≤ nθ̄3∥P̂ − P∥max∥ξ̂1∥max

|e′i(W ◦ Θ̂(Π̂−Π)P Π̂′Θ̂)ξ̂1| ≤ Cθ̄∥e′iW∥∥e′i(Π̂−Π)P Π̂′Θ̂) ◦ ξ̂1∥ ≤ Cθ̄2∥e′iW∥∥(Π̂−Π)P Π̂′∥max∥ξ̂1∥

≤ Cθ̄2∥e′iW∥ ≤ Cθ̄2
√
nθ̄2

|e′i(W ◦ Θ̂ΠP (Π̂−Π)′Θ̂)ξ̂1| ≤ Cθ̄∥eiW∥∥e′iΠP (Π̂−Π)′Θ̂) ◦ ξ̂1∥ ≤ Cθ̄2∥eiW∥ ≤ Cθ̄2
√
nθ̄2

|e′i(W ◦ (Θ̂−Θ)ΠPΠ′Θ̂)ξ̂1| ≤ |θ̂i − θi||e′i(W ◦ΠPΠ′)Θ̂ξ̂1| ≤ Cθ̄2∥e′i(W ◦ΠPΠ′)∥ ≤ Cθ̄2
√
nθ̄2

|e′i(W ◦ΘΠPΠ′(Θ̂−Θ))ξ̂1| ≤ Cθi|e′i(W ◦ΠPΠ′)(Θ̂−Θ)ξ̂1| ≤ Cθ̄2∥e′i(W ◦ΠPΠ′)∥ ≤ Cθ̄2
√

nθ̄2

Combining all these inequalities, we arrive at

|e′iW̃ ξ̂1|
nθ̄2

≤ C

n

( 1√
n
+ |ξ̂1(i)− ξ1(i)|

)
+ C(θ̄2 + θ̄∥P̂ − P∥max)

( 1√
n
+ ∥ξ̂1 − ξ1∥max

)
+

Cθ̄√
n
+

∣∣e′i(W ⊘N)ξ̂1
∣∣

nθ̄2
(10)

In the sequel, we analyze
∣∣e′i(W⊘N)ξ̂1

∣∣ by leave-one-out technique. Let ξ̂(i)1 be the first eigenvector
of

A(i) ⊘N = Ω̃− diag(Ω̃) +W (i) ⊘N

where W (i) is obtained by zeroing out the i-th row and column of W . Without loss of generality,
we assume sgn(ξ̂′1ξ̂

(i)
1 ) = 1. Thus,∣∣e′i(W ⊘N)ξ̂1

∣∣ ≤ ∣∣e′i(W ⊘N)ξ̂
(i)
1

∣∣+ ∥ei(W ⊘N)∥∥ξ̂1 − ξ̂
(i)
1 ∥

≤ C
(
θ̄
√
log(n) + ∥ξ̂(i)1 ∥max log(n) +

√
nθ̄2∥ξ̂1 − ξ̂

(i)
1 ∥

)
≤ C

(
θ̄
√
log(n) + ∥ξ̂1∥max log(n) +

√
nθ̄2∥ξ̂1 − ξ̂

(i)
1 ∥

)

9
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where we applied Bernstein inequality on e′i(W ⊘N)ξ̂
(i)
1 as e′i(W ⊘N) is independent of ξ̂(i)1 . And

the last step is due to the derivation

∥ξ̂(i)1 ∥max log(n) ≤
(
∥ξ̂1∥max + ∥ξ̂(i)1 − ξ̂1∥max

)
log(n) ≤ ∥ξ̂1∥max log(n) + ∥ξ̂(i)1 − ξ̂1∥

√
nθ̄2

under the condition that
√
nθ̄2λmin(P ) ≥ c3 log(n). Next, by sine-theta theorem, we bound

∥ξ̂1 − ξ̂
(i)
1 ∥ ≤

∥
(
W̃ −W (i) ⊘N + diag(Ω̃)

)
ξ̂1∥

nθ̄2

≤ ∥eie′i(W ⊘N)ξ̂1 + (W ⊘N)eie
′
iξ̂1∥

nθ̄2
+

∥
(
(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃

)
ξ̂1∥

nθ̄2

+
∥W ⊘N ◦ (N ⊘ N̂ − 1n1

′
n)ξ̂1∥

nθ̄2
+

C

n
(11)

where we used the decomposition

W̃ = (N ⊘ N̂ − 1n1
′
n) ◦ Ω̃− diag(N ◦ Ω̃⊘ N̂) +W ⊘N +W ⊘N ◦ (N ⊘ N̂ − 1n1

′
n)

and the crude bound ∥∥[diag(Ω̃)− diag(N ◦ Ω̃⊘ N̂)
]
ξ̂1
∥∥ ≤ Cθ̄2∥ξ̂1∥ ≤ Cθ̄2

following from N ⊘ N̂ ≤ C with high probability and ∥Ω̃∥max ≤ Cθ̄2. To proceed, we further
bound

∥
(
(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃

)
ξ̂1∥

nθ̄2
≤ ∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥

nθ̄2
≤ ∥N ⊘ N̂ − 1n1

′
n∥F

n
(12)

And we analyze the upper bound for ∥W ⊘N ◦ (N ⊘ N̂ − 1n1
′
n)ξ̂1∥ below. By definition,

∥W ⊘N ◦ (N ⊘ N̂ − 1n1
′
n)ξ̂1∥ =

√∑
i

(∑
j

(W ⊘N)ij(N ⊘ N̂ − 1n1′
n)ij ξ̂1(j)

)2

≤
√∑

i

∑
j

(N ⊘ N̂ − 1n1′
n)

2
ij ·

∑
j

(W ⊘N)2ij ξ̂1(j)
2

≤
√∑

i,j

(N ⊘ N̂ − 1n1′
n)

2
ij ·max

i

∑
j

(W ⊘N)2ij∥ξ̂1∥2max

≤ ∥N ⊘ N̂ − 1n1
′
n∥F ∥ξ̂1∥max

√
max

i

∑
j

(W ⊘N)2ij

where in the second step we used Cauchy-Schwarz inequality. Regarding the last factor inside the
square root, for each fixed i, it is a sum of independent r.v.s, so we can use Bernstein inequality to
get its high probability bound. Specifically, fixed an i, as N is deterministic and each entry of N is
≍ 1, we can derive the mean of

∑
j(W ⊘N)2ij is given by∑

j

E(W ⊘N)2ij ≍
∑
j

θiθj ≍ nθ̄2 ;

And the variance can be estimated by∑
j

var(W ⊘N)2ij ≤
∑
j

E(W ⊘N)4ij ≤ Cnθ̄2 .

Consequently, by Bernstein inequality, it is not hard to derive∣∣∣∑
j

(W ⊘N)2ij − E(W ⊘N)2ij

∣∣∣ ≤ C
√
nθ̄2 log(n) + C log(n) ≪ Cnθ̄2

with probability 1− o(n−4). Then, combining all i, it gives that

max
i

∑
j

(W ⊘N)2ij ≤ Cnθ̄2

10
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with probability 1− o(n−3). We thus obtain that

∥W ⊘N ◦ (N ⊘ N̂ − 1n1
′
n)ξ̂1∥ ≤ C∥N ⊘ N̂ − 1n1

′
n∥F ·

√
nθ̄∥ξ̂1∥max (13)

Next, we study the bound of ∥eie′i(W ⊘N)ξ̂1 + (W ⊘N)eie
′
iξ̂1∥ below.

∥eie′i(W ⊘N)ξ̂1 + (W ⊘N)eie
′
iξ̂1∥

≤ |e′i(W ⊘N)ξ̂1|+ ∥e′i(W ⊘N)∥|ξ̂1(i)|

≤ C
(
θ̄
√
log(n) + ∥ξ̂1∥max log(n) +

√
nθ̄2∥ξ̂1 − ξ̂

(i)
1 ∥+

√
nθ̄2|ξ̂1(i)|

)
. (14)

Combining (11) - (14), we get

∥ξ̂1 − ξ̂
(i)
1 ∥ ≤ C

(√
log(n)

nθ̄
+ ∥ξ̂1∥max

log(n)

nθ̄2
+

∥ξ̂1 − ξ̂
(i)
1 ∥√

nθ̄2

+
|ξ̂1(i)|√
nθ̄2

+
∥ξ̂1∥max∥N ⊘ N̂ − 1n1

′
n∥F√

nθ̄2

)
Rearranging both sides gives that

∥ξ̂1 − ξ̂
(i)
1 ∥ ≤ C

(√
log(n)

nθ̄
+ ∥ξ̂1∥max

1 + ∥N ⊘ N̂ − 1n1
′
n∥F√

nθ̄2

)
Consequently,∣∣ei(W ⊘N)ξ̂1

∣∣
nθ̄2

≤ C

(√
log(n)

nθ̄
+

∥ξ̂1∥max log(n)

nθ̄2
+

∥ξ̂1 − ξ̂
(i)
1 ∥√

nθ̄2

)
≤ C

(√
log(n)

nθ̄
+ ∥ξ̂1∥max

[ log(n)
nθ̄2

+
∥N ⊘ N̂ − 1n1

′
n∥F

nθ̄2

])
Plugging this and (10) into (9), we have

|ξ̂1(i)− ξ1(i)| ≤ C
∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥+ τn +

√
λ1(Ω̃)

λ1(Ω̃)
· 1√

n
+

Cθ̄√
n

+ C(θ̄2 + θ̄∥P̂ − P∥max)
( 1√

n
+ ∥ξ̂1 − ξ∥max

)
+

C

n
|ξ̂1(i)− ξ1(i)|

+ C

(√
log(n)

nθ̄
+ ∥ξ̂1∥max

[ log(n)
nθ̄2

+
∥N ⊘ N̂ − 1n1

′
n∥F

nθ̄2

])
Rearranging both sides, together with ∥ξ̂1∥max ≤ ∥ξ1∥max+∥ξ̂1−ξ1∥max ≤ C/

√
n+∥ξ̂1−ξ1∥max,

gives rise to

|ξ̂1(i)− ξ1(i)|

≤ C
(∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥+ τn

nθ̄2
+

√
log(n)√
nθ̄2

+
∥N ⊘ N̂ − 1n1

′
n∥F

nθ̄2
+ θ̄ + θ̄∥P̂ − P∥max

) 1√
n

+ C
(∥N ⊘ N̂ − 1n1

′
n∥F

nθ̄2
+ θ̄2 + θ̄∥P̂ − P∥max +

log(n)

nθ̄2

)
∥ξ̂1 − ξ1∥max

We further take maximum for both sides. Under the conditions that ∥(N ⊘ N̂ −1n1
′
n)◦ Ω̃∥ ≪ nθ̄2,

∥N ⊘ N̂ − 1n1
′
n∥F ≪ nθ̄2 and nθ̄2 ≥ C(log(n))2, together with θ̄∥P̂ − P∥max ≪ λmin(P ) ≤ C

and θ̄ = o(1), it yields that with probability 1− o(n−3),

∥ξ̂1 − ξ1∥max ≤ C√
n

(∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥+ τn

nθ̄2
+

√
log(n)√
nθ̄2

+
∥N ⊘ N̂ − 1n1

′
n∥F

nθ̄2

+ θ̄2 + θ̄∥P̂ − P∥max

)
≪ 1√

n

11
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Further by |ξ1(i)| ≍ 1/
√
n for 1 ≤ i ≤ n, we deduce that |ξ̂1(i)| ≍ 1/

√
n for 1 ≤ i ≤ n.

Now, by the definition of R̂, we can derive

∥R̂O −R∥2F = ∥diag(ξ̂1)−1(Ξ̂1O − Ξ)−
[
diag(ξ̂1)

−1 − diag(ξ1)
−1

]
Ξ1∥2F

≤ C
(
∥diag(ξ̂1)−1(Ξ̂1O − Ξ)∥2F + ∥

[
diag(ξ̂1)

−1 − diag(ξ1)
−1

]
Ξ1∥2F

)
≤ C

(
n∥Ξ̂1O − Ξ∥2F + ∥ξ̂1 − ξ1∥2∥diag(ξ̂1)−1diag(ξ1)

−1Ξ1∥22→∞

)
≤ C

(
n∥Ξ̂1O − Ξ∥2F + n ∥ξ̂1 − ξ1∥2

)
By (8), we conclude that

∥R̂O −R∥2F ≤ Cn
∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω∥2 + τ2n + λ1(Ω̃)∣∣λK(Ω̃)

∣∣2
with probability 1 − o(n−3). Now, combining the above result with Lemma B.1, we conclude the
proof of Lemma 3.1.

C.2 THE ERROR RATE OF θ

In this subsection, we prove the error rate for refitting θ under the assumptions in Theorem 3.2.The
results is collected in the following Lemma.

Lemma C.1 Under the assumptions in Theorem 3.2, it holds that with probability 1− o(n−3),∣∣θ̂i − θi
∣∣ ≤ C

(√
log(n)/n+ rn/θ̄

)
, if π̂i = πi;∣∣θ̂i − Pkk0

θi
∣∣ ≤ C

(
θ̄(log(n)/nθ̄2)1/4 +

√
rn

)
, if π̂i = ek ̸= ek0

= πi.

where rn is the Hamming error of the Π̂ by directly SCORE and {ek}Kk=1 represents the standard
basis of RK .

We prove Lemma C.1 below.

Recall the refitting formula for θ:

θ̂i =

√√√√ ∑
j ̸=t∈Ŝk,i

Aij(1−Ajt)Ati∑
j ̸=t∈Ŝk,i

(1−Aij)Ajt(1−Ati)
(15)

where i ∈ Ĉk and Ŝk,i = Ĉk \ {i}. Using the error rate of Π̂ from SCORE, i.e., ∥Π̂ − Π∥1 ≤ nrn,
we first crudely bound the numerator and denominator in the expression of θ̂i. Let 1̂k and 1k denote
the k0th column of Π̂ and Π, respectively.∑

j ̸=t∈Ŝk,i

Aij(1−Ajt)Ati

= e′n,iAdiag
(
1̂k
)
(1n1

′
n − In −A)diag

(
1̂k
)
Aen,i

= e′n,iAdiag
(
1k
)
(1n1

′
n − In −A)diag

(
1k
)
Aen,i + e′n,iAdiag

(
1̂k − 1k

)
(1n1

′
n − In −A)diag

(
1k
)
Aen,i

+ e′n,iAdiag
(
1̂k
)
(1n1

′
n − In −A)diag

(
1̂k − 1k

)
Aen,i

For the second and third terms on the RHS above, we bound∣∣e′n,iAdiag
(
1̂k − 1k

)
(1n1

′
n − In −A)diag

(
1k
)
Aen,i + e′n,iAdiag

(
1̂k
)
(1n1

′
n − In −A)diag

(
1̂k − 1k

)
Aen,i

∣∣
≤ 2∥e′n,iA∥1 · ∥e′n,iAdiag

(
1̂k − 1k

)
∥1

≤ Cnθ̄2∥1̂k − 1k∥1 ≤ Cnθ̄2∥Π̂−Π∥1 ≤ Cn2rnθ̄
2

12
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where to obtain the third line, we used

∥e′n,iA∥1 =
∑
j ̸=i

Aij =
∑
j ̸=i

Ωij +
∑
j ̸=i

Wij = nθ̄2 +O(
√
nθ̄2 log(n) )

∥e′n,iAdiag
(
1̂k − 1k

)
∥1 ≤ ∥e′n,iA∥max∥1̂k − 1k∥1 ≤ ∥1̂k − 1k∥1

simultaneously for all 1 ≤ i ≤ n, with probability 1 − o(n−3). Here Bernstein inequality is
employed to derive∣∣∣∑

j ̸=i

Wij

∣∣∣ ≤ C
(√∑

j ̸=i

var(Wij) log(n) + log(n)
)
≤ C

√
nθ̄2 log(n)

by noting that Wij is with mean 0 and variance

var(Wij) = Ωij(1− Ωij) ≤ θiθj

and the condition nθ̄2 ≥ C log(n). Therefore,∣∣∣ ∑
j ̸=t∈Ŝk,i

Aij(1−Ajt)Ati −
∑

j ̸=t∈Sk,i

Aij(1−Ajt)Ati

∣∣∣ ≤ Cn2rnθ̄
2 . (16)

simultaneously for all 1 ≤ i ≤ n, with probability 1− o(n−3). Similarly, we can show that∣∣∣ ∑
j ̸=t∈Ŝk,i

(1−Aij)Ajt(1−Ati)−
∑

j ̸=t∈Sk,i

(1−Aij)Ajt(1−Ati)
∣∣∣

≤ C∥1̂k − 1k∥1 · nθ̄2 ≤ C∥Π̂−Π∥1nθ̄2 ≤ n2rnθ̄
2 . (17)

To proceed, we study
∑

j ̸=t∈Sk,i
Aij(1 − Ajt)Ati and

∑
j ̸=t∈Sk,i

(1 − Aij)Ajt(1 − Ati) instead.
Recall the decomposition A = Ω− diag(Ω)−W . For the numerator, we decompose∑

j ̸=t∈Sk,i

Aij(1−Ajt)Ati

=
∑

j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti +
∑

j ̸=t∈Sk,i

Wij(1− Ωjt)Ωti +Ωij(−Wjt)Ωti +Ωij(1− Ωjt)Wti

+
∑

j ̸=t∈Sk,i

Wij(−Wjt)Ωti +Ωij(−Wjt)Wti +Wij(1− Ωjt)Wti

+
∑

j ̸=t∈Sk,i

Wij(−Wjt)Wti

=:
∑

j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti +

3∑
a=1

T1a +

3∑
a=1

T2a + T3

We analyze each term on the RHS above one by one. Note that Wij is with mean 0 and variance

var(Wij) = Ωij(1− Ωij) ≤ θiθj

and the trivial bound |Wij

∑
t̸=j(1−Ωjt)Ωti| < nθ̄2 (similarly for each summand in T12 and T13).

By Bernstein inequality,

|T11| ≤ C
(√∑

j

θiθj
(∑

t ̸=j

(1− Ωjt)Ωti

)2
log(n) + nθ̄2 log(n)

)
≤ Cnθ̄2

(√
nθ̄2 log(n) + log(n)

)
|T12| ≤ 2C

(√∑
j<t

θjθt(Ωij)2(Ωti)2 log(n) + log(n)
)
≤ C

(
nθ̄5

√
log(n) + log(n)

)
|T13| ≤ C

(√∑
t

θtθi
(∑

j ̸=t

Ωij(1− Ωjt)
)2

log(n) + nθ̄2 log(n)
)
≤ Cnθ̄2

(√
nθ̄2 log(n) + log(n)

)

13
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simultaneously for all 1 ≤ i ≤ n, with probability 1− o(n−3). Consequently,∣∣∣ 3∑
a=1

T1a

∣∣∣ ≤ Cnθ̄2
√
nθ̄2 log(n) .

following from the condition that nθ̄2 ≥ C log(n), which is implied by condition (16) in the
manuscript.

Regarding T2a for a = 1, 2, 3 and T3, their large deviation bounds can be tackled by decoupling
inequality for U-statistics in de la Pena & Montgomery-Smith (1995). Specifically, implied by this
technique, the large deviation bound of T21 is dominated by that of

T̃21 :=
∑

j ̸=t∈Sk,i

Wij(−W
(1)
jt )Ωti

where W (1) is an i.i.d. copy of W . Thanks to this independence, we first condition on W (1) and use
Bernstein inequality to get

|T̃21| ≤ C
[√ ∑

j∈Sk,i

θiθj
( ∑
t ̸=j∈Sk,i

ΩtiW
(1)
jt

)2
log(n) + max

j

∣∣∣ ∑
t̸=j∈Sk,i

ΩtiW
(1)
jt

∣∣∣ log(n)]
Next, by Bernstein inequality again, we obtain∣∣∣ ∑

t ̸=j∈Sk,i

ΩtiW
(1)
jt

∣∣∣ ≤ C
(√

nθ̄6 log(n) + θ̄2 log(n)
)

Combining the above inequalities, we arrive at

|T̃21| ≤ C
(
nθ̄4log(n) +

√
nθ̄2θ̄2(log(n))3/2

)
.

simultaneously for all 1 ≤ i ≤ n, with probability 1− o(n−3). Therefore,

|T21| ≤ C
(
nθ̄4log(n) +

√
nθ̄2θ̄2(log(n))3/2

)
.

In the same manner, we can show that

|T22| ≤ C
(
nθ̄4log(n) +

√
nθ̄2θ̄2(log(n))3/2

)
, |T23| ≤ Cnθ̄2log(n)

As a result, ∣∣∣ 3∑
a=1

T2a

∣∣∣ ≤ Cnθ̄2log(n) .

under the condition nθ̄2 ≥ C log(n) and θ̄ ≤ C.

Lastly, we prove the large deviation bound for T3. Using decoupling inequality for U-statistics, it
suffices to prove a large deviation bound for T̃3 with

T̃3 :=
∑

j ̸=t∈Sk,i

Wij(−W
(1)
jt )W

(2)
ti

Here W (1) and W (2) are two i.i.d. copies of W . Condition on W (1),W (2), by Bernstein inequality,

|T̃3| ≤ C
(√ ∑

j∈Sk,i

θiθj
( ∑
t̸=j∈Sk,i

W
(1)
jt W

(2)
ti

)2
log(n) + max

j

∣∣∣ ∑
t ̸=j∈Sk,i

W
(1)
jt W

(2)
ti

∣∣∣ log(n))
In addition, for

∑
t̸=j∈Sk,i

W
(1)
jt W

(2)
ti , each summand is independent of each other. By Bernstein

inequality, we can similarly get∣∣∣ ∑
t ̸=j∈Sk,i

W
(1)
jt W

(2)
ti

∣∣∣ ≤ C
(√

nθ̄4 log(n) + log(n)
)

14
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Consequently,
|T̃3| ≤ C

(
nθ̄3 log(n) +

√
nθ̄2(log(n))3/2

)
This, by nθ̄2 ≥ C log(n) and θ̄ ≤ C, further implies

|T3| ≤ Cnθ̄2log(n)

simultaneously for all 1 ≤ i ≤ n, with probability 1− o(n−3). Based on the large deviation bounds
for

∑3
a=1 T1a,

∑3
a=1 T2a and T3, we therefore conclude that∑

j ̸=t∈Sk,i

Aij(1−Ajt)Ati =
∑

j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti +Op

(
(nθ̄2)3/2

√
log(n)

)
(18)

simultaneously for all i, where the probability is 1− o(n−3).

Next, we analyze the denominator
∑

j ̸=t∈Sk,i
(1−Aij)Ajt(1−Ati) . Analogously, we decompose∑

j ̸=t∈Sk,i

(1−Aij)Ajt(1−Ati)

=
∑

j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti)

+
∑

j ̸=t∈Sk,i

(1− Ωij)Ωjt(−Wti) + (1− Ωij)Wjt(1− Ωti) + (−Wij)Ωjt(1− Ωti)

+
∑

j ̸=t∈Sk,i

(1− Ωij)Wjt(−Wti) + (−Wij)Wjt(1− Ωti) + (−Wij)Ωjt(−Wti)

+
∑

j ̸=t∈Sk,i

(−Wij)Wjt(−Wti)

=:
∑

j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti) +

3∑
a=1

T1a +
3∑

a=1

T2a − T3

Similarly to
∑3

a=1 T1a and
∑3

a=1 T2a, we can derive

|T11| ≤ Cnθ̄2
√
nθ̄2 log(n), |T12| ≤ Cnθ̄

√
log(n), |T13| ≤ Cnθ̄2

√
nθ̄2 log(n)

|T21| ≤ Cnθ̄2 log(n), |T22| ≤ Cnθ̄2 log(n), |T23| ≤ Cnθ̄4 log(n)

by Bernstein inequality and decoupling inequality. Since the details are rather similar, we omit the
details. The above estimates, together with |T3| ≤ Cnθ̄2log(n), give rise to∑
j ̸=t∈Sk,i

(1−Aij)Ajt(1−Ati) =
∑

j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti) +Op

(
[(nθ̄2)3/2 + nθ̄]

√
log(n)

)
(19)

simultaneously for all 1 ≤ i ≤ n, with probability 1− o(n−3).

Combining (16), (17), (18) and (19) into (15), we can further derive that

θ̂i =

√√√√ ∑
j ̸=t∈Ŝk,i

Aij(1−Ajt)Ati∑
j ̸=t∈Ŝk,i

(1−Aij)Ajt(1−Ati)

=

√√√√ ∑
j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti +Op

(
(nθ̄2)3/2

√
log(n) + n2rnθ̄2

)∑
j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti) +Op

(
[(nθ̄2)3/2 + nθ̄]

√
log(n) + n2rnθ̄2

)
=

√√√√ ∑
j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti∑
j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti)
+Op

(
θ̄
√
log(n)/n+ rn

)
(20)
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simultaneously for all 1 ≤ i ≤ n, where the high probability is at least 1 − o(n−3). Here we used
the crude estimate ∑

j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti) ≍ (nθ̄)2

under the assumption that the number of nodes in each community is balanced and the diagonal
entries of P are one so that Ωjt ∝ θjθt if j, t ∈ Ck.

To proceed, we separate the analysis into two cases: (1) π̂ = π0 = ek; (2) π̂i = ek ̸= ek0
= πi.

This is because the leading term in θ̂i may vary with the two different cases.

For case (1), i ∈ Ck, it follows that∑
j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti∑
j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti)
=

∑
j ̸=t∈Sk,i

NijNjtNtiθiθjθtθi∑
j ̸=t∈Sk,i

NijNjtNtiθjθt
= θ2i

which is also claimed by Lemma 2.2 . In light of this, further with the condition in Theorem 3.2 that
rn ≪ θ̄2 (note that rn ≍ δn), we conclude that

θ̂i = θi +Op

(√
log(n)/n+ rn/θ̄

)
. (21)

simultaneously for all 1 ≤ i ≤ n, where the high probability is at least 1− o(n−3).

For case (2), i /∈ Ck. Therefore, Ωij = Nijθiθj · Pk0k where Nij = (1 + θiθj · Pk0k)
−1, for all

j ∈ Ck. As a result,∑
j ̸=t∈Sk,i

Ωij(1− Ωjt)Ωti∑
j ̸=t∈Sk,i

(1− Ωij)Ωjt(1− Ωti)
=

∑
j ̸=t∈Sk,i

NijNjtNtiθiθjθtθi · P 2
k0k∑

j ̸=t∈Sk,i
NijNjtNtiθjθt

= θ2i P
2
k0k

Note that Pk0k = π̂′
iPπi under this case and ∥P∥max ≤ C. We therefore conclude that

θ̂i = e′n,i(Π̂PΠ′)en,iθi +Op

(
min

{
θ̄(log(n)/nθ̄2)1/4 +

√
rn,

√
log(n)/n+ rn/θ̄

e′n,i(Π̂PΠ′)en,i

})
= e′n,i(Π̂PΠ′)en,iθi +Op

(
θ̄(log(n)/nθ̄2)1/4 +

√
rn
)
. (22)

simultaneously for all 1 ≤ i ≤ n, where the high probability is at least 1 − o(n−3). By (21) and
(22), we complete the proof.

C.3 THE ERROR RATE OF P

In this subsection, we prove the error rate of P , which is presented in the following lemma.

Lemma C.2 Under the assumptions in Theorem 3.2, it hold with probability 1− o(n−3) that

∥P̂ − P∥max ≤ C
(√ log(n)

nθ̄2
+

rn
θ̄2

)
where rn denotes the Hamming error by directly applying SCORE.

Recalling the refitting formula of P ,

P̂kℓ =

∑
i∈Ĉk

∑
j∈Ĉℓ

Aij∑
i∈Ĉk

∑
j∈Ĉℓ

θ̂iθ̂j(1−Aij)
(23)

for k ̸= ℓ. We can rewrite it as

P̂kℓ =
1̂′kA1̂ℓ

1̂′kΘ̂(1n1′
n −A)Θ̂1̂ℓ

For the numerator, we derive

1̂′kA1̂ℓ = 1′kΩ1ℓ + 1′kW1ℓ + (1̂k − 1k)
′A1ℓ + 1′kA(1̂ℓ − 1ℓ) + (1̂k − 1k)

′A(1̂ℓ − 1ℓ)

= 1′kΩ1ℓ +Op(nθ̄
√
log(n) + n2rnθ̄

2
)

(24)
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where the high probability is at least 1 − o(n−3). Here to get the RHS, we used the following
estimates which can be obtained by employing Bernstein inequality,

|1′kW1ℓ| ≤ C
(√ ∑

i∈Ck,j∈Cℓ

θiθjPkℓ log(n) + log(n)
)
≤ C

(
nθ̄

√
Pkℓ log(n) + log(n)

)
,

|e′n,iA1ℓ − e′n,iΩ1ℓ| ≤ C
(√∑

j∈Cℓ

θiθj log(n) + log(n)
)
≤ C

(√
nθ̄2 log(n) + log(n)

)
,

|e′n,iΩ1ℓ| ≤ Cnθ̄2 .

simultaneously for all 1 ≤ i ≤ n and 1 ≤ k, ℓ ≤ K, with probability 1 − o(n−3). Note that the
second and third inequalities also imply that maxi(e

′
n,iA1n) ≤ Cθ̄2 and furthermore,∣∣(1̂k − 1k)

′A1ℓ
∣∣ ≤ ∥1̂k − 1k∥1 max

i
(e′n,iA1n) ≤ Cn2rnθ̄

2

|(1̂k − 1k)
′A(1̂ℓ − 1ℓ)| ≤ ∥1̂k − 1k∥1 max

i
(e′n,iA1n) ≤ Cn2rnθ̄

2

Next for denominator, we first have

1̂′kΘ̂(1n1
′
n −A)Θ̂1̂ℓ

= 1′kΘ̂(1n1
′
n −A)Θ̂1ℓ + (1̂k − 1k)

′Θ̂(1n1
′
n −A)Θ̂1̂ℓ + 1′kΘ̂(1n1

′
n −A)Θ̂(1̂ℓ − 1ℓ)

= 1′kΘ̂(1n1
′
n −A)Θ̂1ℓ +Op(n

2rnθ̄
2)

Write ∆ = Θ̂− diag(Π̂PΠ′)Θ. We further derive

1′kΘ̂(1n1
′
n −A)Θ̂1ℓ =1′kdiag(Π̂PΠ)Θ(1n1

′
n −A)Θdiag(Π̂PΠ)1ℓ

+ 1′k∆(1n1
′
n −A)Θ̂1ℓ + 1′kdiag(Π̂PΠ)Θ(1n1

′
n −A)∆1ℓ

=: J1 + J2 + J3

We analyze each term on the RHS as follows.

J1 = 1′kdiag(Π̂PΠ)Θ(1n1
′
n −A)Θdiag(Π̂PΠ)1ℓ

= 1′kdiag(Π̂PΠ)Θ(1n1
′
n − Ω)Θdiag(Π̂PΠ)1ℓ − 1′kdiag(Π̂PΠ)ΘWΘdiag(Π̂PΠ)1ℓ

where with probability 1− o(n−3), since 1n1
′
n − Ω = 1n1

′
n − Ω̃ ◦N = N ,

1′kdiag(Π̂PΠ)ΘNΘdiag(Π̂PΠ)1ℓ

= 1′kΘNΘ1ℓ + 1′k(diag(Π̂PΠ)− In)ΘNΘdiag(Π̂PΠ)1ℓ + 1′kΘNΘ(diag(Π̂PΠ)− In)1ℓ

=
∑

i∈Ck,j∈Cℓ

θiθjNij +Op

(
n2rnθ̄

2
)
≍ n2θ̄2

and ∣∣1′kdiag(Π̂PΠ)ΘWΘdiag(Π̂PΠ)1ℓ
∣∣ ≤ ∥W∥∥1′kdiag(Π̂PΠ)Θ∥2 ≤ nθ̄2

√
nθ̄2 .

The last step of the above inequality is due to the non-asymptotic theory of random matrix which
gives ∥W∥ ≤

√
nθ̄2 with high probability. As a result,

J1 =
∑

i∈Ck,j∈Cℓ

θiθjNij +Op

(
n2rnθ̄

2
)
+Op

(
(nθ̄2)3/2

)
.

To proceed, we note that

∥1′k∆∥1 =
∑

i∈Ck:π̂i=πi

|θ̂i − θi|+
∑

i∈Ck:π̂i ̸=πi

|θ̂i − π̂′
iPπiθi|

≤ Cn
(√ log(n)

n
+ rn/θ̄

)
+ Cnrn

(
θ̄
( log(n)

nθ̄2

)1/4

+
√
rn

)
≤ C

√
n log(n) + Cnrn/θ̄
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For J2,

|J2| = |1′k∆(1n1
′
n −A)Θ̂1ℓ| ≤ C∥1′k∆∥1nθ̄ ≤ Cn

√
nθ̄2 log(n) + n2rn .

For J3,

|J3| = |1′kdiag(Π̂PΠ)Θ(1n1
′
n −A)∆1ℓ| ≤ C∥1′ℓ∆∥1nθ̄ ≤ Cn

√
nθ̄2 log(n) + n2rn .

Consequently,

1̂′kΘ̂(1n1
′
n −A)Θ̂1̂ℓ =

∑
i∈Ck,j∈Cℓ

θiθjNij +Op

(
n
√
nθ̄2 log(n) + n2rn

)
This, with (24), gives rise to

P̂kℓ =

∑
i∈Ck,j∈Cℓ

θiθjNijPkℓ +Op(nθ̄
√
log(n) + n2rnθ̄

2
)

∑
i∈Ck,j∈Cℓ

θiθjNij +Op

(
n
√
nθ̄2 log(n) + n2rn

)
= Pkℓ +Op

(√
log(n)/(nθ̄) + rn +

√
log(n)/nθ̄2 + rn/θ̄

2
)

= Pkℓ +Op

(√
log(n)/nθ̄2 + rn/θ̄

2
)

simultaneously for all 1 ≤ k ̸= ℓ ≤ K, where the probability is at least 1− o(n−3). This completes
the proof.

C.4 THE ERROR RATE OF N

In this subsection, we prove bounds for ∥N ⊘ N̂ − 1n1
′
n∥F and ∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥ under the

assumptions in Theorem 3.2. The results are provided as below.

Lemma C.3 Suppose the assumptions in Theorem 3.2 hold. Then,

∥(N ⊘ N̂ − 1n1
′
n)∥F ≤ C

(√
nθ̄2 log(n) + nrn + nθ̄2

√
rn

)
≪ λ1(Ω̃)

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥ ≤ C

(
θ̄2
√
nθ̄2 log(n) + nθ̄2rn + nθ̄4

√
rn

)
≪ |λK(Ω̃)|

with probability 1− o(n−3).

We prove Lemma C.3 below.

By definition,

N ⊘ N̂ − 1n1
′
n = (Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ) ◦N

It follows that

e′n,i
(
N ⊘ N̂ − 1n1

′
n

)
en,j

≤ e′n,i
(
Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ

)
en,j

≤ e′n,i
(
Θ̂Π̂(P̂ − P )Π̂′Θ̂

)
en,j + e′n,i

(
Θ̂(Π̂−Π)P Π̂′Θ̂

)
en,j + e′n,i

(
Θ̂ΠP (Π̂−Π)′Θ̂

)
en,j

+ e′n,i
(
Θ̂ΠPΠ′Θ̂−ΘΠPΠ′Θ

)
en,j

By the error rates for refitting θ and P , i.e.,

∥P̂ − P∥max ≤ C
(√ log(n)

nθ̄2
+

rn
θ̄2

)
, |θ̂i − θi| ≤ C

(√ log(n)

n
+

rn
θ̄

)
, if π̂i = πi

and
|θ̂i − Pkk0

θi| ≤ C
(
θ̄(log(n)/nθ̄2)1/4 +

√
rn

)
, if π̂i = ek, πi = ek0

, k ̸= k0
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We can derive that with probability 1− o(n−3), simultaneously for all 1 ≤ i, j ≤ n,∣∣e′n,i(Θ̂Π̂(P̂ − P )Π̂′Θ̂
)
en,j

∣∣ = {
0 if π̂i = π̂j

Op

(
θ̄
√

log(n)/n+ rn

)
if π̂i ̸= π̂j∣∣e′n,i(Θ̂(Π̂−Π)P Π̂′Θ̂

)
en,j

∣∣ = {
0 if π̂i = πi

Op

(
θ̄2
)

if π̂i ̸= πi∣∣e′n,i(Θ̂ΠP (Π̂−Π)′Θ̂
)
en,j

∣∣ = {
0 if π̂j = πj

Op

(
θ̄2
)

if π̂j ̸= πj
(25)

and∣∣e′n,i(Θ̂ΠPΠ′Θ̂−ΘΠPΠ′Θ
)
en,j

∣∣ = {
Op

(
θ̄
√

log(n)/n+ rn

)
if π̂i = πi, π̂j = π̂j

Op

(
θ̄2
)

if π̂i ̸= πi or π̂j ̸= πj

(26)

Here we used the fact that P̂kk = Pkk = 1.

Combining the above estimates together, we obtain that

(N ⊘ N̂ − 1n1
′
n)ij =

{
Op

(
θ̄
√

log(n)/n+ rn

)
if π̂i = πi, π̂j = π̂j

Op

(
θ̄2
)

if π̂i ̸= πi or π̂j ̸= πj

Therefore, in light of ∥Π̂−Π∥1 ≤ nrn, it yields that

∥N ⊘ N̂ − 1n1
′
n∥F =

√ ∑
i,j:π̂i=πi,π̂j=πj

((N ⊘ N̂)ij − 1)2 +
∑

i,j:π̂i ̸=πi or π̂j ̸=πj

((N ⊘ N̂)ij − 1)2

≤ C

√
n2

(
θ̄
√

log(n)/n+ rn
)2

+ n2rnθ̄4

≤ C
(
θ̄
√
n log(n) + nrn + nθ̄2

√
rn

)
with probability 1− o(n−3). Due to the conditions that

rn ≪ θ̄2 → 0, nθ̄2 ≫ log(n),

we easily see that

∥N ⊘ N̂ − 1n1
′
n∥F ≤ C

(
θ̄
√
n log(n) + nrn + nθ̄2

√
rn

)
≪ λ1(Ω̃)

since λ1(Ω̃) ≍ nθ̄2.

Next, we consider ∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥. Note that

N ⊘ N̂ − 1n1
′
n =

(
Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ

)
◦N .

We consider ∥
(
Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ

)
◦ Ω̃ ◦N∥ instead. Since the rank of Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ

is at most 2K, we bound

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥ ≤

√∑
i,j

(N ◦ Ω̃)2ij
(
Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ

)2
ij

≤ ∥N ◦ Ω̃∥max∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥F
≤

√
2K∥N ◦ Ω̃∥max∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥

≤ Cθ̄2∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥

To proceed, we study the upper bound of ∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥. Note that

∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥ ≤ ∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥F ≤
√
2K∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥

It suffices to study the upper bound of ∥Θ̂Π̂P̂ Π̂′Θ̂ − ΘΠPΠ′Θ∥F , which by previous arguments
(25) and (26), is given by

∥Θ̂Π̂P̂ Π̂′Θ̂−ΘΠPΠ′Θ∥F ≤ C
(
θ̄
√
n log(n) + nrn + nθ̄2

√
rn

)
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We thus conclude that

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥ ≤ C

(
θ̄2
√

nθ̄2 log(n) + nθ̄2rn + nθ̄4
√
rn

)
Our assumptions in Theorem 3.2 says that√

nθ̄2λmin(P ) ≥ C log(n), rn ≪ λmin(P ), rn ≪ λ2
min(P )/θ̄4

Using these conditions, together with |λK(Ω̃)| ≍ nθ̄2λmin(P ), we easily derive that

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥ ≤ C

(
θ̄2
√
nθ̄2 log(n) + nθ̄2rn + nθ̄4

√
rn

)
≪ |λK(Ω̃)|

This finishes the proof of error rates for N̂ .

C.5 PROOF OF THEOREM 3.2

We now prove Theorem 3.2 using the results in Sections C.3 and C.4, and Lemma 3.1.

To begin with, we verify the additional conditions in Lemma 3.1 (i.e., (19 ) and (20 )) under
the assumptions in Theorem 3.2. Notice that rn ≍ δn where δn = max{∥(N − 1n1

′
n) ◦

Ω̃∥2, λ1(Ω̃)}/λ2
K(Ω̃). Specifically, in Section C.3, we have shown that

∥P̂ − P∥max ≤ C
(√ log(n)

nθ̄2
+

rn
θ̄2

)
From the assumptions in Theorem 3.2, we have√

nθ̄2λmin(P ) ≥ C log(n), rn ≪ min{|λmin(P )|θ̄, θ̄2}

It follows that ∥P̂ − P∥max = o(1) and√
log(n)

nθ̄2
|λmin(P )|−1θ̄ = o(1),

rn
θ̄2

|λmin(P )|−1θ̄ = o(1) .

Next, thanks to rn ≍ δn ≪ λ2
min(P )/θ̄2,

∥Π̂−Π∥(
√
n |λmin(P )|)−1θ̄ ≤ C

√
nrn(

√
n |λmin(P )|)−1θ̄ ≪ 1 .

Therefore, the conditions in (19) are satisfied. It was mentioning that in Section C.4, we have
validated (20). Lastly, by Lemma C.1, and the conditions that nθ̄2 ≫ log(n), rn ≪ θ̄2, we easily
see that θ̂i < Cθ̄.

Therefore, we can apply the results in Lemma 3.1, which gives that

rn(Π̂
rscore) ≤ C[∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥2 + τ2n + λ1(Ω̃)]∣∣λK(Ω̃)

∣∣2
where τn =

√
nθ̄3[

√
n∥P̂ − P∥max + ∥Π̂score −Π∥].

Furthermore, we plug in the upper bounds of ∥P̂−P∥max and ∥(N⊘N̂−1n1
′
n)◦Ω̃∥ in Sections C.3

and C.4 and note that ∥Π̂score −Π∥ ≤ C
√
nrn ≤ C

√
nδn. Elementary computations lead to

[∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥2 + τ2n ≤ C

(
nθ̄4 log(n) + n2θ̄2δ2n + n2θ̄6δn

)
Thereby, we conclude the proof of Theorem 3.2.
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C.6 PROOF OF COROLLARY 3.1

Using the assumptions that λmin(P ) ≥ C for a constant C > 0, we see that the condition of δn in
Theorem 3.2 is reduced to

δn ≪ θ̄2

Also, we can derive

∥(N − 1n1
′
n) ◦ Ω̃∥2/λ2

K(Ω̃) ≤ ∥(N − 1n1
′
n)∥2max∥Ω̃∥2/λ2

K(Ω̃) ≤ Cθ̄4 ≪ θ̄2 → 0

and
λ1(Ω̃)/λ

2
K(Ω̃) ≤ 1

nθ̄2
≪ θ̄2 .

by the assumption that nθ̄4 → ∞. Therefore, by Theorem 3.1, we obtain that

δn ≍ rn(Π̂
score) ≤ C

( 1

nθ̄2
+ θ̄4

)
and δn ≪ θ̄2. Then, the conditions in Theorem 3.2 are satisfied. Therefore,

rn(Π̂
rscore) ≤ C

λ2
K(Ω̃)

(
λ1(Ω̃) + nθ̄4 log(n) + n2θ̄2δ2n + n2θ̄6δn

)
≤ C

n2θ̄4

(
nθ̄2 + nθ̄4 log(n) + n2θ̄2[1/(nθ̄2)2 + θ̄8] + n2θ̄6[1/nθ̄2 + θ̄4]

)
≤ C

( 1

nθ̄2
+ θ̄6 +

log(n)

n

)
where we used θ̄ = o(1) and nθ̄4 → ∞. We thus complete the proof of Corollary 3.1.
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