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ABSTRACT

Multi-view image diffusion models have significantly advanced open-domain 3D
object generation. However, most existing models rely on 2D network architec-
tures that lack inherent 3D biases, resulting in compromised geometric consis-
tency. To address this challenge, we introduce 3D-Adapter, a plug-in module de-
signed to infuse 3D geometry awareness into pretrained image diffusion models.
Central to our approach is the idea of 3D feedback augmentation: for each denois-
ing step in the sampling loop, 3D-Adapter decodes intermediate multi-view fea-
tures into a coherent 3D representation, then re-encodes the rendered RGBD views
to augment the pretrained base model through feature addition. We study two vari-
ants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and
a versatile training-free version utilizing neural fields and meshes. Our extensive
experiments demonstrate that 3D-Adapter not only greatly enhances the geome-
try quality of text-to-multi-view models such as Instant3D and Zero123++, but
also enables high-quality 3D generation using the plain text-to-image Stable Dif-
fusion. Furthermore, we showcase the broad application potential of 3D-Adapter
by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and
text-to-avatar tasks.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021) have recently made significant strides in visual
synthesis, achieving production-quality results in image generation (Rombach et al., 2022). How-
ever, the success of 2D diffusion does not easily translate to the 3D domain due to the scarcity
of large-scale datasets and the lack of a unified, neural-network-friendly representation (Po et al.,
2024). To bridge the gap between 2D and 3D generation, novel-view or multi-view diffusion mod-
els (Liu et al., 2023b; Long et al., 2024; Shi et al., 2023; Li et al., 2024; Chen et al., 2024; Voleti
et al., 2024) have been finetuned from pretrained image or video models, facilitating 3D generation
via a 2-stage paradigm involving multi-view generation followed by 3D reconstruction (Liu et al.,
2023a; 2024a; Li et al., 2024; Wang et al., 2024a; Xu et al., 2024b). While these models generally
exhibit good global semantic consistency across different view angles, a pivotal challenge lies in
achieving local geometry consistency. This entails ensuring precise 2D–3D alignment of local fea-
tures and maintaining geometric plausibility. Consequently, these two-stage methods often suffer
from floating artifacts or produce blurry, less detailed 3D outputs (Fig. 1 (c)).

To enhance local geometry consistency, previous works have explored inserting 3D representations
and rendering operations into the denoising sampling loop, synchronizing either the denoised out-
puts (Gu et al., 2023; Xu et al., 2024c; Zuo et al., 2024; Zhang et al., 2024a; Tang et al., 2024c) or
the noisy inputs (Liu et al., 2023c; Gao et al., 2024) of the network, a process we refer to as I/O
sync. However, we observe that I/O sync generally leads to less detailed, overly smoothed textures
and geometry (Fig. 1 (b)). This phenomenon can be attributed to two factors:

• Diffusion model sampling is sensitive to error accumulations (Li & van der Schaar, 2024). I/O
sync methods insert 3D reconstruction and rendering operations into the denoiser in a way that
disrupts the original model topology and introduces errors during each denoising step (unless
reconstruction and rendering are perfect).
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(b) I/O sync(a) 3D-Adapter (c) Two-stage

Text-to-3D
w/ Instant3D

Text-to-Avatar
w/ SDv1.5

Input

Color photo of 
Albert Einstein

A yellow 
robot with a 
black hat

A blue jay standing 
on a large basket of 
rainbow macarons

Image-to-3D
w/ Zero123++

Text-to-Texture
w/ DreamShaper (SDv1.5)

Figure 1: Comparison between the results generated by different architectures. Texture refinement
is enabled for text-to-3D, image-to-3D, and text-to-avatar.

• For texture generation methods in Liu et al. (2023c); Gao et al. (2024); Zhang et al. (2024a), I/O
sync is equivalent to multi-view score averaging, which theoretically leads to mode collapse,
causing the loss of fine details in the generated outputs (analyzed in Appendix A.1).

To overcome the limitations of I/O sync, we propose a novel approach termed 3D feedback augmen-
tation, which attaches a 3D-aware parallel branch to the base model, while preserving the original
network topology and avoiding score averaging. Essentially, this branch decodes intermediate fea-
tures from the base model to reconstruct an intermediate 3D representation, which is then rendered,
encoded, and fed back into the base model through feature addition, thus augmenting 3D aware-
ness. Specifically, when using a denoising U-Net as the base model, we implement 3D feedback
augmentation as 3D-Adapter, which reuses a copy of the original U-Net with an additional 3D re-
construction module to build the parallel branch. Thanks to its ControlNet-like (Zhang et al., 2023)
model reuse, 3D-Adapter requires minimal or, in cases where suitable off-the-shelf ControlNets are
available, zero training.

To thoroughly evaluate its performance and demonstrate its flexibility, we have tested multiple vari-
ants of 3D-Adapter using various base models and reconstruction methods. The base models include
Instant3D (Li et al., 2024), Zero123++ (Shi et al., 2023), Stable Diffusion(Rombach et al., 2022)
v1.5 and its customizations. The reconstruction methods include GRM (Xu et al., 2024b), texture
backprojection, Instant-NGP neural radiance field (NeRF) (Müller et al., 2022; Mildenhall et al.,
2020) and DMTet mesh(Shen et al., 2021) optimization. This wide range of possible combinations
makes 3D-Adapter models capable of many applications, as shown in Fig. 1. Extensive evaluations
show that 3D-Adapter improves geometry consistency compared to the two-stage methods, without
suffering from the quality degradation observed with I/O sync.

We summarize the main contributions of this paper as follows:

• We propose 3D-Adapter, which enables high-quality 3D generation with enhanced multi-view
geometry consistency by integrating a 3D feedback module into a base image diffusion model.

• We demonstrate that 3D-Adapter is compatible with various base models and reconstruction
methods, making it highly adaptable to a range of tasks.

• We conduct extensive experiments to show that 3D-Adapter improves geometry consistency
while preserving visual quality, outperforming previous methods on text-to-3D, image-to-3D,
and text-to-texture tasks.
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2 RELATED WORK

3D-native diffusion models. We define 3D-native diffusion models as injecting noise directly into
the 3D representations (or their latents) during the diffusion process. Early works (Bautista et al.,
2022; Dupont et al., 2022) have explored training diffusion models on low-dimensional latent vec-
tors of 3D representations, but are highly limited in model capacity. A more expressive approach
is training diffusion models on triplane representations (Chan et al., 2022), which works reason-
ably well on closed-domain data (Chen et al., 2023b; Shue et al., 2023; Gupta et al., 2023; Wang
et al., 2023). Directly working on 3D grid representations is more challenging due to the cubic
computation cost (Müller et al., 2023), so an improved multi-stage sparse volume diffusion model is
proposed in Zheng et al. (2023). In general, 3D-native diffusion models face the challenge of limited
data, and sometimes the extra cost of preprocessing the training data into 3D representations (e.g.,
NeRF), which limit their scalability.

Novel-/multi-view diffusion models. Trained on multi-view images of 3D scenes, view diffusion
models inject noise into the images (or their latents) and thus benefit from existing 2D diffusion re-
search. Watson et al. (2023) have demonstrated the feasibility of training a conditioned novel view
generative model using purely 2D architectures. Subsequent works (Shi et al., 2024; 2023; Liu et al.,
2023b; Long et al., 2024; Zheng & Vedaldi, 2024) achieve open-domain novel-/multi-view genera-
tion by fine-tuning the pre-trained 2D Stable Diffusion model (Rombach et al., 2022). However, 3D
consistency in these models is generally limited to global semantic consistency because it is learned
solely from data, without any inherent architectural bias to support detailed local alignment. To this
end, Huang et al. (2024b); Kant et al. (2024) have introduced epipolar attention, and Xie et al. (2024)
propose to finetune the multi-view model using reinforcement learning.

Two-stage 3D generation. Two-stage methods (Fig. 2 (a)) link view diffusion with multi-view
3D reconstruction models, offering a significant speed advantage over score distillation sampling
(SDS) (Poole et al., 2023). Liu et al. (2023a) initially combine Zero-1-to-3 (Liu et al., 2023b)
with SparseNeuS (Long et al., 2022), and subsequent works (Liu et al., 2024a; Xu et al., 2024b;
Long et al., 2024; Tang et al., 2024a; Hong et al., 2024b; Xu et al., 2024a; Li et al., 2024; Wang
et al., 2024b; Yang et al., 2024) have further explored more effective multi-view diffusion models
and enhanced reconstruction methods. A common issue with two-stage approaches is that exist-
ing reconstruction methods, often designed for or trained under conditions of perfect consistency,
lack robustness to local geometric inconsistencies. This may result in floaters and texture seams.
To enhance 3D consistency, IM3D (Melas-Kyriazi et al., 2024) applies repeated SDEdit-like re-
finements (Meng et al., 2022) to the rendered views, which is an orthogonal contribution to our
3D-Adapter.

View diffusion with 3D representation. To introduce 3D representation in single-image diffusion
models, Anciukevicius et al. (2023); Tewari et al. (2023) elevate image features into 3D NeRFs to
render denoised views. Xu et al. (2024c); Tang et al. (2024c); Zuo et al. (2024) further extend this
concept to multi-view diffusion. However, these methods often produce slightly blurry outputs due
to error accumulation. Liu et al. (2024b) attempt to preserve the original model topology through
attention-based feature fusion, yet it lacks a robust architecture, leading to subpar quality as noted in
Liu et al. (2023a). On the other hand, optimization-based I/O sync methods in Gu et al. (2023); Liu
et al. (2023c); Gao et al. (2024) either require strong local conditioning or suffer from the pitfalls
of score averaging, resulting in overly smoothed textures. Ouroboros3D (Wen et al., 2024) is a
concurrent work proposing a similar 3D feedback mechanism to ours. The high-level difference is
that Ouroboros3D feeds the rendering to the next denoising timestep, while ours operates within the
current timestep.

3 PRELIMINARIES

Let p(x|c) denote the real data distribution, where c is the condition (e.g., text prompts) and
x ∈ RV×3×H×W denotes the V -view images of a 3D object. A Gaussian diffusion model de-
fines a diffusion process that progressively perturb the data point by adding an increasing amount of
Gaussian noise ϵ ∼ N (0, I), yielding the noisy data point xt := αtxi + σtϵ at diffusion timestep t,
with pre-defined noise schedule scalars αt, σt. A denoising network D is then tasked with removing
the noise from xt to predict the denoised data point. The network is typically trained with an L2
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Figure 2: Comparison between different architectures. For brevity, we omit the condition encoders
(e.g., text encoders), the rendered alpha channel, and the noisy RGB input for the ControlNet. For
LDMs Rombach et al. (2022), VAE encoders and decoders are required, and * denotes RGB latents.

denoising loss:

Ldiff = Et,c,x,ϵ

[
1

2
wdiff

t ∥D(xt, c, t)− x∥2
]
, (1)

where t ∼ U(0, T ), and wdiff
t is an empirical time-dependent weighting function (e.g., SNR weight-

ing wdiff
t = (αt/σt)

2). At inference time, one can sample from the model using efficient ODE/SDE
solvers (Lu et al., 2022) that recursively denoise xt, starting from an initial noisy state xtinit , until
reaching the denoised state x0. Note that in latent diffusion models (LDM) (Rombach et al., 2022),
both diffusion and denoising occur in the latent space. For brevity, we do not differentiate between
latents and images in the equations, assuming VAE encoding and decoding as necessary.

I/O sync baseline. We broadly define I/O sync as inserting a 3D representation and a render-
ing/projecting operation at the input or output end of the denoising network to synchronize multiple
views. Input sync is primarily used for texture generation, and it is essentially equivalent to output
sync, assuming linearity and synchronized initialization (detailed in the Appendix A.1). Therefore,
for simplicity, this paper considers only output sync as the baseline. As depicted in Fig. 2 (b), a typi-
cal output sync model can be implemented by reconstructing a 3D representation from the denoised
outputs x̂t, and then re-rendering the views from 3D to replace the original outputs.

4 3D-ADAPTER

To overcome the limitations of I/O sync, our key idea is the 3D feedback augmentation architec-
ture, which involves reconstructing a 3D representation midway through the denoising network and
feeding the rendered views back into the network using ControlNet-like feature addition. This ar-
chitecture preserves the original flow of the base model while effectively leveraging its inherent
priors.

Based on this idea, we propose the 3D-Adapter, as illustrated in Fig. 2 (c). For each denoising step,
after passing the input noisy views xt through the base U-Net encoder, we use a copy of the base
U-Net decoder to first output intermediate denoised views x̂′

t. A 3D reconstruction model then lifts
these intermediate views to a coherent 3D representation, from which consistent RGBD views x̃t

are rendered and fed back into the network through a ControlNet encoder. The output features from
this encoder are added to the base encoder features, which are then processed again by the base
decoder to produce the final denoised output x̂t. The full denoising step can be written as:

x̂t = Daug(xt, c, t, R(

x̂′
t︷ ︸︸ ︷

D(xt, c, t))︸ ︷︷ ︸
x̃t

). (2)
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where R denotes 3D reconstruction and rendering, and Daug denotes the augmented U-Net with
feedback ControlNet.

Various 3D-Adapters can be implemented depending on the choice of base model and 3D recon-
struction method, as described in the following subsections.

4.1 3D-ADAPTER USING FEED-FORWARD GRM

GRM (Xu et al., 2024b) is a feed-forward sparse-view 3D reconstruction model based on 3DGS.
In this section, we describe the method to train GRM-based 3D-Adapters for the text-to-multi-view
model Instant3D (Li et al., 2024) and image-to-multi-view model Zero123++ (Shi et al., 2023).

Training phase 1: finetuning GRM. GRM is originally trained on consistent ground truth input
views, and is not robust to low-quality intermediate views, which are often highly inconsistent and
blurry. To overcome this challenge, we first finetune GRM using the intermediate images x̂′

t as
inputs, where the time t is randomly sampled just like in the diffusion loss. In this training phase,
we freeze the base encoder and decoder of the U-Net, and initialize GRM with the official checkpoint
for finetuning. As shown in Fig. 2 (c), a rendering loss Lrend is employed to supervise GRM with
ground truth novel views. Specifically, both the appearance and geometry are supervised using the
combination of an L1 loss LRGBAD

1 on RGB/alpha/depth maps, and an LPIPS loss LRGB
LPIPS (Zhang

et al., 2018) on RGB only. The loss is computed on 16 rendered views X̃t ∈ R16×5×512×512 and
the corresponding ground truth views Xgt, given by:

Lrend = Et,c,x,ϵ

[
wrend

t

(
LRGBAD
1

(
X̃t,Xgt

)
+ LRGB

LPIPS

(
X̃t,Xgt

))]
, (3)

where wrend
t is a time-dependent weighting function. We use wrend

t = αt

/√
αt

2 + σt
2 . The L1

RGBAD loss also employs channel-wise weights, which are detailed in our code.

Training phase 2: finetuning feedback ControlNet. In this training phase, we freeze all mod-
ules except the feedback ControlNet encoder, which is initialized with the base U-Net weights for
finetuning. Following standard ControlNet training method, we employ the diffusion loss in Eq. (1)
to finetune the RGBD feedback ControlNet. To accelerate convergence, we feed rendered RGBD
views of a less noisy timestep x̃0.1t to the ControlNet during training.

Inference: guided 3D feedback augmentation. One potential issue is that the ControlNet en-
coder may overfit the finetuning dataset, resulting in an undesirable bias that persists even if the
rendered RGBD x̃t is replaced with a zero tensor. To mitigate this issue, inspired by classifier-free
guidance (CFG) (Ho & Salimans, 2021), we replace x̂t with the guided denoised views x̂G

t during
inference to cancel out the ControlNet bias:

x̂G
t = λaug(Daug(xt, c, t, x̃t)−Daug(xt, c, t,0)) + λcD(xt, c, t) + (1− λc)D(xt,0, t), (4)

where λc is the regular condition CFG scale, and λaug is our feedback augmentation guidance
scale. During training, we feed zero tensors to the ControlNet with a 20% probability, so that
Daug(xt, c, t,0) learns a meaningful dataset bias.

Training details. We adopt various techniques to reduce the memory footprint, including mixed
precision training, 8-bit AdamW (Dettmers et al., 2022; Loshchilov & Hutter, 2019), gradient check-
pointing, and deferred back-propagation (Xu et al., 2024b; Zhang et al., 2022). The adapter is trained
with a total batch size of 16 objects on 4 A6000 GPUs (VRAM usage peaks at 39GB). In phase 1,
GRM is finetuned with a small learning rate of 5 × 10−6 for 2k iterations (for Instant3D, taking 3
hours) or 4k iterations (for Zero123++, taking 9 hours). In phase 2, ControlNet is finetuned with a
learning rate of 1×10−5 for 5k iterations (taking 8 hours for Instant3D and 5 hours for Zero123++).

47k (for Instant3D) or 80k (for Zero123++) objects from a high-quality subset of Objaverse (Deitke
et al., 2023) are rendered as the training data.

4.2 3D-ADAPTER USING 3D OPTIMIZATION/TEXTURE BACKPROJECTION

Feed-forward 3D reconstruction methods, like GRM, are typically constrained by specific camera
layouts. In contrast, more flexible reconstruction approaches, such as optimizing a NeRF (Milden-
hall et al., 2020) or mesh, can accommodate diverse camera configurations and achieve higher-
quality results with denser cameras, although they require longer optimization times.
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To demonstrate the compatibility with optimization-based reconstruction methods, we explore
a new variation of 3D-Adapter (Fig. 9), using Instant-NGP NeRF (Müller et al., 2022) and
DMTet mesh (Shen et al., 2021) optimization as the reconstruction module, with Stable Diffusion
v1.5 (Rombach et al., 2022) being the base model. For feedback augmentation, Stable Diffusion
comes with off-the-shelf ControlNets (Zhang et al., 2023), which empirically work very well as the
feedback encoder. Specifically, we simultaneously use the “tile” ControlNet (originally trained for
superresolution) for RGB feedback, and the depth ControlNet for depth feedback. Dense cameras
are randomly generated around the object for multi-view diffusion. Since Stable Diffusion is a single
image model, 3D-Adapter (or I/O sync) is the only module that synchronizes multi-view samples.

Alternatively, for texture generation only (Section 5.4), multi-view aggregation can be achieved by
backprojecting the views into UV space and blending the results according to visibility.

Details on NeRF/mesh optimization. During the sampling process, the adapter performs NeRF
optimization for the first 60% of the denoising steps. It then converts the color and density fields
into a texture field and DMTet mesh, respectively, to complete the remaining 40% denoising steps.
All optimizations are incremental, meaning the 3D state from the previous denoising step is retained
to initialize the next. As a result, only 96 optimization steps are needed per denoising step. we
employ L1 and LPIPS losses on RGB and alpha maps, and total variation (TV) loss on normal
maps. Additionally, we enforce stronger geometry regularization using ray entropy loss for NeRF,
and Laplacian smoothing loss (Sorkine et al., 2004) plus normal consistency loss for mesh, making
the optimization more robust to imperfect intermediate views x̂′

t. More details can be found in
Appendix C.

Limitations. It should be noted that, when using single-image diffusion as the base model, 3D-
Adapter alone cannot provide the necessary global semantic consistency for 3D generation. There-
fore, it should be complemented with other sources of consistency, such initialization with partial
noise like SDEdit (Meng et al., 2022) or extra conditioning from ControlNets. For text-to-avatar
generation, we use rendered views of a human template for SDEdit initialization with the initial
timestep tinit set to 0.88T , and employ an extra pose ControlNet for conditioning. For text-to-texture
generation, global consistency is usually good due to ground truth depth conditioning.

4.3 TEXTURE POST-PROCESSING

To further enhance the visual quality of objects generated from text, we implement an optional
texture refinement pipeline as a post-processing step. First, when using the GRM-based 3D-Adapter,
we convert the generated 3DGS into a textured mesh via TSDF integration. With the initial mesh,
we render six surrounding views and apply per-view SDEdit refinement (tinit = 0.5T ) using Stable
Diffusion v1.5 with “tile” ControlNet. Finally, the refined views are aggregated into the UV space
using texture backprojection. For fair comparisons in the experiments, this refinement step is not
used by default unless specified otherwise.

5 EXPERIMENTS

5.1 EVALUATION METRICS

To evaluate the results generated by 3D-Adapter and compare them to various baselines and com-
petitors, we compute the following metrics based on the rendered images of the generated 3D rep-
resentations:

• CLIP score (Radford et al., 2021; Jain et al., 2022): Evaluates image–text alignment in text-to-
3D, text-to-texture, and text-to-avatar tasks. We use CLIP-ViT-L-14 for all CLIP-related metrics.

• Aesthetic score (Schuhmann et al., 2022): Assesses texture details. The user study in Wu et al.
(2024) revealed that this metric highly correlates with human preference in texture details.

• FID (Heusel et al., 2017): Measures the visual quality when reference test set images are avail-
able, applicable to text-to-3D models trained on common dataset and all image-to-3D models.

• CLIP similarity (Radford et al., 2021), LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004),
PSNR: Evaluates novel view fidelity in image-to-3D.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Text-to-3D: comparison with baselines, param-
eter sweep, and ablation studies, on the validation set.

ID Method CLIP↑ Aesthetic↑ FID↓ MDD
/10−7↓

A0 Two-stage (original GRM) 27.02 4.48 34.19 232.4
A1 I/O sync (original GRM) 24.62 4.35 63.22 1239.7
A2 A1 + GRM finetuning 22.57 4.16 70.35 1.7
A3 A2 + dynamic blending 25.95 4.39 44.62 2.8

B0 3D-Adapter λaug=1 27.31 4.54 32.81 4.7
B1 3D-Adapter λaug=2 27.22 4.52 33.46 3.9
B2 3D-Adapter λaug=4 26.99 4.45 34.34 3.2
B3 3D-Adapter λaug=8 25.47 4.28 39.36 25.3

C0 B0 w/o feedback 27.18 4.55 33.13 7.6
C1 B0 w/o bias canceling 25.49 4.36 42.20 3.6

Table 2: Text-to-3D: comparison with
previous SOTAs.

Method Type CLIP↑ Aesthetic↑ Time↓

Shap-E Mesh 19.4 4.07 9 s
3DTopia Mesh 21.2 4.40 3 m
LGM GS 22.5 4.31 5 s
Instant3D NeRF 25.5 4.24 20 s
MVDream-SDS NeRF 26.9 4.49 1 h
GRM GS 26.6 4.54 8 s

3D-Adapter (ours) GS 27.7 4.61 23 s
3D-Adapter
+ tex refine (ours) Mesh 28.0 4.71 1 m

3D-Adapter
+ tex refine (mesh)

Prompt MVDream-SDS
(NeRF)

A tiger wearing a 
tuxedo

A robot and 
dinosaur playing 

chess, high 
resolution

A turtle standing 
on its hind legs, 
wearing a top hat 

and holding a 
cane

(B0) 3D-Adapter
(3DGS)

(A0) Two-stage
(3DGS)

(A2) I/O Sync
(3DGS)

(A3) Dynamic I/O Sync
(3DGS)

Figure 3: Comparison on text-to-3D generation. Both 3D-Adapter and I/O sync fix the broken
geometry and floaters present in the two-stage method, but I/O sync suffers from blurriness.

• Mean depth distortion (MDD) (Yu et al., 2024; Huang et al., 2024a): Assesses the geometric
quality of generated 3DGS. Lower depth distortion indicates less floaters or fuzzy surfaces,
reflecting better geometry consistency. More details can be found in Appendix D.

• CLIP t-less score: Assesses the geometric quality of generated meshes by computing the CLIP
score between shaded textureless renderings and texts appended with “textureless 3D model”.

Additionally, we report inference times measured on a single RTX 6000 GPU, with file system I/O
and UV unwrapping (if applicable) included.

5.2 TEXT-TO-3D GENERATION

For text-to-3D generation, we adopt the GRM-based 3D-Adapter with Instant3D U-Net as the base
model. All results are generated using EDM Euler ancestral solver (Karras et al., 2022) with 30
denoising steps and mean latent initialization (Appendix B.2). The inference time is around 0.7
sec per step, and detailed inference time analysis is presented in Appendix B.3. For evaluation, we
first compare 3D-Adapter with the baselines and conduct ablation studies on a validation set of 379
BLIP-captioned objects sampled from a high-quality subset of Objaverse (Li et al., 2022; Deitke
et al., 2023). The results are shown in Table 1, with the rendered images from the validation set used
as real samples when computing the FID metric. Subsequently, we benchmark 3D-Adapter on the
same test set as GRM (Xu et al., 2024b), consisting of 200 prompts, to make fair comparisons to the
previous SOTAs in Table 2. Qualitative results are shown in Fig. 3.

Baselines. The two-stage GRM (A0) exhibits good visual quality, but the MDD metric is magni-
tudes higher than that of our 3D-Adapter (B0–B3) due to the highly ambiguous geometry caused
by local misalignment. Naively rewiring it into an I/O sync model (A1) worsens the results, as the
original GRM is trained only on rendered ground truths x and cannot handle the imperfections of
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Table 3: Image-to-3D: comparison with previous SOTAs.

Method Type PSNR↑ SSIM↑ LPIPS↓ CLIP
sim ↑ FID↓ Time↓

One-2-3-45 Mesh 17.84 0.800 0.199 0.832 89.4 45 s
TriplaneGaussian GS 16.81 0.797 0.257 0.840 52.6 0.2 s
Shap-E Mesh 15.45 0.772 0.297 0.854 56.5 9 s
LGM GS 16.90 0.819 0.235 0.855 42.1 5 s
EpiDiff-GRM GS 18.52 0.806 0.244 0.859 61.1 55 s
DreamGaussian Mesh 19.19 0.811 0.171 0.862 57.6 2 m
Wonder3D Mesh 17.29 0.815 0.240 0.871 55.7 3 m
CRM Mesh 18.04 0.809 0.217 0.871 61.9 13 s
One-2-3-45++ Mesh 17.79 0.819 0.219 0.886 42.1 1 m
InstantMesh Mesh 19.24 0.828 0.156 0.921 25.6 32 s
GRM GS 20.10 0.826 0.136 0.932 27.4 6 s

3D-Adapter (ours) GS 20.38 0.840 0.135 0.936 20.2 23 s
3D-Adapter
+ TSDF (ours) Mesh 20.34 0.840 0.135 0.933 21.7 35 s

Table 4: Text-to-avatar: comparison
with baselines.

Methods CLIP↑ Aesthetic↑ CLIP
t-less↑

Two-stage baseline 23.90 4.79 24.60
I/O sync baseline 22.01 4.53 25.98
3D-Adapter 23.67 4.97 26.07
3D-Adapter
+ tex refine 24.07 5.11 26.07

InstantMesh3D-Adapter + TSDF One2345++Input

Figure 4: Comparison of mesh-based image-to-3D methods on the GSO test set.

the denoised views x̂. When using the GRM model fine-tuned according to our method (Eq. 3),
the model (A2) achieves the lowest possible MDD with nearly perfect geometry consistency, which
validates the effectiveness of our GRM finetuning approach. However, it suffers significantly from
mode collapse and yields the worst appearance metrics (analyzed in Appendix A.2). Adopting a dy-
namic blending technique (Appendix A.2) for I/O sync (A3) alleviates this issue, but the appearance
metrics are still worse than two-stage (A0).

Parameter sweep on λaug and ablation studies. The 3D-Adapter with a feedback augmentation
guidance scale λaug = 1 (B0) achieves the best visual quality among all variants and significantly
better geometry quality than A0. As λaug increases, the MDD metric continues to improve, but at
the expense of visual quality. A very large λaug (B3) unsurprisingly worsens the results, similar to a
large CFG scale. Disabling feedback augmentation (C0, equivalent to λaug = 0) notably impacts the
geometric quality, as evidenced by the worse MDD metric, although it still outperforms the baseline
(A0) thanks to our robust GRM fine-tuning. Additionally, we ablated the bias canceling technique
(C1), observing significant degradation in all visual metrics, which substantiates the effectiveness of
3D feedback guidance (Eq. (4)). Qualitative results are all presented in Fig. 10.

Comparison with other competitors. Built on top of GRM, our 3D-Adapter (λaug=1) further
advances the benchmark, outperforming previous SOTAs in text-to-3D (Jun & Nichol, 2023; Tang
et al., 2024a; Li et al., 2024; Shi et al., 2024; Xu et al., 2024b; Hong et al., 2024a) as shown in
Table 2 and Fig. 3.

5.3 IMAGE-TO-3D GENERATION

For image-to-3D generation, we adopt the same approach used for text-to-3D generation, except
for employing Zero123++ U-Net as the base model and using 40 denoising steps. We follow the
same evaluation protocol as in Xu et al. (2024b), using 248 GSO objects (Downs et al., 2022) as
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Table 5: Text-to-texture: comparison with
baselines.

Methods CLIP↑ Aesthetic↑

Two-stage baseline 25.82 4.85
I/O sync baseline 26.05 4.68
3D-Adapter + I/O sync 26.41 4.61
3D-Adapter 26.40 4.85

Table 6: Text-to-texture: comparison with previ-
ous SOTAs.

Methods CLIP↑ Aesthetic↑ Time↓

TexPainter 25.36 4.55 11.6 s
TEXTure 25.39 4.66 2.0 m
Text2Tex 24.44 4.72 11.2 m
SyncMVD 25.65 4.76 1.9 m

3D-Adapter (ours) 26.40 4.85 1.5 m

I/O sync3D-Adapter Two-stagePrompt
(BLIP-generated)

There is a picture 
of a pair of shoes 
with a shoelace

There is a toy car 
with a steering and 

a steering wheel

SyncMVD Text2Tex TEXTure

Batman in a 
Batman costume 

standing up with his 
hands in his pockets

A close up of a toy 
figure of a captain 
in a red, white and 

blue outfit

A close up of a toy 
figure of a man with 

a hat and a sword 

3D-Adapter
+I/O sync

TexPainter

Figure 5: Comparison on text-to-texture generation.

the test set. As shown in Table 3, 3D-Adapter (λaug=1) outperforms the two-stage GRM and other
competitors (Xu et al., 2024a; Wang et al., 2024b; Liu et al., 2023a; Zou et al., 2024; Jun & Nichol,
2023; Tang et al., 2024a;b; Long et al., 2024; Liu et al., 2024a; Xu et al., 2024b; Huang et al., 2024b)
on all metrics. Moreover, the quality loss in converting the generated 3DGS to mesh via TSDF is
almost negligible. We present qualitative comparisons of the meshes generated by 3D-Adapter and
other methods in Fig. 4.

5.4 TEXT-TO-TEXTURE GENERATION

For text-to-texture evaluation, 3D-Adapter employs fast texture backprojection to blend multiple
views for intermediate timesteps, and switches to high-quality texture field optimization (similar
to NeRF) for the final timestep. A community Stable Diffusion v1.5 variant, DreamShaper 8, is
adopted as the base model. During the sampling process, 32 surrounding views are used initially,
and this number is gradually reduced to 7 views during the denoising process to reduce computation
in later stages. We adopt the EDM Euler ancestral solver with 24 denoising steps. 92 BLIP-captioned
objects are sampled from a high-quality subset of Objaverse as our test set.

Comparison with baselines. As shown in Table 5 and Fig. 5, the two-stage baseline has good
texture details but notably worse CLIP score due to poor consistency. The I/O sync baseline has
much better consistency, but it sacrifices details, resulting in the worst aesthetic score. In compar-
ison, 3D-Adapter excels in both metrics, producing detailed and consistent textures. Additionally,
we demonstrate that 3D-Adapter and I/O sync should not be used simultaneously, as I/O sync con-
sistently compromises texture details, as evidenced by the Aesthetic score and qualitative results.

Comparison with other competitors. We compare 3D-Adapter with SyncMVD (Liu et al.,
2023c), Text2Tex (Chen et al., 2023a), TEXTure (Richardson et al., 2023), and TexPainter (Zhang
et al., 2024a), where SyncMVD and TexPainter are also I/O sync methods. Quantitatively, Table 6
demonstrates that 3D-Adapter significantly outperforms previous SOTAs on both metrics. Interest-
ingly, even our two-stage baseline in Table 5 surpasses the competitors, which can be attributed to
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I/O sync3D-Adapter Two-stagePrompt

Wonder Woman

A humanoid 
robot

Lionel Messi 
Argentina

3D-Adapter
+tex refine

Figure 6: Comparison on text-to-avatar generation using the same pose template.

our use of texture field optimization and community-customized base model. Qualitative results
in Fig. 5 reveal that previous methods are generally less robust compared to 3D-Adapter and may
produce artifacts in some cases.

Limitations. 3D-Adapter and the methods in Table. 6 do not disentangle texture from lighting.
PBR texture generation (Zhang et al., 2024b; Zeng et al., 2024; Youwang et al., 2024; Deng et al.,
2024) using 3D-Adapter could be a potential future extension of this work.

5.5 TEXT-TO-AVATAR GENERATION

For text-to-avatar generation, the optimization-based 3D-Adapter is adopted with a custom pose
ControlNet for Stable Diffusion v1.5, which provides extra conditioning given a human pose tem-
plate. 32 full-body views and 32 upper-body views are selected for denoising, capturing both the
overall figure and face details. These are later reduced to 12 views during the denoising process. We
use the EDM Euler ancestral solver with 32 denoising steps, with an inference time of approximately
7 minutes per object. Texture editing (using text-to-texture pipeline and SDEdit with tinit = 0.3T )
and refinement can be optionally applied to further improve texture details, which costs 1.4 min-
utes. For evaluation, we compare 3D-Adapter with baselines using 21 character prompts on the
same pose template. As shown in Table 4, 3D-Adapter achieves the highest scores across all three
metrics, indicating superior appearance and geometry. Fig. 6 reveals that I/O sync produces overly
smoothed texture and geometry due to mode collapse, while the two-stage baseline results in noisy,
less coherent texture and geometry. These observations also align with the quantitative results in
Table 4.

6 CONCLUSION

In this work, we have introduced 3D-Adapter, a plug-in module that effectively enhances the 3D ge-
ometry consistency of existing multi-view diffusion models, bridging the gap between high-quality
2D and 3D content creation. We have demonstrated two variants of 3D-Adapter: the fast 3D-Adapter
using feed-forward Gaussian reconstruction, and the flexible training-free 3D-Adapter using 3D op-
timization and pretrained ControlNets. Experiments on text-to-3D, image-to-3D, text-to-texture,
and text-to-avatar tasks have substantiated its all-round competence, suggesting great generality and
potential in future extension.

Limitations. 3D-Adapter introduces substantial computation overhead, primarily due to the VAE
decoding process before 3D reconstruction. In addition, we observe that our finetuned ControlNet
for 3D feedback augmentation strongly overfits the finetuning data, which may limit its generaliza-
tion despite the proposed guidance method. Future work may focus on developing more efficient,
easy-to-finetune networks for 3D-Adapter.
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A DETAILS ON THE I/O SYNC BASELINE

A.1 THEORETICAL ANALYSIS

When performing diffusion ODE sampling using the common Euler solver, a linear input sync oper-
ation (e.g., linear blending or optimizing using the L2 loss) is equivalent to syncing the output x̂t as
well as the initialization xtinit . This is because the input xt can be expressed as a linear combination
of all previous outputs {xt−∆t,xt−2∆t, . . . } and the initialization xtinit by expanding the recursive
Euler steps.

Furthermore, linear I/O sync is also equivalent to linear score sync, since the learned score function
st(xt) can also be expressed as a linear combination of the input xt and output x̂t:

st(xt) = − ϵ̂t
σt

=
αtx̂t − xt

σt
2

(5)

However, synchronizing the score function, a.k.a. score averaging, is theoretically problematic.
Let p(x|c1), p(x|c2) be two independent probability density functions of a corresponding pixel x
viewed from cameras c1 and c2, respectively. A diffusion model is trained to predict the score
function st(xt|cv) of the noisy distribution at timestep t, defined as:

st(xt|cv) = ∇xt log

∫
p(xt|x)p(x|cv)dx, (6)

where p(xt|x) = N (xt;αtx, σ
2
t I) is a Gaussian perturbation kernel. Ideally, assuming c1 and

c2 are independent, combining the two conditional PDFs p(x|c1) and p(x|c2) yields the product
p(x|c1, c2) = 1

Z p(x|c1)p(x|c2), where Z is a normalization factor. The corresponding score func-
tion should then become st(xt|c1, c2) = ∇xt log

∫
p(xt|x)p(x|c1, c2)dx. However, the average

of st(xt|c1) and st(xt|c2) is generally not proportional to st(xt|c1, c2), i.e.:

1

2
st(xt|c1) +

1

2
st(xt|c2) =

1

2
∇xt

log

(∫
p(xt|x)p(x|c1)dx

)(∫
p(xt|x)p(x|c2)dx

)
�∝ ∇xt

log

∫
p(xt|x)

(
1

Z
p(x|c1)p(x|c2)

)
dx = st(xt|c1, c2). (7)

In Fig. 7, we illustrate a simple 1D simulation, showing that score averaging leads to mode col-
lapse, when compared to the real product distribution. This explains the blurry, mean-shaped results
produced by the I/O sync baselines. This problem is also noted in a concurrent work (Bradley &
Nakkiran, 2024) in the context of classifier-free guidance.

x

p(x|c1)
p(x|c2)
p(x|c1)p(x|c2) * (x)
(p(x|c1) * (x))(p(x|c2) * (x))

Figure 7: A simple 1D simulation illustrating the difference between the score averaged distribu-
tion and the actual perturbed product distribution. ∗ denotes convolution, and N (x) denotes the
Gaussian perturbation kernel.

A.2 DYNAMIC I/O SYNC

While I/O sync works reasonably on our texture generation benchmark, our text-to-3D model using
I/O sync (A2 in Table 1 and Fig. 3) exhibits significant quality degradation due to mode collapse.
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Table 7: GRM-based 3D-Adapter: Inference times (sec) with guidance on a single RTX A6000.

Encode Adapter
Decode

VAE
Decode GRM Render Adapter

Encode Decode Adapter
total

Overall
total

0.055 0.120 0.215 0.091 0.023 0.082 0.121 0.531 0.707

We believe the main reasons are twofold. First, the base model Instant3D generates a very sparse
set of only four views, which are hard to synchronize. Second, our finetuned GRM reconstructor
is trained using the depth loss to suppress surface fuzziness, which has a negative impact when its
sharp renderings x̃t are used as diffusion output. This is because a well-trained diffusion model
should actually predict blurry outputs x̂t in the early denoising stage as the mean of the distribution
p(x0|xt). Only in the late stage should x̂t be sharp and crisp, as shown in Fig. 8.

To make the I/O sync baseline more competitive on the text-to-3D benchmark, we adopt a simple
technique called dynamic blending or dynamic I/O sync. The idea is that, since I/O sync mainly
corrupts fine-grained details, its influence should be reduced during the late denoising stages when
details are being generated. Therefore, we perform a weighted blending of the denoised views before
synchronization x̂t and the rendered views x̃t:

x̃blend
t = (1− λsync

t )x̂t + λsync
t x̃t, (8)

where λsync
t is a time-dependent blending weight, and x̃blend

t is the blended output that is fed to the
diffusion solver. We set λsync

t = 1−αt√
α2

t+σ2
t

, so that λsync
t decreases over the denoising process.

As shown in Table 1 and Fig. 3, dynamic I/O sync demonstrates significant improvements in visual
quality over vanilla I/O sync. However, its MDD metric becomes worse than vanilla I/O sync, and
the visual quality is still clearly below that of the two-stage method and 3D-Adapter. While it is
possible to tune a better blending weight λsync

t , we believe it is very difficult to reduce the gap due
to the aforementioned challenges brought by our model setup.

B DETAILS ON GRM-BASED 3D-ADAPTER

B.1 CONTROLNET

The GRM-based 3D-Adapter trains a ControlNet (Zhang et al., 2023) for feedback augmentation,
which has very large model capacity and can easily overfit our relatively small finetuning dataset
(e.g., 47k objects for Instant3D). Therefore, using the CFG-like bias subtraction technique (Eq. (4))
is extremely important to the generalization performance, which is already validated in our ablation
studies. Additionally, we disconnect the text prompt input from the ControlNet to further alleviate
overfitting.

B.2 MEAN LATENT INITIALIZATION

Instant3D’s 4-view UNet is sensitive to the initialization method, as noted in the original paper (Li
et al., 2024), which develops an empirical Gaussian blob initialization method to stabilize the back-
ground color. In contrast, this paper adopts a more principled mean latent initialization method by
computing the mean value x̄ of the VAE-encoded latents of 10K objects in the training set. The
initial state is then sampled by perturbing the mean latent with Gaussian noise ϵ:

xtinit = αtinit x̄+ σtinitϵ. (9)

B.3 INFERENCE TIME

Detailed module-level inference times per denoising step is shown in Table 7 (with classifier-free
guidance and guided 3D feedback augmentation enabled). Apparently, the SDXL VAE decoder is
the most expensive module within 3D-Adapter, which may be replaced by a more efficient decoder
in future work.
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C DETAILS ON OPTIMIZATION-BASED 3D-ADAPTER

The optimization-based 3D-Adapter faces the challenge of potentially inconsistent multi-view in-
puts, especially at the early denoising stage. Existing surface optimization approaches, such as
NeuS (Wang et al., 2021a), are not designed to address the inconsistency. Therefore, we have devel-
oped various techniques for the robust optimization of InstantNGP NeRF (Müller et al., 2022) and
DMTet mesh (Shen et al., 2021), using enhanced regularization and progressive resolution.

Rendering. For each NeRF optimization iteration, we randomly sample a 128×128 image patch
from all camera views. Unlike Poole et al. (2023) that computes the normal from NeRF density
gradients, we compute patch-wise normal maps from the rendered depth maps, which we find to
be faster and more robust. For mesh rendering, we obtain the surface color by querying the same
InstantNGP neural field used in NeRF. For both NeRF and mesh, Lambertian shading is applied in
the linear color space prior to tonemapping, with random point lights assigned to their respective
views.

RGBA losses. For both NeRF and mesh, we employ RGB and alpha rendering losses to optimize
the 3D parameters so that the rendered views x̃t match the intermediate denoised views x̂′

t. For
RGB, we employ a combination of pixel-wise L1 loss and patch-wise LPIPS loss (Zhang et al.,
2018). For alpha, we predict the target alpha channel from x̂′

t using an off-the-shelf background
removal network (Lee et al., 2022) as in Magic123 (Qian et al., 2024). Additionally, we soften the
predicted alpha map using Gaussian blur to prevent NeRF from overfitting the initialization.

Normal losses. To avoid bumpy surfaces, we apply an L1.5 total variation (TV) regularization loss
on the rendered normal maps:

LN =
∑
chw

∥∥whw · ∇hwn
rend
chw

∥∥1.5, (10)

where nrend
chw ∈ R denotes the value of the C×H×W normal map at index (c, h, w), ∇hwn

rend
chw ∈ R2

is the gradient of the normal map w.r.t. (h,w), and whw ∈ [0, 1] is the value of a foreground mask
with edge erosion.

Ray entropy loss for NeRF. To mitigate fuzzy NeRF geometry, we propose a novel ray entropy
loss based on the probability of sample contribution. Unlike previous works (Kim et al., 2022;
Metzer et al., 2023) that compute the entropy of opacity distribution or alpha map, we consider the
ray density function:

p(τ) = T (τ)σ(τ), (11)

where τ denotes the distance, σ(τ) is the volumetric density and T (τ) = exp−
∫ s

0
σ(τ)dτ is the

ray transmittance. The integral of p(τ) equals the alpha value of the pixel, i.e., a =
∫ + inf

0
p(τ)dτ ,

which is less than 1. Therefore, the background probability is 1− a and a corresponding correction
term needs to be added when computing the continuous entropy of the ray as the loss function:

Lray =
∑
r

∫ + inf

0

−pr(τ) log pr(τ)dτ − (1− ar) log
1− ar

d︸ ︷︷ ︸
background correction

, (12)

where r is the ray index, and d is a user-defined “thickness” of an imaginative background shell,
which can be adjusted to balance foreground-to-background ratio.

Mesh smoothing losses As per common practice, we employ the Laplacian smoothing
loss (Sorkine et al., 2004) and normal consistency loss to further regularize the mesh extracted
from DMTet.

Implementation details The weighted sum of the aforementioned loss functions is utilized to
optimize the 3D representation. At each denoising step, we carry forward the 3D representation from
the previous step and perform additional iterations of Adam (Kingma & Ba, 2015) optimization.
During the denoising sampling process, the rendering resolution progressively increases from 128
to 256, and finally to 512 when NeRF is converted into a mesh (for texture generation the resolution
is consistently 512). When the rendering resolution is lower than the diffusion resolution 512, we
employ RealESRGAN-small (Wang et al., 2021b) for efficient super-resolution.
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D DETAILS ON THE MEAN DEPTH DISTORTION (MDD) METRIC

The MDD metric is inspired by the depth distortion loss in Yu et al. (2024), which proves effective
in removing floaters and improving the geometry quality. The depth distortion loss of a pixel is
defined as:

LD =
∑
m,n

ωmωn|τm − τn|, (13)

where m,n index over Gaussians contributing to the ray, ωm is the blending weight of the m-th
Gaussian and τm is the distance of the intersection point.

To compute the mean depth distortion of a view, we take the sum of depth distortion losses across
all pixels and divide it by the sum of alpha values across all pixels:

MDD =

∑
r LDr∑
r ar

, (14)

where r is the pixel index.

E MORE RESULTS

We present more qualitative comparisons in Fig. 8, 10, 11, 12, 13, 14, 15.

(B0) 3D-Adapter

A turtle standing on its hind legs, wearing a top hat and holding a cane
(A3) Dynamic I/O sync (A0) Two-stage

Prompt:

Intermediate 
RGB �𝒙𝒙𝑡𝑡

Rendered
RGB �𝒙𝒙𝑡𝑡

Rendered 
Depth �𝒙𝒙𝑡𝑡

Denoised
RGB �𝒙𝒙𝑡𝑡

Rendered 
RGB �𝒙𝒙𝑡𝑡

Rendered 
Depth �𝒙𝒙𝑡𝑡

Denoised
RGB �𝒙𝒙𝑡𝑡

Rendered 
RGB*

Rendered 
Depth*

Figure 8: Text-to-3D: visualization of the multi-step sampling process. *For the two-stage method,
the rendered RGB and depth maps (using the original GRM reconstructor before finetuning) are
NOT a part of the sampling process, and are presented here solely for visualization.
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*Noisy
RGB 𝒙𝒙𝑡𝑡

*Denoised
RGB �𝒙𝒙𝑡𝑡

Encoder
(base)

Solver 
step

ℒ

Decoder
(base)

Decoder
(base)

Encoder
(ControlNet)

Rendered
RGBD �𝒙𝒙𝑡𝑡

Output

Init

*Intermediate
     RGB �𝒙𝒙𝑡𝑡′

VAE 
dec

NeRF/mesh

Operations requiring 
backpropagation

ℒ Optimization loss 
functions

Figure 9: High-level architecture of the optimization-based 3D-Adapter. For each denoising step,
the 3D representation (NeRF or mesh) is optimized to match the rendered RGB x̃RGB

t to the the
decoded intermediate RGB x̂′

t. The rendered RGBD maps x̃t are then fed to the ControlNet for
feedback augmentation. Dense views (≥ 32) are typically required, although 4 views are illustrated.
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(B0) 𝜆𝜆aug =1 (B1) 𝜆𝜆aug =2 (B2) 𝜆𝜆aug =4 (B3) 𝜆𝜆aug =8
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Figure 10: Text-to-3D: qualitative results from the parameter sweep on λaug and the ablation studies.
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A praying mantis 
wearing roller skates

A bald eagle carved 
out of wood

Figure 11: More comparisons on text-to-3D generation (part 1).
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A car made out of 
cheese

3D-Adapter
+ tex refine (mesh)

3D-Adapter
(3DGS)

GRM Two-stage
(3DGS)

MVDream-SDS
(NeRF)

GRM I/O Sync
(3DGS)

A lion reading the 
newspaper

Prompt

A mountain 
goat standing 
on a boulder

A Bichon Frise 
wearing 

academic regalia

A blue jay 
standing on a 
large basket of 

rainbow 
macarons

A chimpanzee 
dressed as a football 

player

A bear playing 
electric bass

A squirrel dressed 
like Henry VIII king 

of England

Figure 12: More comparisons on text-to-3D generation (part 2).
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InstantMesh3D-Adapter + TSDF One2345++Input

Figure 13: More comparisons on image-to-3D generation.
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I/O sync3D-Adapter Two-stagePrompt
(BLIP-generated) SyncMVD Text2Tex TEXTure

There is a snail with 
flowers on its back 

and a white 
background

A close up of a statue 
of a man with a cross

There is a small 
figurine of a girl 

dressed in a flowery 
dress

A close up of a toy 
figure of a man 
holding a sword

A close up of a robot 
with a skateboard on 
a white background

There is a large army 
tank that is on a 
concrete surface

A close up of a pair of 
headphones with a 

green cover

There is a black 
backpack with a red 

line on it

There is a toy 
airplane that is 

flying in the sky

A close up of a yellow 
scooter on a white 

background

Figure 14: More comparisons on text-to-texture generation.
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I/O sync3D-Adapter Two-stagePrompt

Photo of Bruce 
Lee

Captain America

Iron Man

Naruto

Ancient Egyptian 
Pharaoh

Samurai warrior

3D-Adapter
+tex refine

Figure 15: More comparisons on text-to-avatar generation.
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