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A DETAILS FOR IMAGENET-E

To guarantee the visual quality of the generated examples, we choose the animal classes from Im-
ageNet since they appear more in nature without messy backgrounds. Specifically, images whose
coarse labels in [fish, shark, bird, salamander, frog, turtle, lizard, crocodile, dinosaur, snake, trilo-
bite, arachnid, ungulate, monotreme, marsupial, coral, mollusk, crustacean, marine mammals,
dog, wild dog, cat, wild cat, bear, mongoose, butterfly, echinoderms, rabbit, rodent, hog, fer-
ret, armadillo,primate] are picked. The corresponding coarse labels of each class we refer to can
be found in Eshed (2020)1. Finally, our ImageNet-E consists of 373 classes. Since the num-
ber of masks provided in ImageNet-S in these classes is 4352, thus the number of images in
each edited kind is 4352. The ImageNet-E contains 11 kinds of attributes editing, including 5
kinds of background editing and 4 kinds of size editing, as well as one kind of position edit-
ing and one kind of direction editing. Finally, our ImageNet-E contains 47872 images. Ex-
periments on more images can be found in section D.3. The comprehensive comparisons with
the state-of-the-art robustness benchmarks are shown in Figure 8. In contrast to other bench-
marks that investigate new out-of-distribution corruptions or perturbations deep models may en-
counter, w conduct model debugging with in-distribution data to explore which object attributes
a model may be sensitive to. The examples in ImageNet-E are shown in Figure 9. A demo
video for our editing toolkit can be found at this url:https://drive.google.com/file/
d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing.

Benchmarks Description Classes Samples In-distribution

ImageNet-A
Challenging examples 

collected by-hand
200 X

ImageNet-C
Corruptions added on 

images
1000

X

ImageNet-R
Various renditions of 

ImageNet object classes
200

X

ImageNet-3DCC 3D common corruptions 1000 X

ImageNet-9
Images whose objects 
and backgrounds are 

disentangled with bbox
370 X

ImageNet-E
Images with attribute-

edited objects
373 ✓

Figure 8: Benchmark comparison.

B BACKGROUND EDITING

Intuitively, an image with complicated background tends to contain more high-frequency compo-
nents, such as edges. Therefore, a straight-forward way is to define the background complexity
as the amplitude of high-frequency components. However, this operation can result in noisy back-
grounds, instead of the ones with complicated textures. Therefore, we directly define complexity as
the amplitude of all frequency components. The compared results are shown in Figure 10. It can
be observed that the amplitude supervision on high-frequency components tends to make the model
generate images with more noise. In contrast, amplitude supervision on all frequency components
can help to generate images with texture-complex backgrounds. To edit the background adversari-
ally, we set Lc = CE(f(x), y) where ‘CE’ is the cross entropy loss. f and y are the classifier and
label of x respectively. We adopt the classifier f from guided-diffusion2.

1https://github.com/noameshed/novelty-detection/blob/master/imagenet categories synset.csv
2https://github.com/openai/guided-diffusion
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Figure 9: Samples from ImageNet-E. From left to right, top to bottom, the images stand for back-
ground editing with � = �20, � = 20, � = 20-adv, randomly shuffled backgrounds, size editing
with rate 0.1 and 0.05, randomly rotate, random position, randomly rotate based on images with
object pixel rate 0.05 respectively.

HF

All

HF

All

Original Original

Figure 10: Comparisons between the amplitude supervision on high-frequency components (HF)
and amplitude supervision on all frequency components (All).
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C IMAGE EDITING WITH DENOISING DIFFUSION PROBABILISTIC MODELS
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Figure 11: Attribute editing with DDPMs.

D EXPERIMENTAL DETAILS

D.1 DETAILS FOR METRICS

In this paper, we care more about how different attributes impact different models. Therefore, we
choose the top-1 accuracy drop rate as our evaluation metric. A lower drop rate indicates higher
robustness against our attribute changes. The drop rate (DR) is defined as:

DR =
accoriginal � acc

accoriginal
. (8)

The detailed top-1 accuracy (Top-1) and drop rate (DR)on our ImageNet-E are listed in Table 3,
Table 4 and Table 5, Table 6.

Table 3: Evaluations under different backgrounds.

Background Ori � = 0 � = �20 � = 20 � = 100 � = 20-Adv
Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR

RN50 0.9278 0.9069 2.25% 0.8495 8.44% 0.7939 14.43% 0.6278 32.33% 0.6222 32.94%
DenseNet121 0.9205 0.9049 1.69% 0.8552 7.09% 0.8311 9.71% 0.7301 20.68% 0.6268 31.91%

EFB0 0.9285 0.9148 1.48% 0.8490 8.56% 0.8180 11.90% 0.6722 27.60% 0.5793 37.61%
ViT-S 0.9474 0.9306 1.77% 0.8676 8.42% 0.8346 11.91% 0.7628 19.48% 0.6319 33.30%

Swin-S 0.9621 0.9522 1.03% 0.9067 5.76% 0.8886 7.64% 0.8361 13.10% 0.7335 23.76%
RN101 0.9400 0.9182 2.32% 0.8658 7.89% 0.8208 12.68% 0.6598 29.81% 0.6388 32.04%

DenseNet169 0.9239 0.9138 1.09% 0.8628 6.61% 0.8364 9.47% 0.7211 21.95% 0.6549 29.12%
EFB3 0.9499 0.9299 2.11% 0.8674 8.69% 0.8674 8.69% 0.7736 18.56% 0.6585 30.68%
ViT-B 0.9570 0.9492 0.82% 0.9007 5.88% 0.8748 8.59% 0.8377 12.47% 0.7128 25.52%

Swin-B 0.9593 0.9524 0.72% 0.9108 5.06% 0.8996 6.22% 0.8446 11.96% 0.7511 21.70%

Table 4: Evaluations with different robust models under different backgrounds.
Background Ori � = 0 � = �20 � = 20 � = 100 � = 20-adv

Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR
RN50 0.9278 0.9069 2.25% 0.8495 8.44% 0.7939 14.43% 0.6276 32.36% 0.6222 32.94%

RN50-A 0.8202 0.8100 1.24% 0.7670 6.49% 0.6813 16.93% 0.5363 34.61% 0.4336 47.13%
RN50-SIN 0.9154 0.8920 2.56% 0.8350 8.78% 0.7960 13.04% 0.6370 30.41% 0.5786 36.79%

RN50-debiasd 0.9336 0.9196 1.50% 0.8665 7.19% 0.8139 12.82% 0.6600 29.31% 0.6530 30.06%
RN50-Augmix 0.9352 0.9230 1.30% 0.8690 7.08% 0.8506 9.05% 0.8064 13.77% 0.6275 32.90%

RN50-ANT 0.9186 0.9037 1.62% 0.8454 7.97% 0.8006 12.85% 0.7126 22.43% 0.5487 40.27%
RN50-DeepAugment 0.9290 0.9136 1.66% 0.8598 7.45% 0.7978 14.12% 0.5989 35.53% 0.5986 35.57%

D.2 CLASSES WHOSE TOP-1 ACCURACY DROPS THE GREATEST

To find out which class gets the worst robustness against attribute changes, we plot the dropped
accuracy in Figure 12. The evaluated models are vanilla RN50 and its Debiased model. It can be
observed that objects that have tentacles with simple backgrounds are more easily to be attacked.
For example, the dropped accuracy of the ‘black widow’ class reaches 47% for both vanilla and
Debiased models. In contrast, the impact is smaller for images with complicated backgrounds such
as pictures from ‘squirrel monkey’.

15



Under review as a conference paper at ICLR 2023

Table 5: Evaluations under different object sizes.
Object Ori Full 0.10 0.08 0.05 0.05-rp rd

Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR
RN50 0.9278 0.8998 3.02% 0.8563 7.71% 0.8225 11.35% 0.7109 23.38% 0.6514 29.79% 0.6756 27.18%

DenseNet121 0.9205 0.8855 3.80% 0.8497 7.69% 0.8117 11.82% 0.7073 23.16% 0.6533 29.03% 0.6852 25.56%
EF-B0 0.9285 0.8956 3.54% 0.8432 9.19% 0.8108 12.68% 0.6969 24.94% 0.6519 29.79% 0.7436 19.91%
ViT-S 0.9474 0.9352 1.29% 0.8798 7.14% 0.8407 11.26% 0.7429 21.59% 0.6990 26.22% 0.7773 17.95%

Swin-S 0.9621 0.9492 1.34% 0.9193 4.45% 0.8970 6.77% 0.8157 15.22% 0.7881 18.09% 0.8238 14.37%
RN101 0.9400 0.9129 2.88% 0.8763 6.78% 0.8384 10.81% 0.7302 22.32% 0.6824 27.40% 0.6880 26.81%

DenseNet169 0.9239 0.9014 2.44% 0.8501 7.99% 0.8230 10.92% 0.7162 22.48% 0.6700 27.48% 0.7146 22.65%
EF-B3 0.9499 0.9349 1.58% 0.8793 7.43% 0.8478 10.75% 0.7360 22.52% 0.6955 26.78% 0.7817 17.71%
ViT-B 0.9570 0.9520 0.52% 0.9101 4.90% 0.8864 7.38% 0.7996 16.45% 0.7642 20.15% 0.8472 11.47%

Swin-B 0.9593 0.9503 0.94% 0.9262 3.45% 0.9122 4.91% 0.8343 13.03% 0.8068 15.90% 0.8334 13.12%

Table 6: Evaluations with different robust models under different object sizes.
Object size Ori Full 0.10 0.08 0.05 0.05-rp rd

Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR
RN50 0.9278 0.8998 3.02% 0.8563 7.71% 0.8225 11.35% 0.7109 23.38% 0.6514 29.79% 0.6756 27.18%

RN50-A 0.8202 0.7710 6.00% 0.7244 11.68% 0.6800 17.09% 0.5650 31.11% 0.4956 39.58% 0.4986 39.21%
RN50-SIN 0.9154 0.9005 1.63% 0.8280 9.55% 0.7823 14.54% 0.6723 26.56% 0.6188 32.40% 0.6441 29.64%

RN50-debiasd 0.9336 0.9129 2.22% 0.8775 6.01% 0.8451 9.48% 0.7383 20.92% 0.6937 25.70% 0.6850 26.63%
RN50-Augmix 0.9352 0.9198 1.65% 0.8743 6.51% 0.8308 11.16% 0.7190 23.12% 0.6558 29.88% 0.7093 24.16%

RN50-ANT 0.9186 0.9025 1.75% 0.8506 7.40% 0.8110 11.71% 0.7029 23.48% 0.6445 29.84% 0.6673 27.36%
RN50-DeepAugment 0.9290 0.9140 1.61% 0.8582 7.62% 0.8230 11.41% 0.7144 23.10% 0.6565 29.33% 0.7171 22.81%

D.3 EXPERIMENTS ON MORE DATA

To explore the model robustness against object attributes on large-scale datasets, we step further to
conduct the image editing on all the images in the ImageNet-S validation set. Finally, the edited
dataset ImageNet-E-L shares the same size as ImageNet-S, which consists of 919 classes and 10919
images. We conduct both background editing and size editing to them. The evaluation results are
shown in Table 7. The same conclusion can also be observed. For instance, most models show
vulnerability against attribute changing since the average drop rates reach 15.52% and 24.80% in
background and size changes respectively. When the model gets larger, the robustness is improved.
The consistency implies that using our ImageNet-E can already reflect the model robustness against
object attribute changes.

Table 7: Evaluations with more data.
Models Original Background Size-0.05 Models Original Background Size-0.05

Top-1 Top-1 DR Top-1 DR Top-1 Top-1 DR Top-1 DR
DenseNet121 0.8661 0.7454 13.94% 0.6147 29.03% DenseNet169 0.8766 0.7603 13.27% 0.6331 27.78%

RN50 0.8815 0.7112 19.32% 0.6295 28.59% RN101 0.8951 0.7477 16.47% 0.6510 27.27%
EF-B0 0.8855 0.7521 15.06% 0.6197 30.02% EF-B3 0.9212 0.8048 12.64% 0.6605 28.30%

ResNest50 0.9209 0.8031 12.79% 0.6998 24.01% ResNest101 0.9279 0.8333 10.20% 0.7235 22.03%
ViT-S 0.9214 0.7845 14.86% 0.6930 24.79% ViT-base 0.9412 0.8291 11.91% 0.7567 19.60%

Swin-S 0.9310 0.8288 10.98% 0.7520 19.23% Swin-B 0.9316 0.8400 9.83% 0.7678 17.58%
ConvNeXt-T 0.9272 0.8376 9.66% 0.7610 17.92% ConvNeXt-B 0.9406 0.8603 8.54% 0.8024 14.69%

D.4 BAD CASE ANALYSIS

To make a comprehensive study of how the model behaves, we step further to make a comparison of
the heat maps of the originals and edited ones. We choose the images that are recognized correctly at
first but misclassified after editing. All the attributes editing including background, size, directions
are explored. The heat maps are visualized in Figure 13. It can be observed that compared to the SIN
and Debiased models, the vanilla RN50 is more likely to lose its focus on the interest area, especially
in the size change scenario. For example, in the second row, as it puts his focus on the background,
it returns a result with the ‘nail’ label. The same fashion is also observed in the background change
scenario. The predicted label of ‘night snake’ turns into ‘spider web’ as the complex background has
attracted its attention. In contrast, the SIN and Debiased models have robust attention mechanisms.
The quantitative results in Table 4 also validate this. The drop rate of RN50 (14.43%) is higher than
SIN (13.04%) and Debiased (12.82%) even though the original accuracy of SIN (0.9154) is lower
than vanilla RN50 (0.9278). However, the SIN also has its weakness. We find that though the SIN
pays attention to the desired region, it can also make wrong predictions. As shown in the second row
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Vanilla Debiased

Figure 12: Dropped accuracy (%) in each class. Classes whose number of images is less than 15 or
drop rate is zero are removed.

of Figure 13, when the object size gets smaller, the shape-based SIN model tends to make wrong
predictions, e.g., mistaking the ‘sea urchin’ as ’acorn’ due to the lack of texture analysis. As a result,
the drop rate in the size change scenario is 26.56% for SIN, even lower than vanilla RN50, whose
drop rate is 23.38%. On the contrary, the Debiased model can recognize it correctly, profiting from
its shape and texture-biased module. From the above observation, we can conclude that the texture
matters in the small object scenario.

Original

Size

Original

Background

Original

Direction

SIN DebiasedVanilla SIN DebiasedVanilla SIN DebiasedVanilla

Figure 13: The heat map comparisons between original images and edited ones.

D.5 DETAILS FOR ROBUSTNESS ENHANCEMENTS

Network design—-self-attention-like architecture. The results in Table 1 show that most vision
transformers show better robustness than CNNs in our scenario. Previous study has shown that the
self-attention-like architecture may be the key to robustness boost (Bai et al., 2021). Therefore, to
ablate whether incorporating this module can help attribute robustness generalization, we create a
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hybrid architecture (RN50d-hybrid) by directly feeding the output of res 3 block in RN50d into ViT-
S as the input feature. The results are shown in Table 8. As we can find that while the added module
maintains the robustness on background changes, it can help to boost the robustness against size
changes. Moreover, the RN50-hybrid can also boost the overall performance compared to ViT-S.

Table 8: Ablation study of the self-attention-like architecture.
Architectures Ori Background changes Size changes Position Direction

� = 0 � = �20 � = 20 � = 100 � = 20-adv Full 0.1 0.08 0.05 rp rd
RN50d 0.9375 1.03% 5.42% 7.23% 12.83% 20.32% 2.77% 4.96% 7.66% 18.66% 21.62% 20.91%
ViT-S 0.9474 1.77% 8.42% 11.91% 19.48% 33.30% 1.29% 7.14% 11.26% 21.59% 26.22% 17.95%

R50d-hybrid 0.9540 0.82% 6.13% 7.70% 11.08% 21.87% 1.42% 4.21% 6.65% 14.50% 18.25% 14.50%

Training strategy—-Masked image modeling. Considering that masked image modeling has
demonstrated impressive results in self-supervised representation learning by recovering corrupted
image patches (Bao et al., 2022), it may be robust to the attribute changes. Thus, we test the Masked
AutoEncoder (MAE) (He et al., 2022b) training strategy based on ViT-B backbone. As shown in
Table 9, the drop rates decrease a lot compared to vanilla ViT-B, validating the effectiveness of
the masked image modeling strategy. Motivated by this success, we also test another kind of self-
supervised-learning strategy. To be specific, we choose the representative method MoCo-V3 (Chen
et al., 2021) in the contrastive learning family. However, it fails to get a boost. We suspect that the
MoCo-V3 pays more attention to the global feature instead of the interested region since a small
change in the background can lead to a high drop rate (19.29%) on accuracy.

Table 9: Ablation study of the self-supervised models including MAE and MoCo-V3.
Architectures Ori Background changes Size changes Position Direction

� = 0 � = �20 � = 20 � = 100 � = 20-adv Full 0.1 0.08 0.05 rp rd
ViT-B 0.9570 0.82% 5.88% 8.59% 12.47% 25.52% 0.52% 4.90% 7.38% 16.45% 20.15% 11.47%

MoCo-ViT-B 0.9318 2.47% 11.23% 19.29% 45.62% 38.74% -0.21% 8.22% 12.32% 26.05% 35.17% 25.72%
MAE-ViT-B 0.9612 0.75% 5.38% 6.70% 10.05% 21.75% 0.82% 3.07% 5.02% 12.80% 15.93% 14.88%

D.6 HARDWARE

Our experiments are implemented by PyTorch (Paszke et al., 2019) and runs on RTX-3090TI.

E FURTHER EXPLORATION ON BACKGROUNDS CHANGING

Motivated by the models’ vulnerability against background changes, especially for those compli-
cated backgrounds. Apart from randomly picking the backgrounds from the ImageNet dataset as
final backgrounds (random bg), we also collect background templates with abundant textures, in-
cluding leopard, eight diagrams, checker and stripe. The evaluation results are shown in Table 10. It
can be observed that the background changes can lead to a 14.70% drop rate. When the background
is set to be a leopard or other images, the drop rates can even reach 39.60%. Sometimes the robust
models even show worse robustness. For example, when the background is eight diagrams, all the
robust models show worse results than the vanilla RN50, which is quite unexpected. To compre-
hend the behaviour behind it, we visualize the heat maps of the different models in Figure 8. An
interesting finding is that deep models tend to make decisions with dependency on the backgrounds,
especially when the background is complicated and can attract some attention. For example, when
the background is the eight diagrams, the SIN takes the goldfish as a dishwasher. We suspect it has
mistaken the background as dishes. In the same fashion, the Debiased model and ANT take the ‘sea
slug’ with eight diagrams as a ‘shopping basket’, which seems to make sense since the ‘sea slug’
looks like a vegetable.

F RELATED LITERATURE TO ROBUSTNESS ENHANCEMENTS

Adversarial training. Salman et al. (2020) focus on adversarially robust ImageNet classifiers and
show that they yield improved accuracy on a standard suite of downstream classification tasks. It
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Table 10: Evaluation of images generated with different backgrounds. The red ones in each row
indicate the background with the worst performance of the corresponding models.

Models Ori Random bg Leopard Eight diagrams Checker Stripe
RN50 0.9278 0.7914 14.70% 0.5604 39.60% 0.6438 30.61% 0.6514 29.79% 0.6324 31.84%

RN50-A 0.8202 0.6673 18.64% 0.2553 68.87% 0.3725 54.58% 0.3244 60.45% 0.4701 42.68%
RN50-SIN 0.9154 0.7806 14.73% 0.6227 31.98% 0.4862 46.89% 0.5122 44.05% 0.5274 42.39%

RN50-debiasd 0.9336 0.8104 13.20% 0.6893 26.17% 0.6275 32.79% 0.6700 28.23% 0.6322 32.28%
RN50-Augmix 0.9352 0.8047 13.95% 0.5696 39.09% 0.5646 39.63% 0.6866 26.58% 0.6566 29.79%

RN50-ANT 0.9186 0.7642 16.81% 0.5717 37.76% 0.5898 35.79% 0.5198 43.41% 0.5444 40.74%
RN50-DeepAugment 0.9290 0.7971 14.20% 0.6312 32.06% 0.5779 37.79% 0.5960 35.84% 0.6182 33.46%

Original

Random

Leopard

Eight diagrams

Checker

Stripe

Vanilla SIN Debiased Augmix ANT DeepAugment Vanilla SIN Debiased Augmix ANT DeepAugment

Figure 14: Heat maps under different backgrounds.

provides a strong baseline for adversarial training. Therefore, we choose their officially released ad-
versarially trained models3 as the evaluation model. Models with different architectures are adopted
here4.

SIN (Geirhos et al., 2018) provides evidence that machine recognition today overly relies on object
textures rather than global object shapes, as commonly assumed. It demonstrates the advantages of
a shape-based representation for robust inference (using their Stylized-ImageNet dataset to induce
such a representation in neural networks)

Debiased (Li et al., 2020) shows that convolutional neural networks are often biased towards either
texture or shape, depending on the training dataset, and such bias degenerates model performance.
Motivated by this observation, it develops a simple algorithm for shape-texture Debiased learning.
To prevent models from exclusively attending to a single cue in representation learning, it augments
training data with images with conflicting shape and texture information (e.g., an image of chim-
panzee shape but with lemon texture) and provides the corresponding supervision from shape and
texture simultaneously. It empirically demonstrates the advantages of the shape-texture Debiased
neural network training on boosting both accuracy and robustness.

Augmix (Hendrycks et al., 2020) focuses on the robustness improvement to unforeseen data shifts
encountered during deployment. It proposes a data processing technique named Augmix that helps
to improve robustness and uncertainty measures on challenging image classification benchmarks.

3https://github.com/microsoft/robust-models-transfer
4https://github.com/alibaba/easyrobust
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ANT (Rusak et al., 2020) demonstrates that a simple but properly tuned training with additive Gaus-
sian and Speckle noise generalizes surprisingly well to unseen corruptions, easily reaching the pre-
vious state of the art on the corruption benchmark ImageNet-C and on MNIST-C.

DeepAugment (Hendrycks et al., 2021). Motivated by the observation that using larger models and
artificial data augmentations can improve robustness on real-world distribution shifts, contrary to
claims in prior work. It introduces a new data augmentation method named DeepAugment, which
uses image-to-image neural networks for data augmentation. It improves robustness on their newly
introduced ImageNet-R benchmark and can also be combined with other augmentation methods to
outperform a model pretrained on 1000× more labeled data.
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