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ABSTRACT

We found that enforcing guidance throughout the sampling process is often coun-
terproductive due to the model-fitting issue, where samples are ‘tuned’ to match
the classifier’s parameters rather than generalizing the expected condition. This
work identifies and quantifies the problem, demonstrating that reducing or ex-
cluding guidance at numerous timesteps can mitigate this issue. By distributing
a small amount of guidance over a large number of sampling timesteps, we ob-
serve a significant improvement in image quality and diversity while also reducing
the required guidance timesteps by nearly 40%. This approach addresses a ma-
jor challenge in applying guidance effectively to generative tasks. Consequently,
our proposed method, termed Compress Guidance, allows for the exclusion of a
substantial number of guidance timesteps while still surpassing baseline models in
image quality. We validate our approach through benchmarks on label-conditional
and text-to-image generative tasks across various datasets and models.

1 INTRODUCTION

Guidance in diffusion models is mainly divided into classifier-free guidance in |Ho & Salimans
(2022), and classifier guidance in Dhariwal & Nichol| (2021). Although both of these methods
significantly improve the performance of the diffusion samples [Dhariwal & Nichol| (2021)); |[Ho &
Salimans| (2022)); Bansal et al.|(2023); Liu et al.| (2023); |[Epstein et al.|(2023)), they both suffer from
large computation time. For classifier guidance, the act of gradients calculation backwards through a
classifier is costly. On the other hand, forwarding through a diffusion model twice at every timestep
also costs significant computation in classifier-free guidance.

This work challenges the necessity of the current complex process based on several key observations.
First, we find that the guidance loss is predominantly active during the early stages of the sampling
process, when the image lacks a well-defined structure. As the model progresses and shifts its focus
to refining image details, the guidance loss tends to approach zero. Additionally, when evaluating
intermediate samples with an additional classifier not used for guidance, we observe that the loss
from this external classifier does not decrease in the same way as it does for the guidance-specific
classifier. This suggests that the generated samples are tailored to fit the features of the guiding
classifier rather than producing generalized features applicable to different classifiers. We define
this issue as model-fitting, where the generated image pixels are optimized to satisfy the guiding
classifier’s criteria rather than generalizing to the intended conditions. The problem is validated by
three pieces of evidence in section [3.1]

These observations prompt us to question whether guidance is necessary at every timestep and how
reducing the frequency of guidance could enhance generative quality. In Section we further
explore the properties of guidance in ensuring sample quality. Based on this analysis, we propose
a simple yet effective method called Compress Guidance (CompG), which mitigates the issue by
reducing the number of timesteps that invoke gradient calculation. This approach not only improves
sample quality but also significantly accelerates the overall process as shown in Fig[l]

Overall, the contributions of our works are three-fold: (1) Explore and quantify the model-fitting
problem in guidance and the redundant computation resulting from current guidance methods. (2)
Propose a simple but effective method to contain the model-fitting problem and improve compu-
tational time. (3) Extensive analysis and experimental results for different datasets and generative
tasks on both classifier and classifier-free guidance perspectives.
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Figure 1: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free guidance
with application on all 50 timesteps. Our proposed Compress Guidance method is the right figure, where
we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority over classifier-free
guidance regarding image quality, quantitative performance and efficiency. The efficiency is counted based on
the time to generate 30000 images with 1 GPU.

2 BACKGROUND
Diffusion Models (2020) has the form of: py := p(xr) H;‘le po(x:—1|x¢) where
po(xi—1]%t) := N(x¢—1; o (zy, 1), Xo (x4, t)) supporting the reverse process from x7 to xg. This

process is denoising process where starting from the x7 ~ MN(xr;0,I) to gradually move to
Xo ~ ¢(Xo). This process is trained to be matched with the forward diffusion process ¢(x1.7|%0) :=

Hle q(x¢|xi—1) given q(x¢|x¢—1) as q(x¢|x¢—1) := N (x¢;v/1 — Bex¢—1, BI) or we can write the
conditional distribution of x; given x as below:
q(x¢|x0) = N (x¢; Vauxo, (1 — a)I) (D

B is the fixed variance scheduled before the process starts, (2020) denotes oy := 1 — f3;
and oy 1= Hi=1 a used in Eq We have the x;_; conditioned on x( and x; as:

q(xt—1]%¢,%0) = N (x¢—15 fie (X, Xo0), B 1) )
where fi;(x¢,Xg) = Y f:;tﬁ txo + ‘/al(:ft‘lxt and B; := lf—glﬁt. To train the diffusion
model, the lower bound loss is utilized as below:
Xe_1]x
[~ logpo(x0)] < E[— logp(xr) — Sz log 22=11%t) 6
q Q(Xt|xt71)
Rewrite Eq. 3| as Eq[Drr(q(x7|x0)l[p(x1)) + D211 Drr(q(xe—1%t,%0)||po(xt-1[xt)) —
log po(xo|x1) The training process actually optimize the

> o1 Drr(q(x:—1]%¢,%o0)||po(x¢t—1/x¢)) where the diffusion model try to match the distri-
bution of x;_1 by using only x;. There are several implementations for optimising the[3] However,
the 6 as parameters of the noise predictor €y(x;,t) is the most popular choice. After the 6 are
trained using Eq. 3] the sampling equation:

1—Oét

1
Xt — €
N el

(x¢,t)) + 02 4

Xt—1 =
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Guidance in the Diffusion model offers conditional information and image quality enhancement.
Given a classifier p,(y|x;) that match with the labels distribution conditioned on images x;, we
have the sampling equation with guidance as:

X1 ~ N + 507 Vi, log o (ylx:), ot (5)

with s is the guidance scale. Beside the classifier guidance as Eq[5] [Ho & Salimans|(2022)) proposes
another version named classifier-free guidance. This guidance method does not base the information
on a classifier. Instead, the guidance depends on the conditional information from a conditional
diffusion model. The sampling equation has the form:

Xt — 1-— C_Ygt
VO

given € = (1 + w)eg(x¢, ¢) — wep(x¢) with w is the guidance scale.

Xt—1 NN(ﬁt(Xt, )701‘,) 6)

3  MODEL-FITTING IN GUIDANCE

We begin by modelling the sampling equation as two distinct optimization objectives, illustrating
that the sampling process functions as a form of “training”, where parameters x; are optimized
over T' timesteps. We then analyze the “training” of x; in light of these objectives, highlighting the
model-fitting problem that arises in the current guidance-driven sampling process. To address this
issue, we propose a simple method called Compress Guidance, which helps mitigate the observed
model-fitting problem. From Eq[4] we have:

(1 —Oét)\/dt,1 Xt —\/1 —dt@(xht) (1—6ét_1)\/(7t

Xi_q1 = + Xt + 042 (N

11—y VO 11—y
Distribution matching objective: Assuming that ey(x;,t) is learned perfectly to match random

noise € at timestep ¢, we have Xt—Y-—tcoXt,2) Vl:/%s"(x‘ﬂ = X is the exact prediction of x( at timestep ¢

according to Eq[I] With X is the prediction of x, at timestep ¢, we can re-write the equation as

bellow:
(1- at)\/dtflio n (1 —a—1)/ar

1—0oy 1—oy

X1 = Xy + 0tz ®)
This equation (8 can be derived from ¢(x:—1|x¢,%0) in Eq. with parameterized trick for
Gaussian Distribution. Thus, the first aim of the sampling process is to match the distribution
q(x¢—1|x¢,%0). Nevertheless, the Eq is based on the assumption that Xy ~ x(, which of-
KooV OneoiXe,t) Vl?/%e"(’"t), this formulation is rooted from
X ~ N(%xt; 2=11) with assumption that eg(x;,t) ~ e. However, €g(x¢,t) is trained to mini-

ten does not hold when ¢t — T. Given Xy =

mize D1, [q(x¢—1|X¢, X0)||pe(x:—1|%x¢)] as inHo et al.|(2020) which actually causes a significantly
distorted information if €y (x¢, t) is utilized to sample x from x; if ¢ — T". A smaller ¢ would result
in a better prediction of xo and with £ = 0, we have & = 1 resulting in Xy = x;.

Theorem 1. Assume that €q is trained to converge and the real data density function q(x) satisfies
a form of Gaussian distribution. The process of recurrent sampling x;_1 ~ q(x¢—1|x¢,Xo) from T
to 0 is equivalent to minimization process of Dy 1,[q(x0)||po(Xo|xt)] -wrt. x4.

Proof. Given real data x¢, two latent samples are sampled at two timestep {; < t2. We have,

Xt;, = /o, X0 + /1 —0u,€ and x¢, = /O, X0 + /1 — Gre. From x4 and xy,, real data
.. ~(t Xty —/1—aty €0 (xtq5t1) ~(t Xty =/ 1= Q€0 (Xty,t2)
prediction has the form of xé D = o L Y and xé 2) = X 2 P2 2 cor-

e, Qi,

() _ o+ V1=, (e—e(xty 1))

respondingly. Replace x;, and x;, with xo and €, we have x

atl
~(t V1=, (e—eg(xiqy,t2)) ~ 1—ay, ||le—eq (Xt 5t
and %% = xo + 2 O Thus %™ — xo|| = allecobartll ypg
0 Oy, Xty
1—5&t2H€—€9(xt2,t2)||

||x~0(t2) —xol| = . Since eg(xt,,t1) ~ €9(Xty,t2) ~ € |le — €o(xt,,t1)]| =
1-a - 1-a
FoAand %01 = xol| = F72A

Qo

|le — €6 (x4, 2)|| & A. This results in || — x¢] =
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Figure 2: (left) OADM-C, (right) Resnetl52 off-sampling loss. The On-
sampling loss converges very early while leaving the off-sampling loss con-
verges at the end of the process after the conclusion of the denoising process.

||X~o(t1)*xo|\ < ||)€o(t1)fx0\| since 1;?‘ 1=

2 > % > 0, Vta > t;. Consequently, the sampling of
“1

2
X¢—1 ~ q(x¢—1|X¢, Xo) from timesteps 7" to 0 would mean the minimization of ||x~0(t) — Xpl|. Since
q(x%0) is a normal distribution, the final objective can be written as miny, Dk 1,[q(X0)||pe (Xo|x¢)].
(Full proof can be found in the appendix).

If we consider x; of the Eq[8]as the set of optimization parameters, the sampling process will have
the objective function:

min Dz [q(xo) |[po (Xo|x¢)] ©)
We re-write the Eq[8]as:
/O — 1 1— Ot

Xt—1 :Xt_(

NG X: + M@EO(&J)—%Z) (10)

71 VDx1[a(x0)||pe (Xo]x¢)]

Eq[I0] turns the sampling process into a stochastic gradient descent process where the x; is the
parameter of the model at the timestep ¢, the updated direction into x; aims to satisfy the objective
function Eq[9]

Classification objective: From Eq we have the term so? Vy, log ps(y|x;) is added to the sam-
pling equation for guidance. This term can be written in full form as so?Vy, (¢(y)logq(y) —
q(y) log ps(y|x:)) which is equivalent to —so?V D 1.[q(y)||ps(9|x:)]. Combine EqJ10| with guid-
ance information in Eq[5] we have:
Vo —1 1— oy 9
X1 =Xt — (——X¢ + ———€¢(X¢,1) — 012) —(—50; Vx, lo X 11
t—1 t ( \/@ t m\/aee( t ) Ot ) ( N gp¢(y‘ t)) ( )

Y2V Dk L[a(y)l|ps (91x:)]

71 VDkL[a(x0)[|pe (¥o|x¢)]
As a result, the process of updating x; to x;_1 is a “training” step to optimize to objective functions
D 1[q(x0)|[pe(Xo|x:)] and D lq(y)||pe(§]x:)] with two gradients respecting to x; as Eq[T1]
Since this is similar to the training process, it is expected to face some problems in training deep
neural networks. In this work, the problem of model fitting is detected by observing the losses given
by the classification objective during the sampling process.

3.1 MODEL-FITTING

Based on the optimization problem from the sampling process in the previous section, we first define
on-sampling loss and off-sampling loss for observation.

Definition 1. On-sampling loss/accuracy refers to the loss or accuracy evaluated on the generated
samples x; at timestep t during the diffusion sampling process, which consists of T timesteps. This
loss is defined as —log py(y|x) by the classifier parameters ¢ that provides guidance throughout
the sampling process.

Definition 2. Off-sampling loss/accuracy refers to the loss or accuracy evaluated on the generated
samples x; at timestep t during the diffusion sampling process, which consists of T timesteps. This
loss is defined as —logpy (§|x:) by the classifier parameters ¢ that does not provides guidance
throughout the sampling process.
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Figure 3: ImageNet256x256 samled by ADM-G in |Dhariwal & Nichol| (2021). The top row is the vanilla
guidance, where all the timesteps got the guidance information. The second and third rows are our proposed
method, which only applies 35 time steps. The second row distributes the timesteps uniformly, while the third
row distributes the timesteps toward the early stage of the sampling process. The Compress Guidance performs
significantly better than the original guidance method. One blue stick means one guidance step.

we visualize the on-sampling loss obtained from the noise-aware ADM classifier in
as in Figure 2] We found out that the classification information is mainly active
during the early stage of the process, as it converges very early in the first 120 timesteps. However,
a different trend is observed for the off-sampling loss. We set up an off-sampling classifier with the
same architecture and performance as the on-sampling classifier used for guidance or in on-sampling
loss. The only difference between the two models is the parameters. The details on obtaining this
off-sampling classifier are in Appendix [Bl We name this off-sampling classifier as OADM-C. To
avoid bias, we also use an off-the-shelf model ResNet152[He et al.| to be another off-sampling
classifier.

Definition 3. Model-fitting occurs when sampled images x; at timestep t is updated to maximize
pe(y|x¢) or to satisfy the parameters of the ¢ only instead of the real distribution q(y|x;).

In practice, a pretrained pg(y|x;) is only able to capture part of the ¢(y|x;). Fitting solely with
pe(y|x;) limits the sample’s generalisation ability, leading to incorrect features or overemphasising
certain details due to misclassification or overfocusing of the guidance classifier. Three pieces of
evidence support that the vanilla guidance suffers from model-fitting problem.

Evidence 1: From the figures in Table 2] we see that while the on-sampling loss converges around
the 120" timestep, the off-sampling loss remains high until the diffusion model converges later.
This indicates that samples x; at timestep ¢ satisfy only the on-sampling classifier but not the off-
sampling classifier, despite their identical performance and architecture. Although the off-sampling
loss decreases by the end, a significant gap between the off-sampling and on-sampling losses per-
sists. This supports our hypothesis that the guidance sampling process produces features that fit only
the guidance classifier, not the conditional information.

Evidence 2: Table 2] illustrates the model-fitting problem through accuracy metrics. With vanilla
guidance, the accuracy is about 90.80% for the on-sampling classifier. However, the same samples
evaluated by the off-sampling classifier or Resnet152 achieve only around 62.5% and 34.2% ac-
curacy, respectively. This indicates that many features generated by the model are specific to the
guidance classifier and do not generalize to other models.

Evidence 3: Figure [3] (first row) shows samples from vanilla guidance, where every sampling step
receives guidance information. Applying guidance at all timesteps forces the model to fit the on-
sampling classifier’s perception. Often, this makes the model colour-sensitive, focusing on generat-
ing the “orange” feature for Goldfish and ignoring other details.

From the three pieces of evidence we can observe, we can conclude that the vanilla guidance scheme
has suffered from the model-fitting problem.

Analogy to overfitting: In neural network training, we have a dataset x and a classifier fy(x) to
approximate the posterior distribution p(y|x). Let X, be the training data and Xy the testing data.
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Overfitting occurs when fy is tailored to fit X, but fails to generalize to the entire dataset x. This
is observed by the gap between training loss/accuracy and testing loss/accuracy on Xy and Xeeg.
Table 2: Overfitting vs. Model-Fitting In t.he d1ffu§10n model’s samphqg process, .the classifier
fo is pretrained or fixed. The aim is to adjust the sam-

Aspect Overfitting _ Model-fitting ples x to match the trained posterior py(y|x). This pro-
Train Data Xirain fog cess also uses Stochastic Gradient Descent with different
Test Data Xiest fo0 roles: fy acts as the fixed data, and x are the trainable
Parameters fo x g

parameters. The model-fitting problem arises when x is
adjusted to fit only the specific fp instead of generalizing well. Here, f4, is the on-sampling "data”,
and we use an off-sampling “data” f4_ to observe the model-fitting where the gap between them is
large, analogous to using training and testing data to check for overfitting.

3.2 ANALYSIS

Gradient over-calculation is the main reason for model-fitting. Thus, gradient balance, which is to
call not too many times of gradient calculation, is required. A straightforward solution is to eliminate
the gradient calculations for the later timesteps, which have been found to be less active, as shown
in Figure[2] This approach is referred to as Early Stopping (ES), where guidance is halted from the
200%" timestep onwards, continuing until the 0** timestep.

Early Stopping: Figure 4] demonstrates that ES suffers from the forgerting problem, where on-
sampling classification loss increases during the remaining sampling process, negatively impacting
the generative outputs. This suggests that the guidance requires the property of continuity, meaning
the gap between consecutive guidance steps must not be too large to prevent the forgetting problem.

Uniform skipping guidance: We try an alternative approach which is called Uniform Skip-
ping Guidance (UG). In UG, 50 guidance steps are evenly distributed across 250 sampling steps,
with guidance applied every five steps. This ensures continuity throughout the sampling pro-
cess, mitigating the forgetting problem. However, as shown in Figure [2, UG encounters the
issue of non-convergence, where the classification magnitude is too weak and becomes over-
shadowed by the denoising signals from the diffusion models, leading to poor conditional in-
formation. Thus, a guidance must require another property, which is magnitude sufficiency.

In summary, vanilla guidance faces the issue of model- 7
fitting, while ES and UG fail due to the forgetting and 6
non-convergence problems, respectively. Therefore, the
primary goal of our proposed method is to meet three key >
conditions which are gradient balance, guidance conti- 44 7 S;g:as';‘g';‘lgng"’lfss
nuity and magnitude sufficiency. W ES on-sampling loss
2
3.3 COMPRESS GUIDANCE 1
0
250 200 150 100 50 0

To avoid calculating too much gradient, we propose to uti-
lize the gradient from the previous guidance step at sev-
eral next sampling steps, given that the gradient magni- Figure 4: G is denoted for vanilla guid-
tude difference between two consecutive sampling steps ance, UG is the uniform skipping scheme,
is not too significant. By doing this, we can satisfy mag- and ES is the early stopping scheme. The
nitude sufficiency without re-calculating the gradient at  87aPh shows that UG suffers from the non-
every sampling step. Note that the gradient directions C}fm}ergen?e P mbbllem’ and ES suffers from
have not been updated since the last guidance step, re- the forgetting problem.

sulting in the gradient balance. Since all the sampling

step receives a guidance signal, the continuity is guaranteed. Start with the Eq. we have the
sampling scheme as below:

Timestep t

_xt =V DxkL[q(Xolx:)l|g(%0)] — 12V DxLlg(9x:)llq(y)], ifted
Xt—1 = (12)

xy — 1 VDgp[qg(Xo|x¢)[|q(x0)] — 72Ty, otherwise
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Figure 5: Qualitative results on ImageNet256x256. Left: Vanilla guidance applied at all timesteps. Right:
Compress Guidance applied at 50 out of 250 timesteps. Compress Guidance reduces over-emphasized features,
correcting weird and incorrect details. Further results are in Appendi

The set G is the set of time-steps for which the gradient will be calculated. I is a variable used to
store the calculated gradient from the previous sampling step, I'; is updated as:

r,, - VDxkr[q(glx:)llq(y)],  ifte G 03
Iy otherwise

In practice, we find out that instead of duplicating gradients as in Eq.[I2} we can slightly improve the
performance by compressing the duplicated gradients into one guidance step instead of providing
guidance to all sampling as in Eq[T2] We name this method as Compress Guidance.We modify the
sampling equation as below:

Xpq = %7 NV DirlaRolx)|lg(x0)] =92 SE Ty, ift = a; (14)
x: — 1V Dic L la(%olx:)lla(x0)]; otherwise
One of the algorithm’s assumptions is that the magnitude is mostly the same for two consecutive
sampling steps. From Appendix[G] we observe that the classification gradient magnitude difference
between two consecutive sampling steps is often larger in the early stage of the sampling process.
Thus, we propose a method that distributes more guidance toward the early sampling stage and
sparely at the end of the process. This will help to avoid the significant accumulation of magnitude
differences in the early stage and helps to deliver better performance as well as reducing the number
of guidance steps. The scheme is defined as Eq. [I3]

T .,

V0 <i <l ke[0;4+o] (15)
Theorem 2. When k — 400, the guidance timesteps will be distributed more toward the early stage
of the sampling process.

Theorem 3. When k < 1 and k — 0, the guidance timesteps will be distributed more toward the
late stage of the sampling process.

The proposed solution to select the timesteps for guidance as Eq[T5]allows us to choose the number
of timesteps we will do guidance and how to distribute these timesteps along the sampling process
by adjusting the & values. The full proof of Theorem [2]and [3]is written in the appendix.

4 EXPERIMENTAL RESULTS

Setup Experiments are conducted on pretrained Diffusion models on ImageNet 64x64, ImageNet
128x128, ImageNet 256x256 and MSCOCO. The base Diffusion models utilized for label condi-
tion sampling task are ADM |Dhariwal & Nichol|(2021)) and CADM Dhariwal & Nichol| (2021})) for
classifier guidance, DiTPeebles & Xie| (2023) for classifier-free guidance (CFG) Ho & Salimans
(2022), GLIDENichol et al.|(2021) for CLIP text-to-image guidance and Stable Diffusion Rombach
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Figure 6: Qualitative results on ImageNer256x256. Left: Vanilla guidance applied at all timesteps. Right:
Compress Guidance applied at 50 of 250 timesteps. Compress Guidance corrects misclassification by the on-
sampling classifier, preventing out-of-class image generation and restoring accurate class information. More
qualitative results are shown in Appendi)@

for text-to-image classifier-free guidance. Other baselines we also do comparison is
BigGAN Brock et al| (2018), VAQ-VAE-2 [Zhao et al|(2020), LOGAN [Wu et al.| (2019), DCTrans-
formers [Nash et al.| (2021). FID/sFID, Precision and Recall are utilized to evaluate image quality
and diversity measurements. We denote Compress Guidance as ”’-CompG” and -G’ as vanilla guid-
ance, ’-CFG” is the CFG, and ”-CompCFG” is our proposed Compress Guidance applying on CFG.
Full results with details of the experimental set up are discussed in Appendix [B]and [C|

4.1 CLASSIFIER GUIDANCE

For classifier guidance, we distinguish this guidance scheme into two types due to its behaviour
discrepancy when applying the guidance. The first type is classifier guidance on the unconditional
diffusion model, and the second is classifier guidance on the conditional diffusion model.

Guidance with unconditional diffusion model Guidance with unconditional model provides diffu-
sion model both conditional information and image quality improvementDhariwal & Nichol| (2021)).
Table [3] shows the improvement using CompactGuidance (CG). The results show three main im-
provements. First, there is an improvement in the quantitative results of FID, sFID, and Recall
values, indicating an improvement in generated image qualities and diversity. Second, we further
validate the image quality and diversity improvement in Figure[5]and[6] Third, the proposed method
offered a significant improvement in running time where we reduced the number of guidance steps
by 5 times and reduced the running time by 42% on ImageNet64x64 and 23% on ImageNet256x256.

Guidance with conditional diffusion model Unlike the unconditional diffusion model, guidance
in the conditional diffusion model does not aim to provide conditional information. Therefore, the
effect of guidance is less significant than guidance on the unconditional diffusion model. Table 4]
shows the diversity improvement based on Recall values compared to vanilla guidance. Furthermore,
CompG reduced the guidance steps by 5 times and reduced the sampling time by 39.79% , 29.63%
, and 22% on ImageNet64x64, 128x128 and 256x256, respectively.

4.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance is a different form of guidance from classifier guidance. Although classifier-
free guidance does not use an explicit classifier for guidance, the diffusion model serves as an im-
plicit classifier inside the model as discussed in Appendix [E] We hypothesize that classifier-free
guidance also suffers from a similar problem with classifier guidance. We apply the Compress
Guidance technique on classifier-free guidance (CompCFG) and demonstrate the results in Table 4]

4.3 TEXT-TO-IMAGE GUIDANCE

Besides using labels for conditional generation, text-to-image allows users to input text conditions
and generate images with similar meanings. This task has recently become one of the most popular
tasks in generative models. We apply the CompactGuidance on this task with two types of guidances,
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Table 3: Applying CompG to classifier guidance on unconditional diffusion model. ADM-CompG reduces the
number of guidance timesteps by fivefold and increases the sampling process’s running time by approximately
42% on ImageNet64x64 and 23% on ImageNet256x256. Notably, on ImageNet256x256, the running time of
ADM-CompG is only 5% higher compared to the unguided sampling process. In terms of performance, ADM-
CompG significantly outperforms ADM and ADM-G across most metrics.

Model |G|) GPUhours({) FID({) SsFID({) Prec() Rec(?)
ImageNet 64x64
ADM (No guidance) 0 26.33 9.95 6.58 0.60 0.65
"ADM-G 250 5486 640 967 073 054
ADM-CompG 50 31.80 5.91 8.26 0.71 0.56
ImageNet 256x256
_ADM(Noguidance) _ 0 24537 2621 635 _ 061 063
ADM-G 250 334.25 11.96 10.28 0.75 0.45
ADM-CompG 50 258.33 11.65 8.52 0.75 0.48

Table 4: Applying CompG to classifier guidance in conditional diffusion models and classifier-free guidance
significantly improves performance. CADM-CompG outperforms CADM and slightly surpasses CADM-G,
as CADM-G depends on both the classifier and conditional diffusion model. CompG reduces the number of
guidance timesteps by fivefold and significantly increases the sampling process’s running time across all three
ImageNet resolutions. CompG for classifier-free guidance also reduces the number of guidance steps by tenfold
and achieves significantly better results.

Model |G| () GPUhours(}) FID(}) sFID() Prec() Rec(?)
ImageNet 64x64

. CADM (No guidance) 0 _ 2664 207 _ 429 073 063
CADM-G 250 53.52 247 4.88 0.80 0.57
CADM-CompG 50 32.22 1.82 4.31 0.76 0.61

" CADM-CFG =~ 250 5497 ~  1.89 = 445 077 060
CADM-CompCFG 25 29.29 1.84 4.38 0.77 0.61
ImageNet 128x128

. CADM (No guidance) 0 6160 614 = 496 069 065
CADM-G 250 94.06 2.95 5.45 0.81 0.54
CADM-CompG 50 66.19 2.86 5.29 0.79 0.58
ImageNet 256x256

. CADM (No guidance) 0 _ 24033 1094 _ 602 069 _ 063
CADM-G 250 336.05 4.58 5.21 0.81 0.51
CADM-CompG 50 259.25 4.52 5.29 0.82 0.51

"DiT-CFG =~~~ 250 7504 225 ~ 456  0.82° 0.8
DiT-CompCFG 22 42.20 2.19 4.74 0.82 0.60

which are CLIP-based guidance (GLIDE) Nichol et al.| (2021) and classifier-free guidance (Stable
Diffusion) Rombach et al.| (2022)). The results are shown in Table [5|and [6] and Figure [T}

Table 5: Applying CompG on text-to-image

GLIDE classifier-based guidance on MSCoco  Table 6: Applying CompG on Stable Diffusion classifier-free

datasets. guidance on MSCoc0256x256 dataset. CompG significantly
improve both qualitative results, as in Figure|l| and quanti-

Model |G| (}) GPUhrs(}) ZFID (}) tative results, as below.
MSCOCO 64x64
GLIDE-G 250 34,04 2478 Model |Gl()) GPUhrs({) FID() IS() CLIP(1)
GLIDE-CompG 25 20.93 24.5 MSCOCO 256x256
MSCOCO 256x256 SD-CFG 50 54 16.04  32.34 28
GLIDE.G 250 56.84 3478 SD-ComptCFG 8 35 14.04 3590 30
GLIDE-CompG 35 37.55 3312

4.4 ABLATION STUDY

Solving the model-fitting problem One of the main contributions of the proposed
method is its help in alleviating the model-fitting problem. Due to the closeness be-
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Figure 7: CompG reduces the gap between off-sampling and on-sampling loss, mitigating the model-fitting
issue compared to other schemes. The ES scheme concludes guidance after 50 steps and suffers from forgetting
problems where the on-sampling loss increases along with the sampling process.

tween the model-fitting problem and overfitting problems, we use an Early stopping
scheme for comparison. For CompG, we utilize 50 guidance steps. Thus, we also
turn off guidance for the ES scheme after 50 guidance -calls. Figure for details.

Table 7: Model-fitting on ImageNet64x64 sam-

ples. ES suffers from the forgetting problem and  Distribution guidance timesteps toward the early
has low performance. CompG achieves higher stage of the process: According to the Theorem
both on on-sampling and off-sampling acc. by adjusting k, we can distribute the timesteps to-
ward the early stage or the late stage of the sampling

Guidance On-samp.  Off-samp.  Resnet  r50egs. Table [§] shows the comparison between k

o 9038 oY i values. With £ = 1.0, guidance steps are distributed
anilla . . . . .

Early Stopping  63.05 5592 3355 uniformly. Larger k results in comparable perfor-

CompG (ours) 91.2 64.2 34.93 mance but more fruitful running time and the num-
ber of guidance steps.

Table 8: ImageNet64x64. Experimental results with increasing k. According to Theorem E] increasing k
guides distribution towards early timesteps, resulting in comparable performance comparable to full guidance
and better than without guidance. This scheme leads to fewer guidance steps and lower running costs.

Model k |Gl() GPUhours()) FID(})) sFID(}) Prec(t) Rec(f)
CADM (No guidance) - 0 26.64 2.07 4.29 0.73 0.63
- CADM-ComptG 1.0 50 3222 191 ~ 438 077 061
CADM-ComptG 20 47 3118 1.95 4.40 0.76 0.62
CADM-ComptG 30 41 30.54 194 442 0.76 0.62
CADM-ComptG 40 36 30.02 1.89 435 0.76 0.62
CADM-ComptG 50 32 29.81 182 431 0.76 0.62
CADM-ComptG 60 28 29.12 1.93 435 0.75 0.62

Trade-off between computation and image quality Compact rate is the total number of sampling
steps over the number of guidance steps % The larger the compact rate, the lower the model’s

guidance, hence the lower running time. Figure [9] shows the effect of using fewer timesteps on IS,
FID and Recall as in Figure [9a] [0b| and Oc]in Appendix.

5 CONCLUSION

The paper quantifies the problem of model-fitting, an analogy to the problem of overfitting in training
deep neural networks by observing on-sampling loss and off-sampling loss. Compress Guidance
is proposed to alleviate the situation and significantly boost the Diffusion Model’s performance
in qualitative and quantitative results. Furthermore, applying Compress Guidance can reduce the
number of guidance steps by at least five times and reduce the running time by around 40%. Broader
Impacts and Safeguards will be discussed in the Appendix.
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A BROADER IMPACT AND SAFEGUARD

The work does not have concerns about safeguarding since it does not utilize the training data. The
paper only utilizes the pre-trained models from DiT |Peebles & Xie|(2023), ADMDhariwal & Nichol
(2021)), GLIDE Nichol et al.|(2021)) and Stable Diffusion Rombach et al.|(2022)). The work fastens
the sampling process of the diffusion model and contributes to the population of the diffusion model
in reality. However, the negative impact might be on the research on a generative model where bad
people use that to fake videos or images.

B EXPERIMENTAL SETUP

Off-sampling classifier: Off-sampling classifier is initialized as the parameters of the on-sampling
classifier. We fine-tune the model with 10000 timesteps with the same loss for training the on-
sampling classifier. The testing accuracy between the off-sampling classifier and the on-sampling
classifier is shown in Table[9]

Evaluation Model Accuracy

On-sampling classifier 64.5%
Off-sampling classifier 63.5%

Table 9: Evaluation of On-sampling classifier and Off-sampling classifier on ground-truth images.

Figure[11|shows all the hyperparameters used for all experiments in the paper. Normally, since we
skip a lot of timesteps that do guidance, the process will fall into the case of forgetting. To avoid
this situation, we would increase the guidance scale significantly. The value of the guidance scale is
often based on the compact rate % A larger compact rate also indicates a larger guidance scale.

In Table [/| and Figure [/} to achieve a fair comparison, we tune the guidance scale of CompG to
achieve a similar Recall value with vanilla guidance. The reason is that the higher the level of
diversity, the harder features can be recognized resulting higher loss and lower accuracy. If we don’t
configure similar diversity between two schemes, the one with higher diversity will always achieve
lower accuracy and higher loss value. We want to avoid the case that the model only samples one
good image for all.

For all the tables, the models which are in bold are the proposed.

GPU hours: All the GPU hours are calculated based on the time for sampling 50000 samples in
ImageNet or 30000 samples in MSCoco.

All experiments are run on a cluster with 4 V100 GPUs.

C FULL COMPARISION

Table [T0]shows full comparison with different famous baselines.

D MATHEMATICAL DETAILS
Proof of Theorem 1]

Proof. Given real data xi, we sample two latent samples at two timestep ¢; < t2. As a result
Xt, = /Oy, X0 + /1 — e and x¢, = \/Qr, X0 + /1 — ai,€. From %, and x.,, the prediction
- -/1-a t - —/1-&a t
of real data has the form of %{[*) = X1 Guicobent) yng x(?) = X2 Opcobiat) op
&y NCTS
. . - /1=, (e—eo(xpq
respondingly. Replace x;, and x,, with xo and ¢, we have %" = xo + atlie/aj(x'l 1)
t1

+ \/1*dtz(€*€9(xt2¢t2)). Thus HX~0(t1) — xo|| = 1—auy |[e—eo(xtq5t1)]] and

Qt, Aty

(t2) _
0

and X = Xp
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Table 10: We show full results of the model compared to other models not related to guidance.

Model |G| () GPUhours({) FID(}) sFID() Prec(ft) Rec(?})
ImageNet 64x64
BigGAN - - 4.06 3.96 0.79 0.48
IDDPM 0 28.32 2.90 3.78 0.73 0.62
CADM (No guidance) 0 26.64 2.07 4.29 0.73 0.63
"CADM-G 250 5352 247 48 080 057
_ CADM-CompG 50 3222 181 457 077 061
CADM-CFG 250 54.97 1.89 4.45 0.77 0.60
CADM-CompCFG 25 29.29 1.84 4.38 0.77 0.61
ImageNet 128x128
BigGAN - - 6.02 7.18 0.86 0.35
LOGAN - - 3.36 - - -
_CADM (Noguidance) 0 6160 614 49 069 065
CADM-G 250 94.06 2.95 5.45 0.81 0.54
CADM-CompG 50 66.19 2.86 5.29 0.79 0.58
ImageNet 256x256
BigGAN - - 7.03 7.29 0.87 0.27
DCTrans - - 36.51 8.24 0.36 0.67
VQ-VAE-2 - - 31.11 17.38 0.36 0.57
IDDPM - - 12.26 542 0.70 0.62
_CADM (Noguidance) _ 0 24033 1094 _ 602 069 063
CADM-G 250 336.05 4.58 5.21 0.81 0.51
_CADM-CompG 50 25925 452 529 082 051
DiT-CFG 250 75.04 2.25 4.56 0.82 0.58
DiT-CompCFG 22 42.20 2.19 4.74 0.82 0.60
- 1—a - )t .
||Xo(t2) _ XOH _ atﬂ\ééjz(xm 2)||. Since GB(thytl) ~ 69(Xt23t2) ~ €, He — 69(Xt1>t1)|| ~
. . - 1—& - 1—-&
|le — eg(x4,,t2)|| & A. This results in |[xo ™) — xo|| = %A and ||, — x| = %A.

1-&

2 > % > 0, Vta > t1. As a result, the sampling
o

%0 — x| < [|%0") — x0|| since -
of x;_1 ~ q(x¢_1|x¢, %) from timesteps 7' to 0 would result in the minimization of ||, — x|

Since ¢(xo) has the form of Gaussian, we can have the minimization of |[x,®) — x|| would result
| _ ||q(io)(I(Xt\io) _ (
q(xz) q

deterministic forward of x; to €y, we have ¢(Xq) ~ %}(’Sli“) = po(Xo|x¢)-

in the minimization of ||¢(X¢) — ¢(X0)] Xp)|| since Xy ~ po(Xo|x:) with a

Assume we have two density function p(x) and ¢(x). The KL divergence between these two has the
form:

/O p<x>log§g§= / p(x) log(p(x)) — p(x) log(g(x))dx (16)
1 1
_ / p(x) log(p(x))dx — / p<x>10g<p<x>>+p<x>log<<§§j§—1>+1>dx
17
! q(x)
_ /O () log((§75 1) + 1)dx (18)
! | 1
- / ~(alo) = (o) + (4(0) = P05 = o5 (19)
NS S SR
< [ a0 =0 (25 — ) 20)
< [ a0 =) = s = ol @

Thus D1 (p(x)|]q(x)) < 2=2[p — q|
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Base on this bound we would have the minimization of ||pg(Xo|x:¢) — ¢(x0)|| is equivalent to the
minimization of D1, (q(X0)||pe(Xo|xt)).

Proof of Theorem 2]
Proof. Letk; < ko and k1, ko € [1; 4-00], with ﬁ?k = T(ﬁ)k and ﬁ < 1, we have:
(é)’“ > (l—&)’“"’ (22)
ST = T 23)
ST (g = [T 1)
T = [T()") €T = IT( )" ©5)

As aresult, &™) < Gk ky > 1and ky < k. With ky — +00, G**) is bounded by T. This
means that larger £ values would result in the distribution of the timesteps toward the early stage of
the sampling process.

Proof of Theorem 3]
Proof. Similar to previous proof we have Gl(-kl) < G§k2)Vk1, ko > 1 and k1 < ko. This also mean
that G > G W0 < ky < 1andif ky — 0then G — 0, hence all the g; € G(*1)¢ is bounded

by 0. As a result, by adjusting & toward 0, we would have the distribution of guidance steps toward
the later stage of the sampling process O

E CoOMPG AND CLASSIFIER-FREE GUIDANCE

We start from the noise sampling equation of the classifier-free guidance as:

€= (14 w)eg(xy, e, t) — weg(xy, t) (26)
= eg(xy, ¢, t) +wlep(xe, ¢, 1) — €9(x4, 1)) 27)
= eg(xy, ¢, t) + wC (28)

We can clearly see that C' stands for classification information as mentioned in Dinh et al.| (2023|).
Replace the € to Eq[I0] we have:

‘/Oétfl 1—04,5 Oét—l
Xt_1 = Xt — x; + = €o(x¢,¢,t) —oz) — ————=wC (29)
s T—a e ol ) e
Original denoising framwork classification information

From this derivation, we can further apply the technique from CompG to the classification term in
classifier-free guidance.

F RELATED WORK

Diffusion Generative Models (DGMs) [Ho et al.| (2020); [Song et al.| (2020b); |Vahdat et al.| (2021));
Song & Ermon| (2020) have recently become one of the most popular generative models in many
tasks such as image editingKawar et al.| (2023)); [Huang et al. (2024), text-to-image sampling Rom-
bach et al.| (2022) or image generation. Guidance is often utilized to improve the performance of
DGMs Dhariwal & Nicholl (2021); Ho & Salimans| (2022); [Bansal et al.| (2023)); [Liu et al.| (2023));
Epstein et al.| (2023). Besides improving the performance, the guidance also offers a trade-off be-
tween image quality and diversity [], which helps users tune their sampling process up to their
expectations. Although guidance is beneficial in many forms, it faces extremely serious drawbacks
of running time. For classifier guidance, the running time is around 80% higher compared to the
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original diffusion model sampling time due to the evaluation of gradients at every sampling step. In
contrast, classifier-free guidance requires the process to forward to the expensive diffusion model

twice at every timestep.

Magnitude

250 200 150 100
Timestep t

Figure 8: Gradient magnitude difference

50

measured at two consecutive steps

Previous works on improving the running time of DGMs
involve the reduction of sampling steps |Song et al.
(2020a); Zhang & Chenl(2022) and latent-based diffusion
modelsRombach et al.|(2022);|Peebles & Xie (2023)). Re-
cently, the research community has focused on distilling
from a large number of timesteps to a smaller number
of timesteps |Salimans & Ho| (2022); Sauer et al.| (2023);
L1 et al.[(2024) or reducing the architectures of diffusion
models [Li1 et al.| (2024). However, most of these works
mainly solve the problem of the expensive sampling of
diffusion models. As far as we notice, none of the works
have dealt with the exorbitant cost resulting from guid-
ance.

G GRADIENT MAGNITUDE DIFFERENCE

BETWEEN TWO CONSECUTIVE SAMPLING STEPS

In this section, we observe that the classification gradient will likely vary significantly in the early
stage of the sampling process. We sample 32 images of ImageNet64 using ADM-G (Dhariwal
& Nichol| (2021))) with guidance classifier is the noise-aware trained classifier from ADM-G. The

observation is shown in Fig|[8]

H ADDITIONAL QUALITATIVE RESULTS
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Figure 9: Trade-off: Running time versus performance. We measure the compact rate as |T?| In (a),
IS decreases with increasing compact rate, while FID and Recall improve. However, when the rate
exceeds 10, FID begins to rise. This suggests that increased diversity from more features initially
enhances Recall and FID, but excessive diversity degrades image quality.
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Table 11: All hyper-parameters required for reproducing the results.

MODEL DATASET s |G|  TIME-STEPS
TABLE 2

ADM IMAGENET 64x64 1.0 0.0 0 250
ADM-G IMAGENET 64xX64 1.0 4.0 250 250
ADM-CompPG IMAGENET 64x64 1.0 4.0 50 250
ADM IMAGENET 256x256 1.0 0.0 0 250
ADM-G IMAGENET 256Xx256 1.0 4.0 250 250
ADM-ComMPG IMAGENET 256x256 1.0 4.0 50 250
TABLE 3

CADM IMAGENET 64XxX64 1.0 0.0 0 250
CADM-G IMAGENET 64x64 1.0 0.5 250 250
CADM-ComrPG IMAGENET 64X64 1.0 2.0 50 250
CADM-CFG IMAGENET 64x64 1.0 0.1 250 250
CADM-ComMpPCFG IMAGENET 64x64 1.0 0.1 25 250
CADM IMAGENET 128x128 0.9 0.0 0 250
CADM-G IMAGENET 128x128 1.0 0.5 250 250
CADM-CFG IMAGENET 128x128 1.0 0.5 250 250
CADM IMAGENET 256x256 1.0 0.0 0 250
CADM-G IMAGENET 256x256 1.0 0.5 250 250
CADM-ComrPG IMAGENET 256x256 1.0 0.5 50 250
DIT-CFG IMAGENET 256x256 1.0 1.5 250 250
DIT-CoMPCFG IMAGENET 256x256 1.0 1.5 22 250
TABLE 4

GLIDE-G MSCoco 64x64 1.0 0.0 250 250
GLIDE-CompPG MSCoco 64x64 1.0 8.0 25 250
GLIDE-G MSCocC0 256x256 1.0 0.0 250 250
GLIDE-CompPG MSCocCO0 256X256 1.0 5.5 35 250
TABLE 4

SDIFr-CFG MSCoco0 64x64 1.0 2.0 250 250
SDiIFF-CoOMPCFG MSCoco 64x64 1.0 2.0 8 250
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Figure 10: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the
right figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’
superiority over classifier-free guidance regarding image quality, quantitative performance and ef-

ficiency.
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Figure 11: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the
right figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’
superiority over classifier-free guidance regarding image quality, quantitative performance and ef-
ficiency.
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sitting on a table.

A plate with food
on it, a fork awnd
some kind of drink
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Figure 12: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the
right figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’
superiority over classifier-free guidance regarding image quality, quantitative performance and ef-
ficiency.
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Figure 13: Qualitiative comparison between ADM-G and ADM-CompG.The image generated by
ADM-G and ADM-CompG are put side by side. On the left side is ADM-G and on the right side is
ADM-CompG.
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o R

Figure 14: Images generated by DiT-CompCFG. From top to bottom classes goldfish, Welsh springer
spaniel, Pembroke Welsh corgi, Cardigan Welsh corgi.
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Figure 15: Images generated by DiT-CompCFG. From top to bottom classes redfox, kitfox, Arctic
fox, tabby cat.
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