
Supplementary Material
MCUNetV2: Memory-Efficient Patch-based

Inference for Tiny Deep Learning

Contents

A Flow Chart of Contributions 2

B Experimental Details 2

C Memory Distributions of Efficient Models 3

D Ablation Study on Neural Architecture Search 4

E Qualitative Results of Face Detection 5

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

A Flow Chart of Contributions

We provide a flow chart to summarize our contributions in Figure S1.

Per-layer Inference

Per-patch Inference

peak SRAM: 1372kB

peak SRAM: 172kB

(1) Patch-based Inference
per-patch per-layer

MbV2

MbV2-RD Reduce

RF

Increase

Receptive Field (RF)

(2) Receptive Field Redistribution (3) Joint Automated Search

…

Neural architecture Inference scheduling

…

Figure S1. Contributions of MCUNetV2: (1) Analyze and find the imbalanced memory distribution; propose a
patch-based inference scheduling to reduce the peak memory significantly; (2) Propose redistributing receptive
fields to reduce the overhead from overlapping patches; (3) Jointly optimize the neural architecture and inference
scheduling in the same loop.

B Experimental Details

Search space. We used a MnasNet-alike search space [12, 9, 1] for neural architecture search. The
search space consists with the following knobs:

• Kernel size for each separable convolution block k[], choosing from {3, 5, 7}.
• Expansion ratio for each inverted residual block e[], choosing from {3, 4, 6}.
• Number of blocks for each stage d[], choosing from {2, 3, 4}.
• Width multiplier for each block w[], choosing from {0.5, 0.75, 1.0}.
• Input image resolution r, choosing from {96, 128, 160, 192, 224, 256}.

For the inference scheduling, apart from the optimization knobs inherited from TinyEngine [9], we
also include the following knobs:

• Number of patches to split the input image p, choosing from {1, 2, 3, 4} according to the
input image resolution. The image will be split into p× p patches.

• Number of layers to run patch-based inference n, n < N , where N is the total number of
layers. The rest of the network will be run with per-layer inference.

Training. We follow the training protocol in [9] for super network training. The training dataset
is randomly split into a sub-training set and validation set. The validation set size is 10,000 for
ImageNet [3] and 5,000 for other datasets. We first train the largest network in the search space on
the sub-training set using SGD with batch size 1024, initial learning rate 0.2, weight decay 4e-5,
and a cosine learning rate decay. The training epochs is 150 for ImageNet [3] and 30 for VWW [2].
Afterward, we sort the channels according to their importance (we used L-1 norm for importance
estimation [5]). Then we initialize the super network with the weights and then perform super
network training using the same hyper-parameters for twice the epochs. For each iteration, 4 random
architectures are sampled, and the gradients are averaged to train the network.

After getting the sub-network architecture from the evolutionary search, we fine-tuned the networks
using 1/10 of the initial learning rate for 10 epochs.

Validation. To prevent over-fitting the real validation set, we evaluate the performance of each
sub-network on the split validation set. The weights are taken from the super network using indexing.
We re-calibrate the batch normalization statistics using 20 batches of data with a batch size 64.

Evolutionary search. We used evolutionary search to find the best sub-network architecture under
certain constraints. We use a population size of 100. We randomly sample 100 sub-networks
satisfying the constraints to form the first generation of population. For each iteration, we only keep
the top-20 candidates with the highest accuracy. Then we perform crossover to generate 50 new
candidates and mutation to generate another 50, forming a new generation. The mutation rate is 0.1.
We repeat the process for 30 iterations and choose the sub-network with the highest accuracy on the
split validation set.

Quantization. We perform int8 quantization following the format in [8]. To reduce the accuracy
loss from quantization, we perform quantization-aware training for 10 epochs.

2

C Memory Distributions of Efficient Models

We further provide the memory distributions of three efficient models: MnasNet [12], FBNet [14],
and MCUNet-320kB [9] in Figure S2. All the models have a highly imbalanced memory distribution,
even for MCUNet, which is specialized for memory-constrained settings. The results demonstrate
the generality of the imbalanced memory distribution phenomenon. Enabling patch-based inference
can cut the peak memory usage of the models by 3.5-6.1×.

0

60

120

180

240

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18

Per-patch memory
Per-layer memory

Block Index

M
em

or
y

U
sa

ge
 (k

B
) High

mem.
Low
mem. 3.5×

smaller

original
peak mem.

per-patch
peak mem.

MCUNet

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21

Per-patch memory
Per-layer memory

Block Index

M
em

or
y

U
sa

ge
 (k

B
) High

mem.
Low
mem.

6.1×
smaller

original
peak mem.

per-patch
peak mem.

FBNet

INT8

0

160

320

480

640

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Per-patch memory
Per-layer memory

MnasNet

High
mem.

Low
mem.

M
em

or
y

U
sa

ge
 (k

B
)

Block Index

original
peak mem. per-patch

peak mem.

3.7×
smaller

MnasNet

MCUNet

FBNet

Figure S2. Memory distribution of MnasNet [12], FBNet [14], and MCUNet-320kB [9]. All the models have an
imbalanced memory distribution. Enabling patch-based inference can reduce the peak memory by 3.5− 6.1×.

3

D Ablation Study on Neural Architecture Search

Adding width multiplier w and input resolution r in the search space can greatly improve neural
architecture search under tiny deep learning settings, because a flexible r and w allows us to globally
scale the neural network to fit a tight resource budget. This is also mentioned as “search space
optimization” in [9], where the authors proposed a two-step method that first chooses the optimal w
and r, and then performs neural architecture search under the given w and r. Instead, we merge the
two stages by directly adding r and w into the search space.

To show the advantage of our method, we conduct experiments on MobileNetV3 [6] space by
extending it to support different r’s and w’s. We compared it with state-of-the-art methods under
different computation budgets in Table S1. Our NAS method consistently outperforms existing
techniques for tiny networks in terms of computation-accuracy trade-off. Existing techniques usually
need a scaling method to scale down the searched network and fit different budgets. With the
extended search space, all our models are derived from the same super network while obtaining
the best accuracy. The accuracy improvement is more significant under a tiny computation setting
(≤25M). We also try supporting flexible w’s per block, which improves the accuracy for smaller
computation budgets. Therefore, we enable flexible w’s by default in our experiments.

Table S1. Our NAS method outperforms existing state-of-the-art tiny networks in terms of computation-accuracy
trade-off, especially under tiny computation settings (<50M). All our models are derived from the same search
space, while obtaining the best accuracy at different budgets. For models with *, we re-measure the MACs and
parameters using our profiler.

Budget Model Setting MACs Weights Top-1 Top-5

100M
MACs

MobileNetV1 0.5× (r=192) [7] Manual+Scale 110M 1.3M 61.7% 83.6%
MobileNetV2 0.75×(r=160) [11] Manual+Scale 107M 2.6M 66.4% 87.3%
MobileNetV3 Small 1.25× [6] NAS+Scale 91M 3.6M 70.4% -
EfficientNet-B-2 [13, 4] NAS+Scale 98M 3.0M 70.5% 89.5%
TinyNet-C [4] * NAS+Scale 103M 2.5M 71.2% 89.7%

Ours (uniform w) Joint Search 98M 4.2M 72.3% 90.6%
Ours (flexible w) Joint Search 99M 3.9M 72.3% 90.5%

50M
MACs

MobileNetV2 0.35× [11] Manual+Scale 59M 1.7M 60.3% 82.9%
MnasNet-A1 0.35× [12] NAS+Scale 63M 1.7M 64.1% 85.1%
MnasNet-search1 [12] NAS 65M 1.9M 64.9% -
EfficientNet-B-3 [13, 4] NAS+Scale 51M 2.0M 65.0% 85.2%
TinyNet-D [4] * NAS+Scale 53M 2.3M 67.0% 87.1%
MobileNetV3 Small 1.0× [6] NAS 56M 2.5M 67.4% -

Ours (uniform w) Joint Search 50M 2.8M 67.9% 87.7%
Ours (flexible w) Joint Search 50M 3.5M 68.8% 88.2%

25M
MACs

MobileNetV2 0.35× (r=160) [11] Manual+Scale 30M 1.7M 55.7% 79.1%
MnasNet-A1 0.57× (r=128) [12] NAS+Scale 22M 1.7M 54.8% 78.1%
EfficientNet-B-4 [13, 4] NAS+Scale 24M 1.3M 56.7% 79.8%
MobileNetV3 Small 0.5× [6] NAS+Scale 23M 1.6M 58.0% -
TinyNet-E [4] * NAS+Scale 25M 2.0M 59.9% 81.1%

Ours (uniform w) Joint Search 25M 2.6M 63.2% 84.7%
Ours (flexble w) Joint Search 25M 3.2M 63.9% 84.9%

4

E Qualitative Results of Face Detection

We provide the face detection results on WIDER FACE validation set with RNNPool-Face-Quant [10]
and MCUNetV2-S. The quantitative results are shown in Table S2, where we follow [10] to calculate
the peak memory. Our model has better mAP at 1.3× smaller peak memory. The qualitative results
are shown in Figure S3. Our model is more robust to poses and background false positives.

Table S2. MCUNetV2-S outperforms RNNPool-Face-Quant [10] on WIDER FACE at 1.3× smaller peak
memory.

Method MACs ↓ Peak Memory ↓ mAP ↑ mAP (≤3 faces) ↑
(int8) Easy Medium Hard Easy Medium Hard

RNNPool-Face-Quant [10] 0.12G 225kB (1.3×) 0.80 0.78 0.53 0.84 0.83 0.81
MCUNetV2-S 0.11G 168kB (1.0×) 0.85 0.81 0.55 0.90 0.89 0.87

(a) RNNPool-Face-Quant (b) MCUNetV2

Figure S3. Qualitative results of face detection with RNNPool-Face-Quant [10] and MCUNetV2-S on WIDER
FACE [15] validation set. Check the blue arrows: our model is more robust to poses and background false
positives. The predictions are filtered with confidence threshold 0.5.

5

References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task
and Hardware. In ICLR, 2019.

[2] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky Rhodes. Visual wake
words dataset. arXiv preprint arXiv:1906.05721, 2019.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009.

[4] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing Xu, and Tong Zhang. Model rubik’s cube:
Twisting resolution, depth and width for tinynets. Advances in Neural Information Processing Systems, 33,
2020.

[5] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights and Connections for Efficient
Neural Networks. In NeurIPS, 2015.

[6] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for MobileNetV3.
In ICCV, 2019.

[7] Andrew G. Howard, Menglong Zhu, Bo Chen, Dimitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv, 2017.

[8] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[9] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep learning
on iot devices. In NeurIPS, 2020.

[10] Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, and Prateek Jain. Rnnpool:
Efficient non-linear pooling for ram constrained inference. arXiv preprint arXiv:2002.11921, 2020.

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In CVPR, 2018.

[12] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In CVPR, 2019.

[13] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

[14] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via
Differentiable Neural Architecture Search. In CVPR, 2019.

[15] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Wider face: A face detection benchmark. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

6

	Flow Chart of Contributions
	Experimental Details
	Memory Distributions of Efficient Models
	Ablation Study on Neural Architecture Search
	Qualitative Results of Face Detection

