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ABSTRACT

Randomized Smoothing (RS) has been proven a promising method for endowing
an arbitrary image classifier with certified robustness. However, the substantial
uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the
curse of dimensionality on RS. Specifically, the upper bound of ℓ2 certified ro-
bustness radius provided by RS exhibits a diminishing trend with the expansion
of the input dimension d, proportionally decreasing at a rate of 1/

√
d. This paper

explores the feasibility of providing ℓ2 certified robustness for high-dimensional
input through the utilization of dual smoothing in the lower-dimensional space.
The proposed Dual Randomized Smoothing (DRS) down-samples the input im-
age into two sub-images and smooths the two sub-images in lower dimensions.
Theoretically, we prove that DRS guarantees a tight ℓ2 certified robustness radius
for the original input and reveal that DRS attains a superior upper bound on the
ℓ2 robustness radius, which decreases proportionally at a rate of (1/

√
m+1/

√
n)

with m + n = d. Extensive experiments demonstrate the generalizability and
effectiveness of DRS, which exhibits a notable capability to integrate with es-
tablished methodologies, yielding substantial improvements in both accuracy and
ℓ2 certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets.
Code is available at https://github.com/xiasong0501/DRS.

1 INTRODUCTION

Deep neural networks have shown great potential for an ever-increasing range of complex applica-
tions (Yu et al., 2023; Wu et al., 2024; Ding et al., 2023b;a;c; Ju et al., 2023; Luo et al., 2023; Kong
et al., 2022). While those models achieve commendable performance and manifest a capacity for
generalization within the distribution they are trained on, they concurrently exhibit a pronounced
vulnerability to adversarial examples (Biggio et al., 2013; Szegedy et al., 2014; Tramer et al., 2020;
Yu et al., 2022). By adding a small and human imperceptible perturbation to the image, the adver-
sarial examples could mislead the well-trained deep neural network at a high success rate.

In response to these adversarial vulnerabilities, researchers have explored a variety of methods to
enhance the robustness of deep neural networks. The empirical defense method, e.g., adversarial
training (Madry et al., 2018; Ding et al., 2019; Shafahi et al., 2019; Sriramanan et al., 2021; Cheng
et al., 2023), bolsters model robustness through iterative training with adversarially generated ex-
amples. However, this kind of empirical defense is not fully trustworthy. Many empirical defense
approaches are later broken by more intricately crafted adversarial attacks (Carlini & Wagner, 2017;
Yuan et al., 2021; Hendrycks et al., 2021; Duan et al., 2021; Li et al., 2023). This inspires researchers
to develop methodologies capable of providing certified robustness, e.g., guaranteeing the classifier
to return a constant prediction result within a certain range (Raghunathan et al., 2018; Wong &
Kolter, 2018; Hao et al., 2022; Kakizaki et al., 2023).

Randomized Smoothing (RS) has been proven a promising method to provide certified robustness
for any kind of classifiers. Initially introduced by Lecuyer et al. (2019), RS is guaranteed with a loose
robustness boundary, and later Cohen et al. (2019) theoretically proves a tight robustness boundary
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Figure 1: (a) The smoothing process of DRS. (b) The upper bound of ℓ2 certified radius (calculated
by Equation 4 and Equation 15) of RS and DRS with σ = 1/

√
d and smoothed probability = 0.999.

via the Neyman-Pearson lemma (Neyman & Pearson, 1933). In Cohen et al. (2019), by corrupting
the original image with the isotropic Gaussian noise at the same dimension, RS turns any base clas-
sifier into the smoothed one by predicting with the ”majority vote” among the noised samples. The
smoothed classifier is thereby assured to exhibit certified robustness to inputs characterized by con-
fident classifications. Specifically, it has been substantiated that the smoothed classifier consistently
produces an unchanging classification outcome within a predetermined range, typically a ℓ2 or ℓ∞
ball centered around the original input. Meanwhile, RS does not necessitate any a prior assumptions
regarding the parameters or architectural configurations of classifiers, making it feasible to provide
certified robustness for most deep neural network models.

However, the high uncertainty caused by Gaussian noise not only decays the classification accuracy
but also imposes the curse of dimensionality (Kumar et al., 2020; Wu et al., 2021), which makes
the upper bound of ℓ2 certified radius provided by RS progressively diminishes at a rate of 1/

√
d.

The predominant emphasis in existing research focuses on refining RS by training classifiers with
enhanced capability of predicting noise-corrupted images, such as training the classifier with the
Gaussian noise augmented images (Cohen et al., 2019), utilizing adversarial training (Salman et al.,
2019), adding an extra deep learning denoiser (Salman et al., 2020; Carlini et al., 2023)), and using
model ensemble (Horváth et al., 2022).

While the aforementioned methods demonstrate notable performance gain by either fortifying the
classifier or introducing extra denoising modules, they have not effectively addressed the inherent
challenge of the curse of dimensionality arising from high-dimensional Gaussian noise. Conse-
quently, the certified robustness provided by RS still continues to diminish fast with the increase
of dimension d. To mitigate this, we introduce a novel smoothing mechanism termed Dual Ran-
domized Smoothing (DRS). As illustrated in Figure 1, by partitioning the original d-dimensional
input into two sub-inputs with lower dimensionality of m and n, DRS offers certified robustness for
the original input through dual smoothing within the lower-dimensional space, and shows a more
promising upper bound of ℓ2 certified radius. To minimize the information loss caused by the par-
tition of the input for the classification, this paper harnesses the spatial redundancy inherent in the
image and partitions the input through image down-sampling with two predefined indexes. The key
contributions of this paper can be summarized as follows:

• We introduce a novel smoothing mechanism called Dual Randomized Smoothing (DRS).
Theoretically, we prove its capacity in providing a tight ℓ2 certified robustness for the high-
dimensional input via dual smoothing in the lower-dimensional space.

• We demonstrate that DRS effectively mitigates the curse of dimensionality. DRS yields a
superior upper bound for ℓ2 robustness, characterized by a slower rate of diminishment.

• We develop the first implementation of DRS by partitioning the input based on the spatial
redundancy of the image. Extensive experiments validate the generalizability and effec-
tiveness of DRS. DRS can adeptly integrate with various existing methods, resulting in
substantial enhancements to both the accuracy and the certified robustness baseline of RS.

2 RELATED WORK

Certified defense. Certified defense aims to guarantee that no adversarial example exists within a
neighborhood of the input, often a ℓ2 or ℓ∞ ball. Those methods typically are either exact (”com-
plete”) or conservative (”sound but incomplete”). Exact methods will report whether there exists or
not an adversary near the data point to mislead the classifier, usually by mixed integer linear pro-

2



Published as a conference paper at ICLR 2024

gramming (Lomuscio & Maganti, 2017; Tjeng et al., 2018) or satisfiability modulo theories (Katz
et al., 2017). However, those methods take a large number of computational resources thus being
hard to transfer to large-scale neural networks (Tjeng et al., 2018). Conservative methods also certify
if there is an adversary existing, but they might decline to make a certification when the data resides
in a safe neighborhood. The advantage of such methods lies in the enhanced flexibility and reduced
computational resource requirements (Wong & Kolter, 2018; Wang et al., 2018). However, these
methods either require specific network architecture (e.g., ReLu activation or layered feed-forward
structure) or extensive customization for new architectures. Furthermore, none of them are shown
to be feasible to provide defense for modern machine learning tasks such as ImageNet.

Randomized smoothing. Randomized Smoothing (RS) shows attractive proprieties in providing
certified robustness for any classifier via noise smoothing. RS is first proposed by Lecuyer et al.
(2019), which utilizes inequalities from the differential privacy literature to provide a loose ℓ2 or
ℓ1 robustness guarantee for the smoothed classifier. Later, Cohen et al. (2019) proves the tight
robustness boundary for ℓ2 norm adversary via the Neyman-Pearson lemma, which guarantees much
stronger certified robustness. However, the presence of high-dimensional Gaussian noise inevitably
erodes the performance of the model. This phenomenon termed the curse of dimensionality was
initially noted by Yang et al. (2020) and Kumar et al. (2020), which highlight that the upper bound
of the certified radius of randomized smoothing will diminish as the input dimension increases. Wu
et al. (2021) extends this observation to encompass a broader range of smoothing distributions,
revealing that the ℓ2 certified radius of RS diminishes at a rate proportional to 1/

√
d.

The predominant focus of existing research lies in enhancing the perdition of the classifier under
Gaussian noise corruption. Cohen et al. (2019) trains the classifier with input images augmented by
Gaussian noise, and Salman et al. (2019) further enhances this by adversarial training. Zhai et al.
(2019) proposes a loss function aiming to maximize the certified radius, and Jeong & Shin (2020)
adds a consistency regularization to facilitate the base classifier in producing more consistent predic-
tions under Gaussian distribution. Alternatively, Salman et al. (2020) utilizes a deep learning-based
denoiser to purify the corrupted image before classification, and Horváth et al. (2022) utilizes the
model ensemble to reduce the overall prediction variance. Most recently, Carlini et al. (2023) in-
troduces a potent denoiser founded on the diffusion model, representing a substantial advancement
in noise mitigation that greatly enhances overall robustness. However, prior works have not ad-
equately tackled the challenge of the curse of dimensionality in the context of high-dimensional
inputs. Súkenı́k et al. (2022) proves that the input-dependent RS also suffers from the curse of
dimensionality and Pfrommer et al. (2023) proposes a projected randomized smoothing that en-
hances the lower bound on the certified volume. Different from previous works, this paper first
demonstrates the feasibility of providing ℓ2 certified robustness for high-dimensional input via dual
smoothing in the lower-dimensional space, thus effectively mitigating the disaster caused by dimen-
sion expansion. Meanwhile, we theoretically prove DRS can provide a tight ℓ2 certified robustness
radius for the original high-dimensional input via the lower dimensional smoothing. Additionally,
we show that DRS achieves a more promising ℓ2 robustness upper bound that decreases at a rate of
(1/
√
m+ 1/

√
n) with m+ n = d.

3 PRELIMINARY

3.1 RANDOMIZED SMOOTHING

Consider a k classes classification problem with the input x ∈ Rd and the label y ∈ Y =
{c1, . . . , ck}. RS first corrupts each input x by adding the isotropic Gaussian noise N (ε; 0, σ2I).
Then it turns an arbitrary base classifier f into a smoothed version F that possesses ℓ2 certified
robustness guarantees. The smoothed classifier F returns whichever the class the base classifier f is
most likely to return among the distribution N (x+ ε;x, σ2I), which is defined as:

F (x) = argmax
c∈Y

P(f(x+ ε) = c). (1)

Theorem 1. (From (Cohen et al., 2019)), let f : Rd → Y be any deterministic or random function,
and F be the smoothed version defined in Equation 1. Let cA and cB be the most probable and
runner-up classes returned by F with smoothed probability pA and pB respectively. Then F (x +
δ) = cA establishes for all adversarial perturbations δ, satisfying that ∥δ∥2 ≤ R′, where

R′ = 1
2σ(Φ

−1(pA)− Φ−1(pB)). (2)

3



Published as a conference paper at ICLR 2024

In Equation 2, Φ denotes the Gaussian Cumulative Distribution Function (CDF) and Φ−1 signifies
its inverse function. Theorem 1 indicates that the ℓ2 certified robustness provided by RS is closely
linked to the base classifier’s performance on the Gaussian distribution; a more consistent prediction
within a given Gaussian distribution will return a stronger certified robustness. The proof of Theo-
rem 1 can be found in the Appendix A.1. It is not clear not how to calculate pA and pB exactly if f
is a deep neural network. Thus Monte Carlo sampling is used to estimate the smoothed probability.
This theorem also establishes when we assign pA with a lower bound estimation pA and assign pB
with a upper bound estimation with pB = 1− pA. Then the radius R′ equals:

R′ = σ
(
Φ−1

(
pA
))

. (3)

Equation 3 establishes based on −Φ−1
(
1− pA

)
= Φ−1

(
pA
)
. The smoothed classifier F is guar-

anteed to return the constant prediction cA around x within the ℓ2 ball of radius R′.

3.2 CURSE OF THE DIMENSIONALITY

While Randomized smoothing shows the intriguing property of providing certified robustness for
arbitrary classifiers, it suffers from the curse of dimensionality due to high-dimensional noise cor-
ruption (Kumar et al., 2020). This paper delves into the curse of dimensionality of the ℓ2 certified
robustness proposed by Wu et al. (2021).
Proposition 1. (From (Wu et al., 2021)), for an arbitrary continuous and origin-symmetric distribu-
tion q, i.e., ∀z, q(z) = q(−z), utilized in smoothing, the certified ℓ2 radius provided by randomized
smoothing of an arbitrary d-dimensional input x is bounded by:

r(x) < 5√
d
Ψ−1(

max
c∈Y

Pε∼q(f(x+ε)=c)

1−5∗10−7 ; q), (4)

where Ψ(r; q) =
∫
∥z∥2<r

q (z)dz is the probability mass of distribution q inside a ℓ2 ball with
radius r and the parameter 5∗10−7 is derived from a predefined error margin between the estimated
probability and true probability over the origin-symmetric distribution. Proposition 1 indicates that
the ℓ2 certified radius provided by RS is limited by an upper bound with a constant multiplier of
1/
√
d and diminishes with the expansion of d. The detailed proof can be found in Wu et al. (2021).

4 CERTIFIED ROBUSTNESS VIA DUAL RANDOMIZED SMOOTHING

To mitigate the curse of dimensionality that makes the upper bound of certified robustness dimin-
ish for high-dimensional input, we propose a new smoothing mechanism called Dual Randomized
Smoothing (DRS). As shown in Figure 1, DRS provides certified robustness for arbitrary input x by
dual smoothing in the lower dimensional space. Consider an input x ∈ Rd, which can be partitioned
into two spatially non-overlapping sub-inputs, denoted as xl ∈ Rm and xl ∈ Rn, where m+n = d.
Our DRS transforms any base classifier f into a smoothed version g defined as:

g(x) = argmax
c∈y

(
P(f l(xl + εl) = c) + P(fr(xr + εr) = c)

)
, (5)

where εl and εr are the isotropic Gaussian noises with the mean 0 and the standard deviation σ
that share the same dimension as xl and xr. g(x) returns whichever the class f l and fr are most
likely to return by considering the expectation of the probabilities derived from the distributions
N (xl + εl;xl, σ2I) and N (xr + εr;xr, σ2I).
Theorem 2. Let f l : Rm → Y and fr : Rn → Y be arbitrary deterministic or random functions,
and g be the smoothed version defined in Equation 5. Denote cA and cB as the most probable and
runner-up classes returned by g. Then g(x+ δ) = cA establishes for all adversarial perturbations
δ satisfying that ∥δ∥2 ≤ R, where:

R = σ√
2

(
Φ−1

(
plA
)
+Φ−1 (prA)− 2Φ−1

(
p̃
2

))
,where p̃ =

pl
A+pr

A+pl
B+pr

B

2 . (6)

In Equation 6, pl and pr are the smoothed probabilities returned by base classifier f l and fr and Φ−1

is the inverse of the Gaussian CDF. Theorem 2 indicates that the ℓ2 certified robustness provided by
DRS for the input x is closely linked to the performance of base classifiers f l and fr on sub-inputs
xl and xr; the higher the consistency in predictions of f l and fr within some specific Gaussian
distributions, the greater the level of certified robustness the smoothed classifier g yields.
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Proof of Theorem 2. In Equation 5, the smoothed classifier g bases its decision on the average of
smoothed classification probabilities for xl and xr. Let p′ represent the smoothed probability under
the adversarial attack. To mislead the smoothed classifier g successfully, p′ must fulfill the condi-
tion: p′lB + p′

r
B ≥ p′

l
A + p′

r
A. Let us consider the worst-case scenario for the classifiers under the

adversarial attack, where the adversarial attack maximizes the increment in the smoothed probabil-
ity of the runner-up class, equalizing it with the reduction in the smoothed probability of the most
probable class. This leads to the following equations: plA − p′

l

A = ∆pl, plB − p′
l

B = −∆pl, and
prA − p′

r
A = ∆pr, prB − p′

r
B = −∆pr, where ∆p represents the probability change.

Given that pB ≤ 1− pA establishes for all scenarios, we can get that:
Φ−1 (pA)− Φ−1 (pA −∆p) ≤ Φ−1 (pB +∆p)− Φ−1 (pB) . (7)

Thus, according to Theorem 1 and Equation 7, to successfully mislead the smoothed classifier g, the
adversarial perturbation δl and δr added in xl and xr must fulfill that:∥∥δl∥∥

2
+ ∥δr∥2 ≥ σ

(
Φ−1

(
plA
)
+Φ−1 (prA)− Φ−1

(
p′

l
A

)
− Φ−1

(
p′

r
A

))
. (8)

Equation 8 establishes based on using RS to calculate the certified radius in each sub-image. Addi-
tional details regarding the derivation of Equation 7 and Equation 8 can be found in Appendix A.2.
Assume the critical condition of misleading g is achieved, where p′

l
B + p′

r
B = p′

l
A + p′

r
A . We can

get:
p′

l
A + p′

r
A =

pl
A+pr

A+pl
B+pr

B

2 = p̃ ≤ 1. (9)

Utilizing Equation 9, we can demonstrate that the final two terms in Equation 8 fulfill that:

Φ−1
(
p′

l
A

)
+Φ−1

(
p′

r
A

)
= Φ−1

(
p′

l
A

)
+Φ−1

(
p̃− p′

l
A

)
, (10)

and the maximum of Equation 10 is achieved when p′
l
A = p′

r
A = p̃

2 due to p̃ ≤ 1. So we get:∥∥δl∥∥
2
+ ∥δr∥2 ≥ σ

(
Φ−1

(
plA
)
+Φ−1 (prA)− 2Φ−1

(
p̃
2

))
= s, (11)

where s is a constant if we get the exact value of the smoothed probability of the most probable
and runner-up classes from f l and fr. Since xl and xr are spatially non-overlapping, the overall
adversarial perturbation δ added in the original input x must satisfying the condition:

∥δ∥2 =
√
∥δl∥2

2
+ ∥δr∥22 ∈

[
s√
2
, s
]
. (12)

The proof is concluded if we take the lower bound of Equation 12 as the ℓ2 certified robustness
provided by DRS.

Theorem 2 also establishes when give the lower bound estimation plA and prA, along with the upper

bound estimation plB = 1− plA and prB = 1− prA. Then the ℓ2 certified radius R of DRS is:

R = σ√
2

(
Φ−1

(
plA

)
+Φ−1

(
prA

))
. (13)

The following of this paper mainly considers the radius defined in Equation 13 as the ℓ2 certified
radius provided by DRS for the fair comparison with RS.

4.1 ANALYSIS OF THE UPPER BOUND LIMITATION

Assume both RS and DRS take the lower bound estimation for pA and the upper bound estimation
for pB . We get the relationship of ℓ2 certified robustness of input x between DRS and RS as follows::

Rx = 1√
2
(R′

xl +R′
xr ) . (14)

Thus the ℓ2 certified radius provided by DRS of an arbitrary d-dimensional input x is bounded by:

r(x) < 5√
2m

Ψ−1(
max
c∈y

P
εl∼ql

(f l(xl+εl)=c)

1−5∗10−7 ; ql) + 5√
2n

Ψ−1(
max
c∈y

Pεr∼qr (f
r(xr+εr)=c)

1−5∗10−7 ; qr), (15)

where m+n = d. This signifies that compared with RS, the DRS, which employs smoothing within
the lower-dimensional space, exhibits a significantly more favorable upper bound for ℓ2 certified
radius, which is proportional to a reduction in the rate by (1/

√
m+ 1/

√
n).
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Figure 2: The implementation of Dual Randomized Smoothing (DRS). The image is down-sampled
into two non-overlapping sub-images by utilizing two predefined 2x2 pixel indexes.

Algorithm 1 Prediction and ℓ2 certified robustness radius of DRS
1: Input: base classifiers

{
f l, fr

}
, noise standard deviation σ, image x, index idx, sampling

times n0 and n, confidence level α
2: xl,xr ← Downsample(x, idx)
3: count0l, count0r ← SampleUnderNoise(f l, fr,xl,xr, n0, σ)
4: ĉA, ĉB ← top two index in (count0l + count0r)
5: countl, countr ← SampleUnderNoise(f l, fr,xl,xr, n, σ)
6: plA, p

r
A = LowerConfBound(countl[ĉA], count

r[ĉA], n, 1− α)

7: if plA + prA ≥ 1 return prediction ĉA and radius σ√
2

(
Φ−1

(
plA

)
+Φ−1

(
prA

))
8: else return ABSTAIN

4.2 IMPLEMENTATION OF DUAL RANDOMIZED SMOOTHING USING SPATIAL REDUNDANCY

We implement our dual randomized smoothing as shown in Figure 2. Considering the high infor-
mation redundancy of adjacent pixels in the image, we utilize two 2× 2 pixel-index matrices as the
down-sampling kernels. The two sub-images are generated by sliding the two kernels across the
original image, as depicted in Figure 2. Each kernel selectively retains pixels along one of the two
diagonals within the 2 × 2 image block, moving with a stride of 2. This down-sample approach
ensures that the sub-images uphold a significant portion of information from x for classification.

After partition, we first corrupt each sub-image by adding the isotropic Gaussian noise with a zero
mean and a standard deviation of σ. To facilitate fast adaptation for models that are pre-trained on
the original images, we employ interpolation to resize the noise-corrupted sub-images to the same
spatial resolution as the original image x. Then we utilize Algorithm 1 to estimate the lower bound
probability and calculate the certified robustness. The function SampleUnderNoise samples a set
of n noise-perturbed images and counts the number of samples assigned to each respective class. The
function LowerConfBound provides a binomial estimate of the lower bound probability, relying
on the number of correctly classified samples count[ĉA] out of a total of n samples, with confidence
of 1− α. More details about the sampling and estimation function can be found in Appendix A.6.

5 EXPERIMENT RESULT

5.1 EXPERIMENT SETUP

Evaluation details. Consistent with the prior work, we evaluate the proposed DRS on the CIFAR-
10 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al., 2009) datasets. We report the certified
accuracy at each predetermined radius r, meaning the percentage of samples that are correctly clas-
sified and guaranteed with a certified radius larger than r. Moreover, we report the Average Certified
Radius (ACR), calculated by averaging the certified radius among all correctly classified samples.
We compare the performance of our DRS with RS under different training strategies delicately
designed for RS, including Gaussian augmentation (Cohen et al., 2019), consistency regulariza-
tion (Jeong & Shin, 2020), and diffusion-denoising (Carlini et al., 2023). We also consider the
performance of using SmoothAdv (Salman et al., 2019) and Boosting (Horváth et al., 2022) for a
more comprehensive comparison.
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Table 1: The comparison results of RS and DRS on CIFAR-10. The best performance under each
training strategy is bold. We evaluate RS and DRS under two noise levels and report the best result.

Dataset Training strategy Smoothing σ
Certified accuracy at predetermined ℓ2 radius r (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.00

CIFAR-10

Gaussian
RS {0.25, 0.50} 76.2 60.5 42.4 33.0 22.2 14.9 9.9 0

DRS {0.18, 0.36} 83.4 65.8 50.2 34.5 24.7 15.8 10.5 0
DRS {0.25, 0.50} 78.1 62.5 48.7 35.8 24.5 17.9 12.9 4.6

Consistency
RS {0.25, 0.50} 75.5 67.1 57.2 47.7 36.3 29.7 25.0 0

DRS {0.18, 0.36} 77.8 70.2 59.2 47.8 37.2 31.8 26.7 0
DRS {0.25, 0.50} 72.5 64.7 56.6 47.1 38.6 29.2 24.1 17.4

Diffusion-
denoising

RS {0.25, 0.50} 83.3 72.1 57.8 44.3 31.8 24.6 18.9 0
DRS {0.18, 0.36} 86.7 77.6 63.1 50.6 42.4 33.7 24.8 0
DRS {0.25, 0.50} 85.6 77.5 67.9 56.7 42.1 35.8 29.8 21.1

Table 2: The comparison results of RS and DRS on ImageNet. The best performance under each
training strategy is bold. We evaluate RS and DRS under two noise levels and report the best result.

Dataset Training strategy Smoothing σ
Certified accuracy at predetermined ℓ2 radius r (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.00

ImageNet

Gaussian
RS {0.25, 0.50} 67.0 58.6 48.4 42.6 38.0 32.4 28.4 0

DRS {0.18, 0.36} 70.6 61.0 52.0 42.8 38.4 32.6 25.4 0
DRS {0.25, 0.50} 67.6 58.2 49.6 42.8 35.6 33.2 29.8 21.0

Consistency
RS {0.25, 0.50} 64.8 58.9 54.0 48.8 42.2 36.7 35.0 0

DRS {0.18, 0.36} 69.2 61.6 58.4 49.0 44.1 38.4 35.2 0
DRS {0.25, 0.50} 64.8 57.3 44.6 41.3 39.6 37.9 36.6 29.0

Diffusion-
denoising

RS {0.25, 0.50} 66.8 56.4 46.2 38.0 31.2 27.6 24.4 0
DRS {0.18, 0.36} 68.2 59.6 53.4 49.0 38.0 33.4 32.0 0
DRS {0.25, 0.50} 65.4 58.2 52.0 45.8 41.0 33.6 28.8 24.4

Implementation details. Following (Cohen et al., 2019; Jeong & Shin, 2020; Horváth et al., 2022),
we utilize the ResNet 110 (He et al., 2016) and ResNet 50 as base classifiers for CIFAR-10 and
ImageNet under all utilized training strategies. For the diffusion-denoising method (Carlini et al.,
2023), we use the same model provided by (Nichol & Dhariwal, 2021): a 50M-parameter model on
CIFAR-10 and 552M-parameter class unconditional diffusion model on ImageNet. We re-ensemble
the noise-corrupted sub-images for more effective denoising, based on that the adversarial perturba-
tion designed for the classifier has a minor influence on the noise prediction of the diffusion model.
For RS, we consider the model trained under Gaussian noise with σ ∈ {0.25, 0.50} to get the highest
certified accuracy at each predetermined radius r. For DRS that gets

√
2 improvement in certified ra-

dius when plA = prA = pA, we test its performance under the Gaussian noise with σ ∈ {0.18, 0.36}
and σ ∈ {0.25, 0.50}. We report the best performance separately for a more comprehensive and fair
comparison. Due to the high computational cost of estimating the smoothed probability, we get our
results by evaluating every 5th image on CIFAR-10 and every 100th image on ImageNet. We set the
number of samples n0 = 100, n = 100, 000, and the estimation confidence parameter α = 0.001,
meaning that we sample 100, 000 times from the Gaussian distribution to estimate the expectation
of the probability and derive the lower bound with the confidence 1− α.

Training details. For each training strategy, we use the same pre-train model for both low-
dimensional classifiers and fine-tune them using the same training strategy as RS. For consistency
training, we set the hyperparameter λ that controls the weight of consistency loss equal to 10 for
both DRS and RS. On CIFAR-10, we fine-tuned all models for a total of 40 epochs using the
Adam (Kingma & Ba, 2014) optimizer with an initial learning rate at 1e−3 and decaying 0.1 at
epochs 25 and 35. On ImageNet, we fine-tuned the model for a total of 15 epochs using the Adam
optimizer with an initial learning rate at 1e−5 and decaying 0.1 at epochs 5 and 10.

5.2 THE CERTIFIED ACCURACY AT PREDETERMINED RADIUS

We present the comparison results between DRS and RS under the training strategies namely
Gaussian augmentation (Cohen et al., 2019), consistency regularization (Jeong & Shin, 2020), and
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Table 3: The performance of an identical model using Gaussian augmentation and consistency train-
ing strategies on the CIFAR-10 dataset.

(a) Gaussian

Smoothing σ Accuracy (%) ACR

RS 0.25 76.2 0.43
DRS 0.18 83.4 0.50
DRS 0.25 78.1 0.56

RS 0.50 66.4 0.54
DRS 0.36 70.8 0.58
DRS 0.50 64.4 0.60

(b) Consistency

Smoothing σ Accuracy (%) ACR

RS 0.25 75.5 0.55
DRS 0.18 77.8 0.57
DRS 0.25 72.5 0.67

RS 0.50 64.3 0.74
DRS 0.36 64.8 0.77
DRS 0.50 55.3 0.81

(a) Gaussian (b) Consistency
Figure 3: The accuracy and robustness trade-off curve of RS and DRS on CIFAR-10 dataset. The
data is collected by training multiple models using noise with σ ∈ [0.07, 0.7]. We fit this curve by a
second-order polynomial function.

diffusion-denoising (Carlini et al., 2023) on the CIFAR-10 and ImageNet in Table 1 and Table 2.
The results consistently demonstrate that our DRS significantly outperforms RS in terms of certified
accuracy across all radius r. Specifically, on the CIFAR-10 dataset, DRS achieves the most substan-
tial gain in certified accuracy at r = 0.50, resulting in improvements of approximately 7.8%, 2.0%,
and 10.1% when integrated with the three aforementioned methods. On the ImageNet dataset, DRS
using the three strategies exhibits the most substantial certified accuracy gain at r = 0.5, leading to
enhancements of accuracy by approximately 3.6%, 4.4%, and 7.2%.

Furthermore, our investigation reveals that DRS, employing noise levels of {0.18, 0.36}, attains
the best improvement in certified accuracy across all certified radius r. This is attributed to that
our DRS guarantees a higher bound of the certified radius using the same level of σ, allowing the
classifier to maintain its robustness with a reduced level of noise corruption. While increasing the
noise level to {0.25, 0.50} causes a slight drop in the certified accuracy due to the inherent trade-off
between accuracy and robustness, it guarantees much better certified accuracy for large ℓ2 radius,
e.g., r = 2.00, leading to an overall higher average certified robustness.

5.3 ANALYSIS OF THE ACCURACY AND ROBUSTNESS TRADE-OFF BETWEEN RS AND DRS

Whether a fundamental trade-off between accuracy and robustness exists in deep learning models is
an active open question. This subsection discusses this trade-off between RS and DRS by reporting
the Average Certified Radius (ACR) and the certified accuracy at r = 0 as the measure of overall ro-
bustness and classification accuracy. We investigate this trade-off in both RS and DRS by examining
the performance of an identical model across various noise levels.

We show the classification accuracy and ACR of models trained with Gaussian and consistency reg-
ularization on both the CIFAR-10 and ImageNet datasets in Table 3 and Table 4. The results reveal
that, in comparison to RS, our DRS consistently increases the classification accuracy significantly
while simultaneously improving or preserving the ACR under noise with σ = 0.18 or 0.36. When
increasing the noise’s standard deviation σ to 0.25 or 0.50, the DRS significantly improves the ACR
but experiences an accuracy drop at σ = 0.50. We attribute this phenomenon to the high level of
noise compromising the utility of the information and subsequently hindering the effective feature
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Table 4: The performance of an identical model using Gaussian augmentation and consistency train-
ing strategies on the ImageNet dataset.

(a) Gaussian

Smoothing σ Accuracy (%) ACR

RS 0.25 67.0 0.48
DRS 0.18 70.6 0.51
DRS 0.25 67.6 0.62

RS 0.50 57.2 0.73
DRS 0.36 61.6 0.73
DRS 0.50 54.0 0.84

(b) Consistency

Smoothing σ Accuracy (%) ACR

RS 0.25 64.8 0.52
DRS 0.18 69.2 0.53
DRS 0.25 64.8 0.64

RS 0.50 56.0 0.79
DRS 0.36 59.2 0.80
DRS 0.50 54.0 0.84

Table 5: The performance of boosting DRS by model ensemble on the CIFAR-10 dataset.

σ Training strategy model ensemble
Certified accuracy at

predetermined ℓ2 radius r (%) ACR

0.00 0.25 0.50 0.75

0.18

Gaussian 1 83.4 65.8 50.2 34.5 0.50
2 84.7 68.8 54.6 38.6 0.53

consistency 1 77.8 70.2 59.2 47.8 0.57
2 78.0 70.5 61.9 51.3 0.60

smoothadv 1 75.5 69.1 56.8 45.3 0.55
2 76.1 70.0 59.4 47.5 0.57

learning of the base classifier. To give a more straightforward and comprehensive comparison of the
accuracy-robustness trade-off inherent in DRS and RS, we trained multiple models on the CIFAR-
10 dataset using noise levels with σ ∈ [0.07, 0.7]. Figure 3 presents the curve that depicts the trend
of accuracy and ACR across models under DRS and RS using various noise levels. Our results il-
lustrate that the proposed DRS consistently enhances certified accuracy and the robustness baseline
provided by RS, ultimately achieving a superior accuracy-robustness trade-off.

5.4 BOOST DRS BY MODEL ENSEMBLE

Horváth et al. (2022) has demonstrated that the performance of Randomized Smoothing (RS) can be
enhanced through model ensemble techniques, which mitigate prediction variance by aggregating
decisions from a larger ensemble of models. we apply this boosting approach to DRS by creating en-
sembles of two models, employing noise with σ = 0.18 on the CIFAR-10 dataset. Table 5 shows the
performance of the boosted DRS using training strategies of Gaussian, consistency, and Smoothadv,
indicating that this boosting method can seamlessly integrate with our DRS, and effectively enhance
the certified accuracy and average certified robustness.

6 CONCLUSION

The curse of dimensionality leads to the diminishing in the ℓ2 certified robustness provided by
Randomized Smoothing (RS) at a rate of 1/

√
d, with d representing the dimension of the input

image. To mitigate it, this paper explores the feasibility of providing ℓ2 certified robustness for
high-dimensional inputs via dual smoothing in the lower-dimensional space. Then a novel smooth-
ing mechanism called Dual Randomized Smoothing (DRS) is proposed, which provides a tight ℓ2
certified robustness and yields a superior upper bound for ℓ2 robustness. By initially down-sampling
the input image into two sub-images, DRS preserves the majority of the input image’s information
within the low-dimensional data thanks to the information redundancy of the neighboring pixels in
most images. Theoretically, we prove a tight ℓ2 certified robustness radius for the proposed DRS
and demonstrate that DRS achieves a more promising robustness upper bound that decreases at the
rate of (1/

√
m + 1/

√
n), where m + n = d. Experimentally, we find that DRS can effectively

integrate with existing methods designed for RS and consistently outperforms RS in terms of both
the accuracy and ℓ2 certified robustness on the CIFAR-10 and ImageNet datasets.

9



Published as a conference paper at ICLR 2024

REFERENCES

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
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A APPENDIX

A.1 PROOF OF THEOREM 1

In this subsection, we give the proof of Theorem 1. Assume f : Rd → [0, 1] and define the smoothed
version f̂ as:

f̂(x) = E
ε∼N (0,I)

[f(x+ ε)] = 1
(2π)d/2

∫
Rd f (x+ ε) exp

(
− 1

2∥ε∥
2
2

)
dε. (16)

Lemma 1. (Derived from (Salman et al., 2019)), for any function f : Rd → [0, 1], subject to the
constraint that f̂(x)c = p, then µ · ∇f̂(x)c ≤ 1√

2π
exp(− 1

2 (Φ
−1(p))2) for any unit direction µ.

Lemma 1 points out that the upper bound of the gradient of the smoothed classifier f̂ is limited
by 1√

2π
exp(− 1

2 (Φ
−1(p))2). Let cA and cB be the most probable and the runner-up classes with

probabilities pA and pB . So, for any ℓ2 norm-based adversarial perturbation δ that successfully
mislead the smoothed classifier f̂ , resulting in f̂B(x+ δ) ≥ f̂A(x+ δ), we can establish:

∥δ∥2 ≥
1

2

(∫ pA

p̂

[
1√
2π

exp(−1

2
(Φ−1(p))

2
)

]−1

dp+

∫ p̂

pB

[
1√
2π

exp(−1

2
(Φ−1(p))

2
)

]−1

dp

)

=
1

2

∫ pA

pB

[
1√
2π

exp(−1

2
(Φ−1(p))

2
)

]−1

dp

=
1

2
Φ−1 (p)

∣∣∣∣pA

pB

=
1

2
(Φ−1(pA)− Φ−1(pB)),

(17)

which concludes the proof of Theorem 1. The detailed proof of lemma 1 can be found in (Salman
et al., 2019).

A.2 PROOF OF THE EQUATION 7 AND EQUATION 8

For Equation 7, as we have Φ−1 (p) = −Φ−1 (1− p), we get:

Φ−1 (pB +∆p)− Φ−1 (pB) = Φ−1 (1− pB)− Φ−1 (1− pB −∆p) . (18)

Because 1− pB ≥ pA and we have Φ−1 (p) is a convex function for p ∈ [0, 1], assume a function h
fulfills that:

h (p) = Φ−1 (p)− Φ−1 (p−∆p) , where ∆p ∈ [0, p] , (19)

we have the first-order derivative h′ (p) > 0 establishes for all scenarios. Thus we get:

Φ−1 (1− pB)− Φ−1 (1− pB −∆p) ≥ Φ−1 (pA)− Φ−1 (pA −∆p) , (20)

which concludes the proof of Equation 7. For Equation 8, to make the smoothed probability pB
increases to p′B after adding adversarial perturbation δ, using Lemma 1, we have:

∥δ∥2 = Φ−1 (p′B)− Φ−1 (pB) ≥ Φ−1 (pA)− Φ−1 (p′A) . (21)

Consider the worst case where pB = 1− pA, the adversarial perturbations added in each sub-image
fulfill that: ∥∥δl∥∥

2
+ ∥δr∥2 = Φ−1(p′

l
B) + Φ−1(p′

r
B)− Φ−1

(
plB
)
− Φ−1 (prB)

= Φ−1
(
plA
)
+Φ−1 (prA)− Φ−1(p′

l
A)− Φ−1(p′

r
A)

(22)

which conclude the proof of Equation 8.
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(a) (b)

Figure 4: (a) The visualized landscape of objective function for k = 2 across various p̃. (b)The
visualized landscape of objective function for k = 3 with p̃ = 1.50.

A.3 ANALYSIS OF K-PARTITIONING BASED SMOOTHING

Section 4.1 illustrates that dual smoothing in the lower-dimensional space effectively mitigates the
curse of dimensionality. This section explores the feasibility of further enlarging the certified ro-
bustness upper bound by k-partitioning based smoothing.

Consider an input x ∈ Rd, which can be partitioned into k spatially non-overlapping sub-inputs,

denoted as xj ∈ Rdj , where
k∑

j=1

dj = d. The k-partitioning based smoothing transforms any

classifier f into a smoothed version g defined as:

g(x) = argmax
c∈y

k∑
j=1

P(f j(xj + εj) = c), (23)

where εj is the isotropic Gaussian noises with the mean 0 and the standard deviation σ that share the
same dimension as xj . Denote cA and cB as the most probable and runner-up classes returned by g.
Assuming pj is the smoothed probability returned by the base classifier f j and δj is the adversarial
perturbation adding in sub-input xj . To mislead the smoothed classifier g successfully, according to
Equation 17, the adversarial perturbation δj added in each sub-input xj must fulfill:∥∥δj∥∥

2
≥ σ

(
Φ−1

(
pjA

)
− Φ−1

(
p′

j
A

))
, ∀j ∈ {1, . . . , k, }. (24)

Thus the sum of the δj fulfills:
k∑

j=1

∥∥δj∥∥
2
≥ σ

k∑
j=1

(
Φ−1

(
pjA

)
− Φ−1

(
p′

j
A

))
, (25)

where p′
j
A represents the smoothed probability under the adversarial attack and satisfies that pjA ≥

p′
j
A and

k∑
j=1

p′
j
A = 1

2

k∑
j=1

(
pjA + pjB

)
. In Equation 25, pjA is a constant value that can be estimated

by n sampling. Thus calculating the certified robustness of smoothed classifier g can be turned into
solving the optimization problem defined as:

min
p′j

A

−
k∑

j=1

Φ−1
(
p′

j
A

)

s.t.
k∑

j=1

p′
j
A =

1

2

k∑
j=1

(pjA + pjB),

p′
j
A ≤ pjA, ∀j ∈ {1, . . . , k}.

(26)
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However, due to Φ−1 being non-convex, the above problem is not a typical convex optimization.

• For k = 2, denote:

p̃ =
1

2
(p1A + p1B + p2A + p2B) ≤ 1, (27)

where p̃ represents the sum of the average probability between the most probable class
CA and the runner-up class CB . According to the first constraint in Equation 26, we can
derive that p′2A = p̃ − p′

1
A. Meanwhile, Φ−1

(
p′

2
A

)
= −Φ−1

(
1− p′

2
A

)
establishes for

p′
2
A ∈ [0, 1]. Thus, the above objective function can be transformed into:

min
p′j

A

Φ−1
(
p′

1
A +1− p̃

)
− Φ−1

(
p′

1
A

)
. (28)

This The objective function Equation 28 is a convex function with a global minimum
achieved by p′

1
A = p′

2
A = 1

2 p̃.
• For k > 2, denote:

p̃ =
1

2

k∑
j=1

(pjA + pjB) ≤
k

2
. (29)

The objective function is non-convex. Providing a numerically stable solution for the global
minimum under these circumstances is challenging (the minimum might not exist). A
saddle point is achieved by:

p′
j
A = p̃/k,∀j ∈ {1, . . . , k}. (30)

The landscape of objective function for k = 2 and k = 3 is visualized in Figure 4 for a more
straightforward comparison and illustration.
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(a) (b)

Figure 5: The visualized landscape of objective function and for smoothing with different variances.
For symmetric cases where η = 2 and η = 0.5, the sum of the two optimal p′lA is p̃.

A.4 ANALYSIS OF SMOOTHING WITH DIFFERENT VARIANCE

This subsection discusses the feasibility of using Gaussian noise with different variances to smooth
the sub-images in DRS. Consider an input x ∈ Rd, which can be partitioned into two spatially non-
overlapping sub-inputs, denoted as xl ∈ Rm and xr ∈ Rm. Define the smoothed classifier g same
as in Equation 5, while εl and εr are the isotropic Gaussian noises with the mean 0 and the standard
deviation σl and σr. According to Equation 24 and 25, to mislead g successfully, the adversarial
perturbation δj must fulfill:∥∥δl∥∥

2
+ ∥δr∥2 ≥ σl

(
Φ−1

(
plA
)
− Φ−1

(
p′

l
A

))
+ σr

(
Φ−1 (prA)− Φ−1

(
p′

r
A

))
, (31)

where p′A represents the smoothed probability under the adversarial attack and satisfies that pA ≥
p′A and p′

l
A + p′

r
A = 1

2

(
plA + plB + prA + prB

)
. Assume η = σr/σl, Equation 31 can be rewritten

as: ∥∥δl∥∥
2
+ ∥δr∥2 ≥ σl

(
Φ−1

(
plA
)
+ ηΦ−1 (prA)

)
− σl

(
Φ−1

(
p′

l
A

)
+ ηΦ−1

(
p′

r
A

))
. (32)

Thus according to Equation 26 and Equation 28, calculating the certified robustness of smoothed
classifier g can be turned into solving the optimization problem defined as:

min
p′l

A

ηΦ−1
(
p′

l
A +1− p̃

)
− Φ−1

(
p′

l
A

)
,

s.t. p̃ ∈ (0, 1) , η > 0.

(33)

Denote p̃ = 1
2 (p

1
A + p1B + p2A + p2B). The first-order derivative of the above objective function is:

η
d

d p′lA
Φ−1

(
p′

l
A +1− p̃

)
− d

d p′lA
Φ−1

(
p′

l
A

)

⇒
√
2π

η exp

Φ−1
(
p′

l
A +1− p̃

)2
2

− exp

Φ−1
(
p′

l
A

)2
2


 .

⇒
√
2πη exp

Φ−1
(
p′

l
A

)2
2


exp

Φ−1
(
p′

l
A +1− p̃

)2
− Φ−1

(
p′

l
A

)2
2

− 1

η


(34)

Owing to the inherent positivity of the exponential function, the sign of the first derivative hinges

on the comparison of the value of Φ−1
(
p′

l
A +1− p̃

)2
− Φ−1

(
p′

l
A

)2
with the critical value of
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Figure 6: The visualized landscape of Φ−1
(
p′

l
A +1− p̃

)2
− Φ−1

(
p′

l
A

)2
.

2 ln 1
η . Moreover, the expression Φ−1

(
p′

l
A +1− p̃

)2
−Φ−1

(
p′

l
A

)2
exhibits a monotonic increasing

trend from negative infinity to positive infinity within the interval p̃ ∈ (0, 1) (a horizontal line if
p̃ = 1.). The visualization of this function is shown in Figure 6 for illustration. Therefore, it can
be asserted that the objective function initially demonstrates a monotonically decreasing behavior,
which subsequently transitions into an increasing trend. Thus, the minimum is achieved when the
first-order derivative equals zero, which is:

Φ−1
(
p′

l
A +1− p̃

)2
− Φ−1

(
p′

l
A

)2
= 2 ln

1

η
. (35)

When p̃ is set to 1, the objective function assumes a monotonic property (specifically, a decreasing
trend for η > 1 and conversely, an increasing trend for η < 1), with the minimum being attained at
the boundary of the domain of p′jA. Thus according to Equation 11 and 12, we can derive a certified
robustness boundary for DRS under different variances smoothing. The landscape of the objective
function is visualized in Figure 5 for a more straightforward illustration.

A.5 JUSTIFICATION OF THE TIGHTNESS OF DRS ROBUSTNESS BOUND

The tightness of the certified robustness of RS is proven by Cohen et al. (2019). Assume the certified
radius directly deduced from RS is tight. Given that pB = 1 − pA, the inequalities presented in
Equations 7, 8, 9, and 11 are transformed into equalities. This indicates the smallest of

∥∥δl∥∥
2
+∥δr∥2

to break DRS is σ
(
Φ−1

(
plA
)
+Φ−1 (prA)

)
. Denote s =

∥∥δl∥∥
2
+ ∥δr∥2, according to Equation 12,

the adversarial perturbation δ is:

∥δ∥2 =
√
∥δl∥2

2
+ ∥δr∥22 ∈

[
s√
2
, s
]
. (36)

Consequently, in the worst case situation that
∥∥δl∥∥

2
= ∥δr∥2, the largest certified robutsness pro-

vided by DRS is R = σ√
2

(
Φ−1

(
plA
)
+Φ−1 (prA)

)
, which justify the tightness of DRS robustness

bound.

A.6 DETAILS ABOUT THE DRS CERTIFIED ALGORITHM

This section illustrates the details of the certified algorithm of DRS.

Downsample(x, idx) down-samples the original image x into two spatially non-overlapping sub-
images based on the index vector idx and returns the two sub-images at dimension m and n.
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SampleUnderNoise(f l, fr,xl,xr, n) initially performs n times sampling from the distribution of
N (xl + εl;xl, σ2I) and N (xr + εr;xr, σ2I). Then it counts the frequency of predicted classes
by f l and fr on those n samples and returns two corresponding k dimensional arrays that contain
these frequency counts.

LowerConfBound(countl[ĉA], count
r[ĉA], n, 1 − α) calculates the lower bound probability p

with confidence at least 1 − α using binomial estimation. Where p is an unknown probability
fulfilling that count (ĉA) ∼ B(n, p), where is the B binomial distribution with probability p and
sampling times n.
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