
Appendix

Table of Contents
A Further discussion of prior work 12

B Toolbox 13
B.1 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B.2 Riemannian gradient and Riemannian Hessian for (MC-BM) . . . . . . . . . . . 13

C Proofs of criticality (Propositions 5 and 6) 14
C.1 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.2 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D Proofs of sublemmas for local minimality (Lemma 1) 16
D.1 Further discussion of challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 16
D.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D.3 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
D.4 Minor claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E Constructions of strictly pseudo-PD matrices (Lemma 2) 25
E.1 Probabilistic construction with nonnegative entries . . . . . . . . . . . . . . . . 26
E.2 Deterministic construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

F Extending construction of spurious local minimum to p < n/2 29

G Experiments 30

A Further discussion of prior work

The two most relevant papers to this work are [BVB18] and [WW20]. [BVB18] excludes the
presence of spurious second-order critical points for (MC-BM) outside of a measure-zero set of cost
matrices when p(p+1)

2 > n. (Furthermore, their result extends to a broad class of smooth SDPs.)
Additionally, [BVB18] shows that when p > n/2, (MC-BM) has no spurious second-order critical
points. [WW20] tightens the main lower bound of [BVB18] to p(p+1)

2 + p > n and also shows that
when p(p+1)

2 + p  n, there exists a set of cost matrices with non-zero measure whose corresponding
instances of (MC-BM) have spurious local minima.

It was open to the best of our knowledge whether there exists any instance of (MC-BM) with spurious
second-order critical points when p(p+1)

2 + p > n. (In fact, this question was open for the broad class
of smooth SDPs analyzed in [BVB18]—see Section 6 in that paper.) We note that it is not clear how
to extend the techniques of [WW20] to the setting of our paper since their constructions critically rely
on a technical assumption (the existence of “minimally secant” matrices) which provably never holds
when p(p+1)

2 > n (as they note in Appendix B). As a result, our paper takes a different approach.

There has also been a line of work [BBJN18, PJB18, CM19] seeking to provide polynomial-time
convergence guarantees to approximate global optima in a smoothed analysis setting. [BBJN18]
in particular performs smoothed analysis on an unconstrained quadratically-penalized version of
(MC-BM) (and its generalizations) and also provides a lower bound. However, their lower-bound
construction does not apply to (MC-BM) itself (or its generalizations). (In particular, their lower-
bound construction sets the cost matrix to be 0, which does not work in our setting.)

Finally, [MMMO17, Thm. 1] implies that when the cost matrix A comes from a weighted graph
with nonnegative weights on the edges (as is typical in Max-Cut relaxations), any spurious local
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minimum still achieves the globally optimal value up to an O(1/p) multiplicative error. We note that
as mentioned in Section 1, there are many applications of (MC-SDP) where A may have negative
entries and where the solution value is not as important as the optimal SDP solution itself (which is
used to recover some ground-truth solution). As we showed in Proposition 13, there exist instances of
(MC-SDP) where the optimal solution and the spurious point eY eY > are qualitatively very different.

B Toolbox

B.1 Proof of Proposition 4

Proposition 4 follows directly from Corollary 2.9 and Proposition 2.10 from [BVB18], which give
analogous claims for a more general class of programs. In regards to Corollary 2.9 (the “if” direction),
note that (MC-BM) trivially satisfies Assumption 1.1a (which is equivalent to the linear independence
constraint qualification, aka LICQ, holding over the entire feasible region). Proposition 2.10 (the
“only if” direction) requires strong duality, and strong duality holds for the convex program (MC-SDP)
since it satisfies Slater’s condition.

B.2 Riemannian gradient and Riemannian Hessian for (MC-BM)

Proposition 7 (Riemannian gradient for (MC-BM)). The Riemannian gradient of OBJ at Y 2Mp

is given by

grad OBJ(Y ) = 2(A� diag(⌫))Y, where ⌫i :=
nX

j=1

Aij hYi, Yji , for all i 2 [n]. (5)

Here, Yi 2 Rp denotes the ith row of Y , taken as a column vector.

Proof. For a smooth objective function over a Riemannian submanifold of a vector space [Bou22,
Def. 3.55], the Riemannian gradient is given by the orthogonal projection of the Euclidean gradient
to the tangent space [Bou22, Prop. 3.61]. Since Mp is a Riemannian submanifold of Rn⇥p [BVB18,
Sec. 2.1], applying this yields

grad OBJ(Y ) = ProjY (2AY ) = 2ProjY (AY ), (6)

where the linear map ProjY : Rn⇥p ! TY Mp denotes the orthogonal projector onto TY Mp ✓
Rn⇥p, i.e., ProjY (Z) = argminU2TY Mp

kU � Zk. Since TY Mp consists of those matrices in
Rn⇥p which are row-wise orthogonal to Y (Proposition 1), it is clear that the orthogonal projection of
Z 2 Rn⇥p onto TY Mp is found by going row by row over Z and each time deleting the component
of row i of Z which lies in the span of row i of Y . In other words,

ProjY (Z) = Z � diag(µ)Y, where µi := hZi, Yii , for all i 2 [n]. (7)

(6) and (7) together yield our result.

The Riemannian Hessian of OBJ at Y 2Mp, Hess OBJ(Y ), is a linear, symmetric map from TY Mp

to TY Mp. For a Riemannian submanifold of a vector space such as Mp, this is given by the classical
differential of (a smooth extension of) grad OBJ(Y ), projected to the tangent space [Bou22, Cor.
5.16].

We note that the Riemannian Hessian is the natural Riemannian analog of the Euclidean Hessian,
and while the Euclidean Hessian r2f(x) of a function f : Rm ! R at x 2 Rm can be thought
of as a symmetric m ⇥ m matrix containing the second-order partial derivatives of f at x, it is
often best understood as a linear map r2f(x) : Rm ! Rm defined via r2f(x)[u] = Hu, where
H 2 Sm⇥m is the aforementioned “matrix form” of r2f(x). With this viewpoint, r2f(x)[u]
is the directional derivative of the Euclidean gradient rf(x) in the direction u. Similarly, while
the Riemannian Hessian of OBJ at Y 2Mp, Hess OBJ(Y ), could be identified with a symmetric
dim(Mp) ⇥ dim(Mp) matrix,5 it is best understood as a linear map Hess OBJ(Y ) : TY Mp !

5Note that for a smooth manifold M, dim(M) is defined as dim(TxM), where TxM denotes the tangent
space (a vector space) at x 2 M. (dim(TxM) is independent of x.)
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TY Mp, where Hess OBJ(Y )[U ] denotes the “directional derivative” of the Riemannian gradient in
the direction U . (The correct definition of “directional derivative” in this case is the Riemannian
connection [Bou22, Thm. 5.6].) As is standard, we take the latter form to be the definition of the
Riemannian Hessian [Bou22, Def. 5.14].
Proposition 8 (Riemannian Hessian for (MC-BM)). The Riemannian Hessian of OBJ at Y 2Mp,
acting on U 2 TY Mp, is given by

Hess OBJ(Y )[U ] = 2ProjY

✓
(A� diag(⌫))U

◆
,

where the linear map ProjY : Rn⇥p ! TY Mp denotes the orthogonal projector onto TY Mp ✓
Rn⇥p, i.e., ProjY (Z) = argminU2TY Mp

kU � Zk. ⌫ is defined as in (5).

Proof. This follows immediately from Equation 2.7 in [BVB18], which provides an expression for
the Riemannian Hessian for a more general class of programs. (Their expression for the multiplier ⌫,
which they call µ—see Equation 2.5 in that paper, is more complicated as it is for a more general
class of programs, which is why we derived the Riemannian gradient from first principles in the
proof of Proposition 7. However, the two expressions for this multiplier are ultimately equivalent for
(MC-BM) due to the uniqueness of the Riemannian gradient.) See also Section 7.7 of [Bou22] for
exposition (including an expression for the Riemannian Hessian) for a very general class of programs
encompassing (MC-BM).

C Proofs of criticality (Propositions 5 and 6)

C.1 Proof of Proposition 5

We first prove the first half of Proposition 5, which characterizes when eY is a first-order critical point.
If A takes the form (2) for some ↵ 2 Rn and B 2 Sn

2 ⇥n
2 , we can set � ↵ where � is our choice

for the multiplier from Proposition 2. Observe then that (A� diag(�))eY = 0, implying eY is indeed
a first-order critical point. For the other direction, suppose that eY is a first-order critical point with
associated multiplier � (from Proposition 2), and consider the matrix S := A � diag(�) 2 Sn⇥n,
which can be expressed in the block form

S =


S1 S2

S>
2 S3

�

for some S1, S3 2 Sn
2 ⇥n

2 and S2 2 Rn
2 ⇥n

2 . Then S eY = 0 implies S1 � S2 = 0 and S>
2 � S3 = 0,

and thus S1 = S2 = S3. Thus, A = S + diag(�) indeed takes the form (2).

Now we prove the second half of Proposition 5: the characterization of when eY is a spurious
first-order critical point. Supposing that the cost matrix takes the form (2) for some ↵ 2 Rn and
B 2 Sn

2 ⇥n
2 (as we’ve shown is necessary for eY to be a first-order critical point), we show that eY

is additionally spurious if and only if B ✏ 0. Recall from above that the unique multiplier � 2 Rn

(from Proposition 2) associated with eY is precisely ↵. Then it follows from Proposition 4 that eY is
spurious if and only if

A� diag(�) =


B B
B B

�

is not positive semidefinite. (Recall from Proposition 2 that ⌫ = � at a first-order critical point.) We
claim 

B B
B B

�
=


1 1

1 1

�
⌦B ✏ 0 () B ✏ 0, (8)

where⌦ denotes the Kronecker product. Indeed, this follows because the spectrum of F ⌦G, denoted
�(F ⌦G), for two square, real matrices F,G is given by

�(F ⌦G) = {�µ : � 2 �(F ), µ 2 �(G)} .

This, combined with the fact that

1 1

1 1

�
⌫ 0, implies (8).

14



C.2 Proof of Proposition 6

We first prove the first half of Proposition 6, which characterizes when eY is a second-order critical
point. Since any second-order critical point is also a first-order critical point, the first half of
Proposition 5 implies it is necessary for the cost matrix A to take the form (2) for some ↵ 2 Rn

and B 2 Sn
2 ⇥n

2 for eY to be a second-order critical point. We will show that eY is additionally a
second-order critical point if and only if the matrix B from (2) is pseudo-PSD.

To this end, recall from the proof of Proposition 5 that the unique multiplier � associated with eY
when A takes the form (2) is precisely ↵. Then, writing

S := A� diag(�) =


B B
B B

�
, (9)

clearly the condition for the second-order criticality of eY (Proposition 3) is equivalent to
⌦
S,UU>↵ � 0 for U 2 TeY Mn/2. (10)

Define

Oo↵ :=
�
G 2 Rn

2 ⇥n
2 : diag(G) = 0

 

to be the subspace of Rn
2 ⇥n

2 consisting of matrices with zeros on their diagonals. Note then that
TeY Mn/2 is precisely

TeY Mn/2 =

⇢
U1

U2

�
: U1, U2 2 Oo↵

�
. (11)

In other words, TeY Mn/2 is the set of all matrices U 2 Rn⇥n
2 such that Uii = U(n/2+i),i = 0 for

all i 2 [n/2], and the other entries are completely arbitrary. Observe that (9) and (11) imply the
second-order criticality condition (10) is equivalent to

⌦
B, (U1 + U2)(U1 + U2)

>↵ � 0 for U1, U2 2 Oo↵ . (12)

Next, note that (12) (and therefore (10)) is equivalent to
⌦
B,GG>↵ � 0 for G 2 Oo↵ (13)

since Oo↵ is closed under addition.

Thus, we have shown at this point that eY is a second-order critical point if and only if (13) holds.
Now let Ti for i 2 [n/2] denote the (n/2� 1)-dimensional subspace of Rn/2 obtained by fixing the
ith entry to be 0 and letting all other entries vary arbitrarily. Observe that

�
GG>

: G 2 Oo↵

 
=

8
<

:

n/2X

k=1

vkv
>
k : vi 2 Ti for all i 2 [n/2]

9
=

; .

Thus, we can reexpress the second-order criticality condition (13) as follows:
⌦
B,GG>↵ � 0 for G 2 Oo↵

()
*
B,

n/2X

k=1

vkv
>
k

+
� 0 for v1,2 T1, . . . , vn/2 2 Tn/2

()
⌦
B, vv>

↵
� 0 for v 2 T1 [ · · · [ Tn/2. (14)

(14) is equivalent to B being pseudo-PSD.

As for the second half of Proposition 6, the characterization of when eY is a spurious second-order
critical point, this follows immediately from the first half of Proposition 6 and the characterization
of when eY is a spurious first-order critical point from Proposition 5 (since all second-order critical
points are also first-order critical points).
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D Proofs of sublemmas for local minimality (Lemma 1)

D.1 Further discussion of challenges

In this section, we further discuss challenges associated with proving eY is a local minimum in a
“traditional” way. For example, [WW20], which constructs spurious local minima for (MC-BM)
when p <

p
2n, similarly first constructs spurious second-order critical points and then proves they

are additionally local minima. However, their proof follows because their spurious second-order
critical points are non-degenerate [WW20, Def. 3 and Rem. 1], which corresponds to the rank of
the Riemannian Hessian being sufficiently high. (See Remark 2 in that paper.) We show that every
spurious second-order critical point for (MC-BM) is degenerate when p is above the Barvinok-Pataki
bound, meaning this approach won’t work:
Proposition 9 (Spurious second-order critical points are degenerate when p �

p
2n). Let Y 2Mp

be a spurious second-order critical point for an (arbitrary) instance of (MC-BM) where p(p+1)
2 > n.

Then Y is degenerate [WW20, Def. 3 and Rem. 1].

Proof. Theorem 1.6 from [BVB18] gives that any spurious second-order critical point for (MC-BM)
must be full rank, meaning rank(Y ) = p. Let S := A� diag(⌫), where ⌫ is defined as in (1). Then
the first-order criticality of Y (Proposition 2) implies SY = 0, meaning rank(S)  n� p. We have
(see Section 2.1):

hHess OBJ(Y )[U ], Ui = 2
⌦
S,UU>↵

= 2vec(U)
>
vec(SUIp)

= 2vec(U)
>
(Ip ⌦ S)vec(U), (15)

for any U 2 TY Mp. Here, vec(Z) stacks the columns of Z on top of one another to convert
Z into a column vector, and ⌦ denotes the Kronecker product. In (15), we used the fact that
vec(CXB) = (B> ⌦ C)vec(X).

Then clearly rank(Hess OBJ(Y ))  rank(Ip ⌦ S) = rank(Ip) · rank(S)  p(n� p). Recall from
[WW20, Rem. 1] that Y is degenerate if

rank(Hess OBJ(Y )) < dim(Mp)�
p(p� 1)

2
= np� n� p(p� 1)

2
.

(See, e.g., [BVB18, Proposition 1.2] for the fact that dim(Mp) = np� n.) Then Y is degenerate if

p(n� p) < np� n� p(p� 1)

2
() p(p+ 1)

2
> n.

Degeneracy of higher-order derivatives at eY . We know from Proposition 6 that eY is a spurious
second-order critical point if and only if the cost matrix takes the form

A =


P P
P P

�
+ diag(↵) (16)

for some ↵ 2 Rn and strictly pseudo-PSD P 2 Sn
2 ⇥n

2 . A natural question is whether higher-
order Riemannian derivatives6 could be used to identify an additional condition under which eY is a
(spurious) local minimum. For example, one may hope to show that when P is additionally (strictly)
pseudo-PD (the condition identified in Lemma 1), then the fourth derivative is positive. Unfortunately
this is not possible, as one can show that all higher-order Riemannian derivatives at eY are degenerate
when the cost matrix takes the form (16).

This follows via an examination of TeY Mn/2. Indeed, consider the subspace W ✓ TeY Mn/2 given
by those matrices of the form

W :=

⇢
G
�G

�
: G 2 Sn

2 ⇥n
2 , Gii = 0 for all i 2 [n/2]

�
. (17)

6See Section 10.7 of [Bou22] for an introduction to higher-order Riemannian derivatives.
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It is easily observed that W is contained in the kernel of Hess OBJ(eY ) when the cost matrix takes the
form (16). Furthermore, one can show that W is orthogonal to the vertical space at eY [Bou22, Def.
9.24] when we consider the quotient manifold Mfull

n/2/O(n/2), where Mfull
n/2 denotes the open subset

of Mn/2 containing its rank n/2 elements and O(n/2) denotes the orthogonal group in dimension
n/2. Indeed, the vertical space at eY consists of all tangent vectors of the form eY B where B 2 Rn

2 ⇥n
2

is skew-symmetric. (See, e.g., p. 6 of [WW20].) Thus, the vertical space at eY is precisely the
subspace of TeY Mn/2 taking the form

⇢
H
�H

�
: H 2 Rn

2 ⇥n
2 , H is skew-symmetric

�
,

which is clearly orthogonal to W .

Since tangent vectors in the subspace W are in the kernel of Hess OBJ(eY ) but not in the vertical
space,7 one may worry that following a smooth curve c : I ! Mn/2 (I is an open interval of
R containing 0) such that c(0) = eY , c0(0) 2 W could yield a decrease in the objective value for
sufficiently small inputs t > 0. Indeed, one must rule out such behavior to prove eY is a local
minimum.

Unfortunately, higher-order Riemannian derivatives at eY all also contain W in their zero sets, so
they cannot a priori be used to rule out this behavior. Recall that formally, the kth Riemannian
derivative of OBJ is a tensor field of order k [Bou22, Def. 10.76] given by rkOBJ, wherer denotes
the total covariant derivative [Bou22, Def. 10.77]. (Elsewhere in the paper we have used r to denote
the classical Euclidean derivative, but the usage of r in this section is different; the total covariant
derivative is not (in general) the Euclidean derivative.) Furthermore, recall that tensor fields are
pointwise objects, so we use the notation rkOBJ(Y ) : TY Mn/2 ⇥ · · ·⇥ TY Mn/2| {z }

k times

! R to denote

the k-linear function associated to a point Y 2Mn/2. Then we have the following result:

Proposition 10 (Higher-order Riemannian derivatives at eY are degenerate). For (MC-BM) when
p = n/2, suppose the cost matrix takes the form

A =


B B
B B

�
+ diag(↵) (18)

for some ↵ 2 Rn and B 2 Sn
2 ⇥n

2 . Then the subspace W ✓ TeY Mn/2 defined in (17) is in the zero
set of rkOBJ(eY ) for all k � 1. (By this we mean rkOBJ(eY )(U, . . . , U) = 0 for any U 2W ).

Note that Proposition 10 of course additionally encompasses the cases where B is pseudo-PSD,
pseudo-PD, etc.

Proof. For notational brevity, let p be shorthand for n/2 in this proof. Let c : I !Mp be a geodesic
[Bou22, Def. 5.38] such that c(0) = eY , c0(0) = U 2W . (I is an open interval in R containing 0.) A
simple extension of Example 10.81 in [Bou22] implies

rkOBJ(eY )(U, · · · , U) = (OBJ � c)(k)(0)

for any k � 1. (Here, note that OBJ � c : I ! R, so (OBJ � c)(k) is the “usual” kth derivative of a
function from (an open interval in) R to R.) Thus, it is sufficient to exhibit such a geodesic c such
that OBJ � c is constant over I (implying (OBJ � c)(k)(0) = 0).

To construct this geodesic, we will take advantage of the fact that Mp is a product manifold
formed by the Cartesian product of n unit spheres in Rp. Recall that for the unit sphere S

p�1 with
x 2 S

p�1, v 2 TxS
p�1, the curve

zx,v(t) = cos(t kvk)x+
sin(t kvk)
kvk v

7In fact, one can show that when P in (16) is pseudo-PD, then W contains all tangent vectors which are in
the kernel of Hess OBJ(eY ) but not in the vertical space.
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(with the usual smooth extension sin(t)/t = 0 at t = 0) is a geodesic which traces the great circle on
the sphere from x in the direction v. (See Example 5.37 in [Bou22].) Of course, z0x,v(0) = v.

Then, viewing Mp in the form (S
p�1, . . . , Sp�1

| {z }
n times

) with the ith entry corresponding to the ith row

in Mp, we choose c(t) =

⇣
zeY1,U1

(t), . . . , zeYn,Un
(t)
⌘

, where eYi, Ui 2 Rp denote the ith rows

of eY , U (taken as column vectors). Then c(t) is a geodesic (e.g., [Bou22, Exerc. 5.39]) and
c(0) = eY , c0(0) = U . All that is left is to show that OBJ � c is constant. This follows due to the form
of W ; it is easy to check that for all sufficiently small t, we have that c(t) is an antipodal configuration

as defined in Section 5. (Recall that antipodal configurations take the form

G
�G

�
2 Mn/2 for

some G 2 Rn
2 ⇥n

2 .) And it is easy to see that when the cost matrix takes the form (18), all antipodal
configurations have the same objective value.

Thus, we have identified (a subspace of) tangent vectors at eY which are not in the vertical space at eY
and which lie in the zero sets of all higher-order Riemannian derivatives at eY . As a result, it is not
clear how higher-order Riemannian derivatives at eY can be used to prove eY is a local minimum.

D.2 Proof of Lemma 3

Taken together, the proof of Lemma 3 is by far the longest in this paper and will itself utilize several
sublemmas given in this section (with some additional very minor claims proven in Section D.4). See
the very end of this section for the proof of Lemma 3 itself.

Important setup for this section. Throughout Section D.2, we assume we are in the setting of
Lemma 1 with pseudo-PD M 2 Sn

2 ⇥n
2 . Furthermore, we assume for simplicity that ↵ = 0. This is

without loss of generality because due to the feasibility constraint of (MC-BM), shifting the diagonal
entries of the cost matrix just corresponds to adding the same constant to the objective value of each
feasible point. In particular, it is easy to check that changing ↵ does not affect the geometry of the
problem, i.e., the Riemannian derivatives at any point Y 2Mp remain unchanged. As a result of
these assumptions, the cost matrix in this section always takes the form

A =


M M
M M

�
(19)

for some pseudo-PD M 2 Sn
2 ⇥n

2 . Finally, p is always n/2 in this section. (We may sometimes write
p instead of n/2 for shorthand.)

To start, the following sublemma, which was described briefly in words in Section 5, provides the
backbone of the argument. Recall once again that by a neighborhood of Y 2Mp, we mean a set of
the form {Y 0 2Mp : ||Y � Y 0|| < ✏} for some ✏ > 0, where || · || as always denotes the Euclidean
(or equivalently Frobenius) norm.
Lemma 5 (Decrease in the potential �). Let the potential � : Mn/2 ! R�0 be defined as

�

✓
G1

G2

�◆
:= ||G1 +G2||2, where G1, G2 2 Rn

2 ⇥n
2 . Then there exists a neighborhood O of eY and

⌘̄ > 0 such that for any Y 2 O and ⌘ < ⌘̄, we have

�(Y 00
)  (1� ⌘K)�(Y ). (20)

Here, Y 00 2Mn/2 is the point reached by a single step of Riemannian gradient descent starting
from Y with step size ⌘. (The notation Y 00 is used as Y 0 is reserved for something else in the proof.)
K > 0 is a constant which depends only on the instance of (MC-BM).

Proof. We first provide a brief overview of the proof and introduce some notation. To begin,
we will represent Y explicitly in the form Y = eY + � 2 Mn/2, where � 2 Rn⇥p should be
thought of as a perturbation matrix. (Recall that p is always n/2 in this section and may be used
as a shorthand.) Using this representation, we derive explicit expressions for Y 0 and then �(Y 0

),
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Notation Description

p p = n/2 always for this section and may be used as a shorthand
A 2 Sn⇥n cost matrix taking the form (19)
M 2 Sp⇥p one pseudo-PD block of the cost matrix; see (19)

� potential; see Lemma 5
eY the axial position as in Definition 2; in matrix block form: Ip over �Ip

Y 2Mp
eY +� (an arbitrary point near eY )

� 2 Rn⇥p perturbation matrix used to define Y ; see the line above
Y 0 2 Rn⇥p Y � ⌘grad OBJ(Y ) (the point we get to with a gradient step from Y )
Y 00 2Mp the retracted (row-normalized) Y 0 (equivalently the result of taking a

single step of Riemannian gradient descent from Y )
Zi used to denote the ith row of Z (taken as a column vector) for

a given matrix Z

i+, i� i and i+ p resp. for i 2 [p]

E , E 0 2 Rp⇥p defined via their rows: Ei = Yi+ + Yi� = �i+ +�i�

and E 0
i = Y 0

i+ + Y 0
i� for all i 2 [p]

E⇤i\ii 2 Rp�1 the ith column of E with its ith entry removed (only used once!)
M [i] 2 S(p�1)⇥(p�1) the submatrix of M formed by removing its ith row and column

�min(·) minimum eigenvalue of the input
µlow min`2[p] �min(M [`])

ei the ith standard basis vector
|| · || Euclidean (or equivalently Frobenius) norm

Figure 3: Notation guide for the proof of Lemma 5

where Y 0
:= Y � ⌘grad OBJ(Y ). Recalling the contents of Section 2.3, Y 00 is Y 0 followed by a

normalization of each row. So Y 0 takes a gradient step from Y but doesn’t normalize the rows,
meaning (assuming grad OBJ(Y ) 6= 0) Y 0 /2 Mn/2. (Thus, we abuse notation here and extend
the domain of � to Rn⇥p.) That said, it is easy to show �(Y 00

)  �(Y 0
), so bounding �(Y 0

) is
sufficient. We are then able to bound �(Y 0

) by the right-hand side of (20) by taking the step size and
k�k to be sufficiently small and using the pseudo-PD property of M .

We now delve into the technical details. We will unfortunately need to introduce a significant amount
of notation as we go since we will be performing the above analysis in a row-wise manner. (Which is
natural in some sense when we recall that Mp is a product manifold formed by taking the Cartesian
product of n unit spheres in Rp. And for product manifolds, geometric entities such as the tangent
space and Riemannian derivatives can be expressed as products or concatenations of entities over the
constituent manifolds.) As an aid, Figure 3 can be used as a reference for the notation used in this
proof.

Letting i+, i� denote i, i+ p respectively for i 2 [p], we first derive expressions for Y 0
i+ , Y

0
i� 2 Rp

for all i 2 [p]. Recall that Y 0
= Y � ⌘grad OBJ(Y ) = Y � 2⌘(A� diag(⌫))Y with ⌫ defined as in

(1). Then

Y 0
i+ = Yi+ � 2⌘

0

@
nX

j=1

AijYj �
nX

j=1

Aij hYi+ , YjiYi+

1

A

= Yi+ � 2⌘

0

@
pX

j=1

Mij(Yj+ + Yj�)�
pX

j=1

Mij

⌦
Yi+ , Yj+ + Yj�

↵
Yi+

1

A

= Yi+ � 2⌘
pX

j=1

Mij (Ej � hYi+ , EjiYi+) .
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The second line uses the block form of A, and the third line introduces new notation: we let E 2 Rp⇥p

be defined such that the ith row of E is Ei = Yi+ + Yi� = �i+ +�i� for i 2 [p]. The matrix E is
directly related to the potential �; indeed, �(Y ) = ||E||2.

Similarly, one can derive

Y 0
i� = Yi� � 2⌘

pX

j=1

Mij (Ej � hYi� , EjiYi�) .

Next, we define E 0 2 Rp⇥p analogously to E but using Y 0: the ith row of E 0 is E 0
i = Y 0

i+ + Y 0
i� for

i 2 [p]. Thus, �(Y 0
) = ||E 0||2. (We abuse notation and extend the domain of � to Rn⇥p.) We will

bound �(Y 0
) through E 0 in a row-wise manner. Using the expressions we have derived, we have for

i 2 [p]:

E 0
i = Y 0

i+ + Y 0
i�

= Ei + 2⌘
pX

j=1

Mij [hYi+ , EjiYi+ + hYi� , EjiYi� � 2Ej ] .

Then for i 2 [p],

kE 0
ik

2
=

pX

`=1

hE 0
i , e`i

2

=

pX

`=1

2

4hEi, e`i+ 2⌘
pX

j=1

Mij [hYi+ , Eji hYi+ , e`i+ hYi� , Eji hYi� , e`i � 2 hEj , e`i]

3

5
2

=

pX

`=1

"
hEi, e`i2 +O(⌘2)

+2⌘
pX

j=1

Mij [hEi, e`i (hYi+ , Eji hYi+ , e`i+ hYi� , Eji hYi� , e`i)� 2 hEi, e`i hEj , e`i]

3

5

= kEik2 +O(⌘2)

+ 2⌘
pX

`=1

pX

j=1

Mij [hEi, e`i (hYi+ , Eji hYi+ , e`i+ hYi� , Eji hYi� , e`i)� 2 hEi, e`i hEj , e`i] .

The O(⌘2) hides terms that depend on the perturbation �, but this will not matter as ⌘ will be taken
sufficiently small in the final step after a bound on k�k is set. (The O(⌘2) also hides terms that
depend on the instance of (MC-BM), but these do not matter for our purposes.)

Then

�(Y 0
) = kE 0k2

=

pX

i=1

kE 0
ik

2

= kEk2 +O(⌘2)

+ 2⌘
pX

i=1

pX

`=1

pX

j=1

Mij [hEi, e`i (hYi+ , Eji hYi+ , e`i+ hYi� , Eji hYi� , e`i)]

| {z }
1

� 4⌘
pX

i=1

pX

`=1

pX

j=1

Mij hEi, e`i hEj , e`i

| {z }
2

.

(21)
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We now upper bound 1 and lower bound 2 starting with the former, which relies on the key
observation that when i = `, then hEi, e`i = hEi, eii is small, and when i 6= `, then hYi+ , e`i and
hYi� , e`i are small. Formally,

1 =

pX

i=1

pX

`=1
` 6=i

pX

j=1

Mij [hEi, e`i (hYi+ , Eji hYi+ , e`i+ hYi� , Eji hYi� , e`i)]

+

pX

i=1

pX

j=1

Mij [hEi, eii (hYi+ , Eji hYi+ , eii+ hYi� , Eji hYi� , eii)]


pX

i=1

pX

`=1
` 6=i

pX

j=1

Mij [kEik (kEjk k�i+k+ kEjk k�i�k)] (22)

+

pX

i=1

pX

j=1

Mij [kEik k�i+ ��i�k (kEjk+ kEjk)] (23)

= O(kEk2 k�k). (24)

(22) uses Cauchy-Schwarz (recall that Yi+ , Yi� are unit vectors by definition) and the fact that
hYi+ , e`i = h�i+ , e`i  k�i+k since Yi+ = ei +�i+ by definition and i 6= `. (And hYi� , e`i can
be bounded similarly.) (23) uses Cauchy-Schwarz as well as the following key bound:

hEi, eii = h�i+ , eii � h�i� ,�eii

=
�k�i+k

2
+ k�i�k

2

2

 k�i+ +�i�k k�i+ ��i�k
= kEik k�i+ ��i�k ,

(25)

where we have used Lemmas 8 and 9 from Section D.4. This bound is critical; a less tight bound
would not work because kEk may be much smaller than k�k. The big O notation in line (24) hides
terms which depend on the instance of (MC-BM), but these don’t matter for our purposes.

We now turn our focus to lower bounding 2 , which is the only place where we use the fact that M
is pseudo-PD. We have

2 =

pX

`=1

pX

i=1
i 6=`

pX

j=1
j 6=`

Mij hEi, e`i hEj , e`i

+

pX

`=1

pX

j=1

M`j hE`, e`i hEj , e`i+
pX

`=1

pX

i=1

Mi` hEi, e`i hE`, e`i �
pX

`=1

M`` hE`, e`i hE`, e`i

� �O(kEk2 k�k) +
pX

`=1

pX

i=1
i 6=`

pX

j=1
j 6=`

MijEi`Ej` (26)

= �O(kEk2 k�k) +
pX

`=1

E>
⇤`\``M [`]E⇤`\`` (27)

� �O(kEk2 k�k) +
pX

`=1

µlow

��E⇤`\``
��2 (28)

= �O(kEk2 k�k) + µlow

 
kEk2 �

pX

i=1

E2
ii

!
(29)

= �O(kEk2 k�k) + µlow

 
kEk2 �

pX

i=1

hEi, eii2
!

(30)
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� �O(kEk2 k�k) + µlow

 
kEk2 �

pX

i=1

kEik2 k2�k2
!

(31)

= �O(kEk2 k�k) + µlow

⇣
1� k2�k2

⌘
kEk2 (32)

(26) once again uses the key inequality (25) (and Cauchy-Schwarz) and also simply rewrote hEi, e`i =
Ei`, hEj , e`i = Ej`. (27) introduces the unfortunate notation E⇤`\`` 2 Rp�1, which denotes the
`th column of E except the `th entry of this column (aka E``) has been removed. Recall that
M [`] 2 S(p�1)⇥(p�1) as always denotes the submatrix of M formed by removing the `th row and
column. Then, (27) follows by observing that the inner two summations on the right side of (26) form
a quadratic form which is precisely E>

⇤`\``M [`]E⇤`\``. In (28), we introduce the notation µlow which
denotes min`2[p] �min(M [`]), where �min(·) denotes the minimum eigenvalue of its argument. In
other words, µlow lower bounds the eigenvalues of M [`] for any `, and the fact that µlow > 0 follows
from the fact that M is pseudo-PD. (29) follows by expanding

Pp
`=1

��E⇤`\``
��2 and noting that only

the diagonal entries of E are not covered. In (30) we simply rewrite Eii = hEi, eii, and (31) uses the
key inequality (25). (32) simply uses

Pp
i=1 kEik

2
= kEk2.

Now going back to (21) and using the bounds on 1 and 2 , we have

�(Y 0
)  kEk2 � ⌘µlow

⇣
1� k2�k2

⌘
kEk2 + ⌘O(kEk2 k�k) +O(⌘2)

 (1� ⌘K) kEk2 ,
where in the last line we took ||�|| and then ⌘ to be sufficiently small. Finally, recall that �(Y ) =

kEk2, and note also that the norm of each row of Y 0 is at least 1.8 Then Lemma 10 from Section D.4
implies �(Y 00

)  �(Y 0
), and we are done.

Next, we would like to extend the result of Lemma 5 to all consecutive pairs of iterates produced by
Riemannian gradient descent and not just the first pair. This will be done shortly in Lemma 7, but
in preparation we first show that as long as the iterates of Riemannian gradient descent stay in the
neighborhood O identified in Lemma 5, they form a Cauchy sequence where the distances between
consecutive iterates decrease geometrically.
Lemma 6 (Iterates confined to neighborhood form Cauchy sequence). Let O, ⌘̄,K denote the
neighborhood, step-size bound, and constant identified in Lemma 5. Suppose Riemannian gradient
descent with step size ⌘ < ⌘̄ is initialized at some Y (0) 2 O, and furthermore Y (1), . . . , Y (t) 2 O.
Then for any k 2 {0, . . . , t}, we have

kY (k) � Y (k+1)k  4⌘ kMk kY (0) � eY k(1� ⌘K)
k/2.

Before starting the proof, note that we critically do not require Y (t+1) 2 O. This will be important in
the proof of Lemma 7.

Proof. We have for k 2 {0, . . . , t}:
���Y (k) � Y (k+1)

���
2
=

���Y (k) � RY (k)

⇣
�⌘grad OBJ(Y (k)

)

⌘���
2
.

Now, recall from Section 2.3 that RY (k)

�
�⌘grad OBJ(Y (k)

)
�

is equal to Y (k) � ⌘grad OBJ(Y (k)
)

followed by a normalization of each row. We claim
���Y (k) � RY (k)

⇣
�⌘grad OBJ(Y (k)

)

⌘���
2

���Y (k) �

⇣
Y (k) � ⌘grad OBJ(Y (k)

)

⌘���
2

=

���⌘grad OBJ(Y (k)
)

���
2
.

Indeed, this follows from applying Lemma 11 from Section D.4 in a row-wise manner, where u is
chosen as the ith row of Y (k), v is chosen as the ith row of RY (k)

�
�⌘grad OBJ(Y (k)

)
�
, ↵ = 1, and

8This follows because Y 0 takes the form of “a point on Mn/2 plus a tangent vector,” and because tangent
vectors are row-wise orthogonal to their base, clearly adding one can only increase the norm of each row.
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� is set to the norm of the ith row of Y (k) � ⌘grad OBJ(Y (k)
). (� � 1 since ⌘grad OBJ(Y (k) is

row-wise orthogonal to Y (k) due to the former being a tangent vector.) Intuitively, we are just using
the fact that retraction onto the sphere can only bring you closer to your starting point.

Next, note that
���⌘grad OBJ(Y (k)

)

���
2

���⌘rOBJ(Y (k)

)

���
2
=

���2⌘AY (k)
���
2
,

wherer is used to denote the classical Euclidean gradient. This follows because, as mentioned in
Section 2.1, the Riemannian gradient is equal to the Euclidean gradient composed with an orthogonal

projection, and an orthogonal projection can only decrease the norm. Now write Y (k)
=


G1

G2

�
where

G1, G2 2 Rn
2 ⇥n

2 . Using the form of A given in (19), it is easy to see that

k2⌘AY (k)k2 = k4⌘M(G1 +G2)k2  16⌘2 kMk2 kG1 +G2k2 ,
where we used the fact that the Frobenius norm is submultiplicative. Then, note that by definition,
�(Y (k)

) = kG1 +G2k2. Connecting the dots, we have shown up to this point that

kY (k) � Y (k+1)k2  16⌘2 kMk2 �(Y (k)
). (33)

Using Lemma 5 and the fact that the iterates up to step k are in O, we have �(Y (k)
) 

(1� ⌘K)
k
�(Y (0)

). (Note that when k = t, we are critically relying on the fact that Lemma 5
does not require Y 00 2 O.) Furthermore, it is easy to see that � always bounds the distance away

from eY ; indeed, let Z =


Z1

Z2

�
with Z1, Z2 2 Rn

2 ⇥n
2 and note that

�(Z) = kZ1 + Z2k2

= kZ1 + I + Z2 � Ik2

 kZ1 + Ik2 + kZ2 � Ik2

= kZ � eY k2.
(33) and the contents of the previous paragraph imply the desired result.

Now we finally extend Lemma 5 to all consecutive pairs of iterates produced by Riemannian gradient
descent. This can of course be achieved by confining all iterates to the neighborhood identified in
Lemma 5. The following lemma does this by initializing in an even smaller neighborhood of eY .
Lemma 7 (Riemannian gradient descent stays close to eY ). Let O, ⌘̄,K denote the neighborhood,
step-size bound, and constant identified in Lemma 5. Then there exists a neighborhood S ✓ O of
eY such that if Riemannian gradient descent with step size ⌘ < min

�
⌘̄, 1

2K

 
is initialized at any

Y (0) 2 S, all future iterates lie in O.

Proof. We proceed by induction on the iterate counter t, and will choose S in the inductive step so
that the proof goes through. Y (0) 2 O since S ✓ O. Now suppose Y (0), . . . , Y (t) 2 O, and we will
set S independently of t so that Y (t+1) 2 O. We have

keY � Y (t+1)k  keY � Y (0)k+
tX

k=0

kY (k) � Y (k+1)k

 keY � Y (0)k+ 4⌘kMkkeY � Y (0)k
tX

k=0

(1� ⌘K)
k/2

 keY � Y (0)k
 
1 + 4⌘ kMk

1X

k=0

(1� ⌘K)
k/2

!
,

where we used Lemma 6 (which critically doesn’t require Y (t+1) 2 O).

Clearly
⇣
1 + 4⌘ kMk

P1
k=0 (1� ⌘K)

k/2
⌘

is bounded and doesn’t depend on t, so keY � Y (0)k can

be chosen sufficiently small so that Y (t+1) 2 O.
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Finally, we give the proof of Lemma 3:

Proof of Lemma 3. We choose N to be the neighborhood S identified in Lemma 7 and pick ⌘0 =
min

�
⌘̄, 1

2K

 
with ⌘̄,K defined as in Lemma 5. Then due to Lemma 7, all iterates of Riemannian

gradient descent with any step size ⌘ < ⌘0 initialized at any Y (0) 2 N lie in O, the neighborhood
identified in Lemma 5. As a result, Lemma 6 implies that the sequence of iterates Y (0), Y (1), . . .
forms a Cauchy sequence, and since Rn⇥p is complete, the iterates converge to some Y . Clearly
Y 2Mn/2 as all iterates of Riemannian gradient descent lie on Mn/2.

Also, Lemma 5 and the fact that all iterates lie in O implies that the sequence �(Y (0)
),�(Y (1)

), . . .
converges to 0. Since � is continuous, we have �(Y ) = 0. It is easy to see that for Z 2Mn/2, we
have �(Z) = 0 if and only if Z is antipodal, where as in Section 5, we say a point is antipodal if

it takes the form

G
�G

�
2Mn/2 for some G 2 Rn

2 ⇥n
2 . Thus, Y is antipodal. Note that eY is also

antipodal, and it is easy to check that all antipodal points have the same objective value. (In particular,
if the cost matrix takes the form (19) as we assume without loss of generality in this section, that
objective value is 0.)

D.3 Proof of Lemma 4

We first restate a result from [Bou22] which yields a quadratic upper bound on the objective in the
same style as the classic quadratic upper bound which holds in the Euclidean case when the Euclidean
gradient is Lipschitz. (Indeed, the Riemannian gradient grad OBJ for (MC-BM) is Lipschitz, but
defining Lipschitzness for the Riemannian gradient requires care [Bou22, Definition 10.44]. Propo-
sition 11 is sufficient for our purposes since we only need a quadratic upper bound and don’t care
about the actual value of the Lipschitz constant.)
Proposition 11 (Quadratic bound [Bou22, Lem. 10.57, abbreviated]). Consider a smooth mani-
fold M, retraction R on M [Bou22, Definition 3.47], compact subset K ✓ M, and continuous,
nonnegative function r : K! R. The set

T = {(x, s) 2 TM : x 2 K and ksk  r(x)}
is compact in the tangent bundle TM [Bou22, Definition 3.42]. Assume f : M ! R is twice
continuously differentiable. Then there exists a constant L such that, for all (x, s) 2 T , we have

|f(Rx(s))� f(x)� hs, grad f(x)i|  L

2
ksk2 .

We now give the proof of Lemma 5:

Proof of Lemma 4. Formally, our goal is to identify ⌘̃ > 0 such that for any ⌘ < ⌘̃ and Y 2Mp, we
have

OBJ(Y 0
)  OBJ(Y ) where Y 0

= RY (�⌘grad OBJ(Y )),

with RY defined as the metric projection retraction for Mp, as in Section 2.3. (In fact, we will show
that when grad OBJ(Y ) 6= 0, our proof yields a strict decrease: OBJ(Y 0

) < OBJ(Y ).)

We apply Proposition 11 with K  Mp, as clearly Mp is compact. The fact that grad OBJ is
continuous implies kgrad OBJ(·)k is continuous, and this together with the compactness of Mp

implies there exists some constant P such that kgrad OBJ(Z)k  P for all Z 2Mp.

Pick r : Mp ! R to be the constant function which sends everything to P , i.e., r(Z) = P for all
Z 2Mp. Then for all 0 < ⌘  1 and Z 2Mp, we have (Z,�⌘grad OBJ(Z)) 2 T .

Then Proposition 11 implies there exists some constant L such that for 0 < ⌘  1, we have
OBJ(Y 0

)� OBJ(Y ) = OBJ (RY (�⌘grad OBJ(Y )))� OBJ(Y )

 L

2
k�⌘grad OBJ(Y )k2 + h�⌘grad OBJ(Y ), grad OBJ(x)i

=

✓
⌘2L

2
� ⌘

◆
kgrad OBJ(Y )k2

Then ⌘2L
2 � ⌘ < 0 for all 0 < ⌘ < 2/L, so setting ⌘̃  min

�
1, 1

L

 
yields the desired result.
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D.4 Minor claims

In this section, we prove minor claims that are used in Section D.2.
Lemma 8 (Close to orthogonal). Let v 2 Rm, � 2 Rm be such that kvk = kv + �k = 1. Then
h�, vi = �k�k2 /2.

Proof. We have

kv + �k2 = 1

=) kvk2 + 2 h�, vi+ k�k2 = 1

=) h�, vi = �k�k2 /2.

Lemma 9 (Reverse triangle inequality with squares). Let u, v 2 Rm. Then
����kuk

2 � kvk2
����  ku+ vk ku� vk .

Proof. Note that

kuk2 � kvk2 = hu+ v, u� vi  ku+ vk ku� vk .

The result follows by symmetry.

Lemma 10 (Normalizing doesn’t increase the potential). Set p = n/2, and let � be defined as in
Lemma 5, although we abuse notation here and extend the domain to Rn⇥p. Let Z 2 Rn⇥p be
arbitrary except with the single restriction that the norm of each of its rows is at least 1, and let
Z 2Mn/2 denote the matrix formed by normalizing each row of Z. Then �(Z)  �(Z).

Proof. It is clearly sufficient to show that
��Zi + Zi+p

��2  kZi + Zi+pk2 for all i 2 [p]. (Zi 2 Rp

denotes the ith row.) This follows from Lemma 11 below.

Lemma 11 (Metric projection is contractive). Let u, v 2 Rm be such that kuk = kvk = 1. Then for
any ↵,� � 1, we have

ku� vk2  k↵u� �vk2 .

Proof. We have

k↵u� �vk2 � ku� vk2 = ↵2
+ �2 � 2(↵� � 1) hu, vi � 2

� ↵2
+ �2 � 2(↵� � 1)� 2

= ↵2
+ �2 � 2↵�

= (↵� �)2

� 0.

In the second line, we used Cauchy-Schwarz and the fact that ↵� � 1.

E Constructions of strictly pseudo-PD matrices (Lemma 2)

In this section we provide two proofs of Lemma 2, which posits the existence of k ⇥ k strictly
pseudo-PD matrices for k � 2. The first is a probabilistic construction and the second is deterministic.
The former has the advantage of having nonnegative entries, which, combined with Lemma 1, results
in “natural” cost matrices that can arise as the adjacency matrix of a weighted graph. For the latter
deterministic construction, we also characterize the optimal solutions of the associated instances of
(MC-SDP), revealing they have a qualitatively different structure than eY eY >.
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E.1 Probabilistic construction with nonnegative entries

Our random construction uses a random matrix U 2 Rk⇥(k�1) with nonnegative entries such that
for each i 2 [k], the submatrix U (i) 2 R(k�1)⇥(k�1) formed by removing the ith row of U has
non-negligible least-singular-value (and hence full rank). Each entry of U is generated i.i.d. from
a N(µ, 1) where µ = c0

p
log k for a sufficiently large constant c0 > 0. The final matrix is just

M = UU> � "I , where " = k�⌦(1) is set appropriately. By construction UU> is a k ⇥ k matrix of
rank k � 1; hence M has exactly one negative eigenvalue. In what follows �`(M) denotes the `th
eigenvalue of M (note that M is symmetric in our case; hence all eigenvalues are real).
Proposition 12 (Randomized construction for Lemma 2). There exists absolute constants c0, c1, c2 >
0 such that the following holds for a given k 2 N with k � 2. Suppose U 2 Rk⇥(k�1) is a random
matrix where each entry is generated i.i.d. from N(µ, 1) for µ = c0

p
log k and let M = UU> � "I

with " := c1/kc2 . Then, with probability at least 1� 1/k7, M is nonnegative and strictly pseudo-PD.
In particular,

(i) for each i 2 [k], the submatrix M [i] 2 S(k�1)⇥(k�1) formed by removing the ith row and
the ith column of M satisfies �k�1(M [i]) � c1

kc2
.

(ii) every entry of M is nonnegative.

(iii) it is not positive semidefinite i.e., �k(M)  � c1
kc2

.

We remark that the constant 7 in the exponent of the failure probability is arbitrarily chosen. We can
make this an arbitrarily large constant, and adjust constants c0, c1, c2 > 0 appropriately.

The proof of the above lemma using the following claim about the least singular value of square
matrices. We remark that much stronger bounds on the least singular values are known in random
matrix theory. We state and include a proof (which follows somewhat standard arguments) of the
following claim which is more tailored for our needs.
Lemma 12. Fix any k 2 N with k � 1. Let A 2 Rk⇥k be a random matrix, each entry of which
is sampled N(µ, 1) for some µ. Then there exists absolute constants c1, c2, c3 > 0 such that with
probability at least 1� 1/(k + 1)

8, we have:

(i) sk(A)
2 > 2c1/(k + 1)

c2 , where sk(A) denotes the least singular value of A.

(ii) every entry of A is in the interval [µ� c3
p
log k, µ+ c3

p
log k].

Proof. We will show separately that both the required properties hold with high probability, and do
a union bound over the failure of these two events. Part (ii) of the claim just follows by applying
standard Gaussian tail bounds for a fixed entry of the k ⇥ k matrix, and then using a union bound
over all the k2 entries.

We now focus on part (i) of the claim. This follows a standard argument using anti-concentration
bounds (or small ball probability). Let a1, a2, . . . , ak 2 Rk represent the columns of A. The least
singular value of A can be lower-bounded using the leave-one-out distance `(A) which is defined as

`(A) = min
i

dist(ai, V�i), (34)

where V�i = span{aj : j 6= i} and dist(x, V ) = minv2V kx� vk2 is the perpendicular `2 distance
between x and the subspace V . The least singular value sk(A) is related to `(A) by

`(A)p
k
 sk(A)  `(A). (35)

We now lower-bound the leave-one-out distance `(A). Fix a column i 2 [k]. Let u be any unit vector
in the subspace orthogonal to V�i = span

�
{aj : j 2 [k] \ {i}}

�
; note that such a direction exists

since dim(V�i)  k � 1. Moreover, since the column ai ⇠ N(µ1k, I) where 1k = (1, 1, . . . , 1)
is the all-ones vector, we have a>i u ⇠ N(z, 1) where z = µu>

k. From the anti-concentration of
Gaussian N(z, 1), we have for an absolute constant c > 0,

Pr
⇥
|u>ai|  �

⇤
 sup

t2R
Pr

g⇠N(0,1)

⇥
g 2 [t� �, t+ �]

⇤
 c�.
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By picking � = 1/(c(k + 1)
9
), we have with probability at least 1� 1

(k+1)9 ,

dist(ai, V�i) � |u>x| � 1

c(k + 1)9
.

By applying a union bound over all the columns i 2 [k], we have `(A) � 1/(k+1)
9 with probability

at least 1� 1
(k+1)8 . By applying (35), we see that part (i) of the lemma also holds.

Proof of Proposition 12. Fix i 2 [k]. The matrix M [i] can be written in terms of the (k�1)⇥(k�1)

submatrix U (i) as M [i] = U (i)
(U (i)

)
> � "Ik�1. Each submatrix U (i) is a random matrix in

R(k�1)⇥(k�1) with i.i.d. entries drawn from N(µ, 1) with µ > c0
p
log k. By applying Lemma 12

with k� 1 and choosing c0 > 2c3, we get that with probability at least 1� 1/k8 that �k�1(U (i)
)
2 �

2c1/kc2 . Hence,

�k�1(M [i]) = �k�1

⇣
U (i)

(U (i)
)
>
⌘
� " � �k�1(U

(i)
)
2 � c1

kc2
� c1

kc2
.

Applying a union bound over all i 2 [k] proves the part (i) of the lemma.

Part (ii) follows since U (and hence UU>) has nonnegative entries and I only has diagonal entries.
So all the off-diagonal entries of M are nonnegative. The non-negativity of the diagonal entries
follows from the positive semi-definiteness of the M [i].

Finally part (iii) follows since UU> is of rank (k� 1); hence �k(M) = �", which gives the required
bound.

E.2 Deterministic construction

We provide another construction of k ⇥ k strictly pseudo-PD matrices for any k � 2. Unlike the
construction given in Appendix E.1, this construction is fully deterministic. However, it includes both
positive and negative entries, making it an arguably less natural cost matrix for a weighted graph.
Definition 5 (Almost-average matrix). We define the k ⇥ k almost-average matrix M as follows:

Mij =

⇢
1 for i = j,
� 1

k�1.5 for i 6= j.

Now we show that M is strictly pseudo-PD:

Proof. First we show that M is not positive semidefinite. Consider a test vector x of all 1’s:

(Mx)i = 1� k � 1

k � 1.5
= � 0.5

k � 1.5

Mx = � 1

2k � 3
· x

So x is an eigenvector with a negative eigenvalue.

Now we show M [i] ⌫ 0 for any i 2 [k]. (Recall that M [i] 2 S(k�1)⇥(k�1) denotes the submatrix
of M formed by deleting the ith row and column.) To see this, note that M [i] is strictly diagonally
dominant for any i (for every row, the sum of the magnitudes of the non-diagonal entries is less
than the magnitude of the diagonal entry). Any symmetric, strictly diagonally dominant matrix with
nonnegative diagonal entries is positive definite. So M [i] is indeed positive definite.

We additionally note that when the cost matrix takes the form (3) with M defined as in Definition 5
(setting k = n/2), one can show that (MC-SDP) has a unique optimal rank-one solution. This implies
in particular that if we view this instance of (MC-SDP) as a convex relaxation of a corresponding
Max-Cut instance (albeit with perhaps unusual negative edge weights modeling “attractions”), the
relaxation is tight. The following proposition will be used in Appendix G (Experiments).
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Proposition 13 (Optimal solution for cost matrix arising from almost-average matrix). For any
n � 4, consider the instance of (MC-SDP) with cost matrix

A =


M M
M M

�
(36)

where M 2 Sn
2 ⇥n

2 is defined as in Definition 5 (setting k = n/2). The unique optimal solution of
such an instance is the matrix J 2 Sn⇥n consisting of all 1’s, implying in particular that the optimal
objective value is

4p

✓
1� p� 1

p� 1.5

◆
,

where p is shorthand for n/2.

Clearly one could extend Proposition 13 to the case where (36) is arbitrarily shifted by a diagonal
matrix as in, e.g., Lemma 1, but we state it this way for simplicity and because we will use precisely
matrices of the form (36) in Appendix G (Experiments). Proposition 13 is interesting because it
provides an example of an instance of (MC-SDP) where eY eY > and the unique globally optimal
solution J are qualitatively very different (e.g., one is rank n/2 and the other rank 1).

Before giving the proof of Proposition 13, we make the useful observation that any strictly pseudo-
PSD (and therefore also strictly pseudo-PD) matrix has at most one negative eigenvalue.9

Lemma 13. Let B 2 Sk⇥k be a strictly pseudo-PSD matrix for any k � 2. Then B has exactly one
negative eigenvalue.

Proof. Any strictly pseudo-PSD matrix has at least one negative eigenvalue by definition. We show
that if B has more than one negative eigenvalue, one can construct an instance of (MC-BM) which
contradicts a theorem due to [BVB18]. (It is the same theorem which ultimately yields the result that
when p > n/2, (MC-BM) has no spurious second-order critical points.) Toward this goal, consider
the instance of (MC-BM) with cost matrix

A =


B B
B B

�
2 Sn⇥n,

where we have defined n := 2k for notational brevity. Due to Proposition 6, the axial position eY is a
second-order critical point for this instance. Furthermore, it is easy to see that the multiplier ⌫ 2 Rn

associated with eY due to (1) is 0. Then Theorem 3.4 from [BVB18] gives that A� diag(⌫) = A has
at most

�
1

k

✓
dimFeY eY > �

k(k + 1)

2
+ n

◆⌫
=

�
1

k
(n� k)

⌫
= 1

negative eigenvalue. Here, FeY eY > denotes the face of the convex feasible region of (MC-SDP) (also
known as the elliptope) associated with eY eY >. (In other words, eY eY > is in the relative interior
of FeY eY > ; see Definition 2.5 and Proposition 2.7 in [BVB18].) Above, we used the fact that
dimFeY eY > =

k(k+1)
2 � k due to [BVB18, Prop. 2.7].

Next, note that

A =


B B
B B

�
=


1 1

1 1

�
⌦B,

where ⌦ denotes the Kronecker product. Since the eigenvalues of

1 1

1 1

�
are {0, 2}, this decomposi-

tion implies that if B had more than one negative eigenvalue, A would have more than one negative
eigenvalue, a contradiction.

9Whenever we use the phrases “at most one negative eigenvalue,” “exactly one negative eigenvalue,” etc., we
are counting for multiplicity. So, for example, if a matrix has the negative eigenvalue -2 with multiplicity 4, this
is counted as four separate negative eigenvalues (and, e.g., such a matrix could not be strictly pseudo-PSD due to
Lemma 13).

28



Now we prove the main claim:

Proof of Proposition 13. p will be used as shorthand for n/2 throughout this proof. Due to, e.g.,
[WW20, Prop. 1] or [BVB18, Prop. 2.8], J is optimal if there exists some � 2 Rn such that, defining
S := A� diag(�), we have SJ = 0 and S ⌫ 0.10 We claim these conditions hold when each entry
of � is set to b := 2

⇣
1� p�1

p�1.5

⌘
. Indeed, SJ = 0 can be observed directly. As for S ⌫ 0, note that

S =

✓
1 1

1 1

�
⌦M

◆
� diag(�).

Since the spectrum of

1 1

1 1

�
is {0, 2}, the spectrum of S, denoted �(S), is precisely

�(S) = {�b} [ {2�� b : � 2 �(M)} . (37)

Clearly �b � 0, so all that is left is to check that all elements of {2�� b : � 2 �(M)} are nonnega-
tive. Due to Lemma 13, M has at most one negative eigenvalue. (Note that any strictly pseudo-PD
matrix is strictly pseudo-PSD.) Furthermore, we found in the proof that M is strictly pseudo-PD
(directly below Definition 5) that the all 1’s vector is an eigenvector of M with eigenvalue � 0.5

p�1.5 .
Thus, this is the single negative eigenvalue of M . Finally, note that

� 1

p� 1.5
� b = � 1

p� 1.5
� 2

✓
1� p� 1

p� 1.5

◆
= 0,

so we conclude that S ⌫ 0. Thus, we have established that J is optimal.

As for the uniqueness of J , it is a classical result that J is an extreme point of the feasible region
of (MC-SDP) (aka the elliptope)—see for example Definition 2.6 and Proposition 2.7 in [BVB18]
or Appendix F.1 in [WW20]. [WW20, Prop. 2] then gives that if strict complementary slackness
holds, meaning rank(S) = n� rank(J) = n� 1, then J is the unique optimal solution. Indeed, this
follows due to (37), the fact that M only has a single negative eigenvalue, and the fact that �b > 0

for p � 2.

F Extending construction of spurious local minimum to p < n/2

Lemma 14 allows us to extend our construction of a spurious local minimum for the p = n/2 case to
p < n/2. Indeed, it implies that our construction of a spurious local minimum for the instance of
(MC-BM) with associated feasible region M2p,p yields a construction of a spurious local minimum
for the instance of (MC-BM) with associated feasible region Mn0,p, for all n0 � 2p. Thus, one
can construct an instance of (MC-BM) with a spurious local minimum when p < n/2 using the
construction for the instance of (MC-BM) associated with M2p,p.

We note that Lemma 14 also holds if you replace “spurious local minimum” with “spurious first-order
critical point” or “spurious second-order critical point,” although we do not prove it here. However,
the intuition is clear: we embed a “bad instance” into the higher-dimensional space, and design the
cost matrix so that the bad instance does not interact with the added dimensions.
Lemma 14. Let (n, p) 2 N⇥ N be such that there exists an instance of (MC-BM) with cost matrix
A 2 Sn⇥n and feasible point Y 2 Mn,p such that Y is a spurious local minimum. Then for all
n0 � n, there exists a cost matrix A0 2 Sn0⇥n0

and a feasible point Y 0 2Mn0,p such that Y 0 is a
spurious local minimum for the instance of (MC-BM) with cost matrix A0 2 Sn0⇥n0

and feasible
region Mn0,p.

Proof. We claim that the following construction works:

A0
=


A 0

0 0

�
2 Sn

0⇥n0
, Y 0

=


Y
G

�
2Mn0,p,

10This comes from the fact that if these conditions are satisfied, the primal-dual pair (J,�) satisfies the KKT
conditions of (MC-SDP), implying optimality since (MC-SDP) is a convex program.
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where G 2 R(n0�n)⇥p is arbitrary except with the single restriction that all of its rows are unit
vectors. Since Y is a local minimum for the instance of (MC-BM) with cost matrix A and feasible
region Mn,p, there exists ✏ > 0 such that for Z 2Mn,p with kZ � Y k < ✏, we have

⌦
A, Y Y >↵ ⌦

A,ZZ>↵. Now let Z 0 2Mn0,p with ||Z 0 � Y 0|| < ✏. Let Z̄ 2Mn,p denote the submatrix of Z 0

consisting of the first n rows. Then
⌦
A0, Y 0Y 0>↵

=
⌦
A, Y Y >↵ 

⌦
A, Z̄Z̄>↵

=
⌦
A0, Z 0Z 0>↵ ,

since ||Z̄ � Y ||  ||Z 0 � Y 0|| < ✏. Thus, Y 0 is a local minimum.

To see that Y 0 is spurious, the spuriousness of Y implies that there exists V 2 Mn,p such that
⌦
A, V V >↵ <

⌦
A, Y Y >↵. Then define V 0

=


V
G

�
2Mn0,p, where G 2 R(n0�n)⇥p is once again

some matrix whose rows are unit vectors. Then,⌦
A0, V 0V 0>↵

=
⌦
A, V V >↵ <

⌦
A, Y Y >↵

=
⌦
A0, Y 0Y 0>↵ .

G Experiments

In this section, we empirically evaluate our construction of a spurious local minimum for (MC-BM)
in the setting where p = n/2 (the largest possible value of p before we are guaranteed to have
no spurious minima). Our experiments suggest that the spurious local minima we construct have
surprisingly large basins of convergence. (In comparison, our theoretical results only guarantee the
existence of some positive measure basin of convergence.)

Our code and data can be found at https://github.com/vaidehi8913/burer-monteiro. This
repository also contains a link to a visualizer for the p = 2 and p = 3 settings.

Instance generation. For our experiments, we use the deterministic construction of pseudo-PD
matrices given in Section E.2. In other words, the cost matrix always takes the form

A =


M M
M M

�

where M 2 Sn
2 ⇥n

2 is defined as in Definition 5 (setting k = n/2). We run trials for n =

4, 50, 200, 1000, each time setting p = n/2. Recall that due to Lemma 1, the axial position eY
is a spurious local minimum for such cost matrices. Furthermore, due to Proposition 13, we know pre-
cisely what the optimal value is for such instances, allowing us to distinguish whether the optimization
algorithm converged to a spurious point or a global optimum.

Optimization setup. We use the standard trust-region solver with default settings from the MAT-
LAB manifold optimization package Manopt [BMAS14]. It is a second-order method which uses the
gradient of the objective function (which we provide) and an approximation of the Hessian of the
objective function found using finite differences (this is done automatically by their implementation).

Initialization. In each trial, we sample the initialization point Y (0) from a neighborhood of the
axial position eY . We make use of the fact that Mp is a product manifold and measure the distance to
initialization in a row-wise manner, making the following definition:
Definition 6 (�-close). We say Y, Y 0 2Mp are �-close if kYi � Y 0

i k  � for all i 2 [n], where
Yi 2 Rp denotes the ith row of Y .

For each trial, we choose a perturbation magnitude ⇡ > 0, which specifies how far from eY our
initialization point will be. We then generate a perturbation matrix � 2 Rn⇥p. Each entry of � is
drawn ⇠ N (0, 1

p ) (a Gaussian distribution with variance 1
p ). This ensures that � has approximately

unit-norm rows. Then our initial point is given by

Y (0)
= row-normalize

⇣
eY + ⇡�

⌘
,

where row-normalize : Rn⇥p ! Rn⇥p normalizes each row of the input. This ensures that Y (0) is
effectively sampled a constant distance away from eY on Mp in a uniformly chosen direction.
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Figure 4: A plot summarizing our empirical results (data in Figure 5). Note that there appears to be
a phase transition at ⇡ ⇡ 0.27, where trials almost always converge to spurious points for smaller
⇡ and almost always converge to global optima for larger ⇡. This phase transition appears to grow
sharper with larger values of n.

Data collection. We report the fraction of trials in which the algorithm converged to a spurious
point. We note that all trials we ran resulted in convergence to a point with objective value 0 (the
objective value of our constructed spurious local minimum eY ) or to a point with the optimal (negative)
objective value due to Proposition 13.

Results. We provide a summary of our experimental results in Figure 4 and the full data in Figure
5. For n = 4, we ran 1000 trials for each reported value of ⇡. For n = 50, 200 we ran 100 trials for
each ⇡, and for n = 1000 we ran 50 trials for each reported value of ⇡.

We note an interesting phase transition that seems to occur at ⇡ ⇡ 0.27. For perturbations greater
than this threshold, the algorithm seems to almost always converge to a global optimum. Below this
threshold, the algorithm seems to almost always converge to a spurious point. This threshold appears
to get sharper as n gets larger. This suggests there is some �⇤ ⇡ 0.27 such that points �⇤-close to eY
are very likely to converge to a spurious point, and vice versa. (It is also interesting that this family
of cost matrices seems to have this phase transition at the same value for every n.) All in all, our
experiments suggest a much larger basin of convergence for spurious minima than our theoretical
results guarantee.
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⇡ n = 4, 50, 200, 1000

0.3 0.55 0.26 0 0
0.29 0.58 0.35 0.02 0
0.28 0.56 0.58 0.15 0.06
0.27 0.57 0.73 0.32 0.70
0.26 0.61 0.81 0.75 1
0.25 0.59 0.90 0.93 1

Figure 5: (Complete Data) For each combination of n,⇡, we report the fraction of our trials that
converged to spurious points. For n = 4, we ran 1000 trials for each reported value of ⇡. For
n = 50, 200, we ran 100 trials for each reported value of ⇡. For n = 1000, we ran 50 trials for each
reported value of ⇡.
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