
Prioritizing Samples in Reinforcement Learning with
Reducible Loss

Anonymous Author(s)
Affiliation
Address
email

Abstract

Most reinforcement learning algorithms take advantage of an experience replay1

buffer to repeatedly train on samples the agent has observed in the past. This2

prevents catastrophic forgetting, however simply assigning equal importance to3

each of the samples is a naive strategy. In this paper, we propose a method to4

prioritize samples based on how much we can learn from a sample. We define5

the learn-ability of a sample as the steady decrease of the training loss associated6

with this sample over time. We develop an algorithm to prioritize samples with7

high learn-ability, while assigning lower priority to those that are hard-to-learn,8

typically caused by noise or stochasticity. We empirically show that our method9

is more robust than random sampling and also better than just prioritizing with10

respect to the training loss, i.e. the temporal difference loss, which is used in vanilla11

prioritized experience replay.12

1 Introduction13

Deep reinforcement learning has shown great promise in recent years, particularly with its ability to14

solve difficult games such as Go Silver et al. [2016], chess Silver et al. [2018], and Atari Mnih et al.15

[2015]. However, online Reinforcement Learning (RL) suffers from sample inefficiency because16

updates to network parameters take place at every time-step with the data being discarded immediately.17

One of the landmarks in the space of online RL learning has been Deep Q Learning (DQN) Mnih18

et al. [2015], where the agent learns to achieve human-level performance in Atari 2600 games. A key19

feature of that algorithm was the use of batched data for online learning. Observed transitions are20

stored in a buffer called the experience replay Lin [2004], from which one randomly samples batches21

of transitions for updating the RL agent. This way, the agent is trained on previously visited samples22

to prevent catastrophic forgetting.23

Instead of randomly sampling from the experience replay, we propose to sample based on the learn-24

ability of the samples. We consider a sample to be learnable if there is a potential for reducing the25

agent’s loss with respect to that sample. We term the amount by which we can reduce the loss of a26

sample to be its reducible loss (ReLo). This is different from vanilla prioritization in Schaul et al.27

[2016] which just assigns high priority to samples with high loss, which can potentially lead to28

repeated sampling of data points which can not be learned from due to noise.29

In our paper, we first briefly describe the current methods for prioritization while sampling from the30

buffer, followed by the intuition for reducible loss in reinforcement learning. We demonstrate the31

performance of our approach empirically on the DeepMind Control Suite Tassa et al. [2018], MinAtar32

Young and Tian [2019] and Arcade Learning Environment Bellemare et al. [2013] benchmarks. These33

experiments show how prioritizing based on the reducible loss is a more robust approach compared34

to just the loss term Schaul et al. [2016] used in Hessel et al. [2017] and that it can be integrated35

without adding any additional computational complexity.36

Submitted to the Deep RL Workshop, NeurIPS 2022.

Figure 1: Performance difference between vanilla PER and ReLo aggregated across 21 benchmarks,
from DMC, MinAtar and ALE suites with 5 runs each, based on proposals from Agarwal et al. [2021].
ReLo clearly outperforms PER with a higher interquartile mean (IQM) and median as well as a lower
optimality gap.

2 Background and Related Work37

In Reinforcement Learning (RL), an agent is tasked with maximizing the expected total reward it38

receives from an environment via interaction with it. This problem is formulated using a Markov39

Decision Process (MDP) Bellman [1957] that is described by < S,A,R,P >, where S, A, R and40

P represent the state space, the action space, the reward function, and the transition function of the41

environment, respectively. The objective of RL is to learn an optimal policy π∗, which is a mapping42

from states to actions that maximizes the expected discounted sum of rewards it receives from the43

environment, that is44

π∗ = argmax
π

Eπ[

∞∑
t=0

γtrt|St = s,At = a], (1)

where γ ∈ [0, 1] is the discount factor. Action value methods obtain a policy by learning the action45

value (Qπ(st, at)) of a policy which is the expected return by taking action at in state st and then46

following the policy π to choose further actions. This is done using the Bellman equation, which47

defines a recursive relationship in terms of the Q value function, as follows48

Qπ(st, at) = rt + γ argmax
a

Qπ(st+1, a) (2)

The difference between the left and right sides of Eq. 2 is called the temporal difference error (TD49

error), and Q value methods minimize the TD error of the learned Q function Qθ (implemented as a50

neural network) using stochastic gradient descent. That is, the loss for the Q network is51

Lθ = (Qθ(st, at)− (rt + γ argmax
a

Qθ(st+1, a)))
2. (3)

We can then use the Q value to implicitly represent a policy by choosing actions with high Q values.52

While this is easy in discrete control tasks which have a small action space, it can be difficult in53

continuous action spaces because finding the action that maximizes the Q value can be an optimization54

problem in itself. This can be computationally expensive to do at every instant, so recent methods55

alleviate this problem through an actor network µθ that learns the action that produces the maximum56

Q value through stochastic gradient ascent, that is57

µθ = argmax
θ

Qθ(st, µθ(st)). (4)

The loss for the Q network in Eq. 3 is then modified so that the argmax is evaluated using the actor58

network,59

Lθ = (Qθ(st, at)− (rt + γ Qθ(st+1, µθ(st))))
2 (5)

2.1 Experience Replay60

Online RL algorithms perform updates immediately after observing a transition. However, these61

not only make learning inefficient but also lead to catastrophic forgetting as some transitions can be62

sparsely visited. To eliminate this problem, Lin [2004] introduced experience replay, which stores63

the observed transitions and provides an interface to sample batches of transitions. This has been64

successfully used in DQN Mnih et al. [2015] to play Atari 2600 games.65

Since Eqs. 3 and 5 do not require that the states and actions are generated from the current policy,66

algorithms trained this way are called off-policy RL algorithms. During training, data is collected67

from the environment and stored in a replay buffer from which mini-batches are sampled to be trained68

on.69

2

A naive method of sampling is to uniformly sample all data in the buffer, however, this is inefficient70

because not all data is necessarily equally important. Schaul et al. [2016] proposes Prioritized71

Experience Replay (PER), that samples points with probabilities proportional to their TD error –72

which has been shown to have a positive effect on performance by efficiently replaying samples that73

the model has not yet learned, i.e., data points with high TD error. Each transition in the replay buffer74

is assigned a priority pi, and the transitions are sampled based on this priority. To ensure that data75

points, even with low TD error, are sampled sometimes by the agent, instead of greedy sampling76

based on TD error, the replay buffer in PER stochastically samples points with probability Pi.77

Pi =
pαi∑
j p

α
j

(6)

where α ∈ [0, 1) is a hyper-parameter introduced to smoothen out very high TD errors. Setting α to 078

makes it equivalent to uniform sampling. Since sampling points non-uniformly changes the expected79

gradient of a mini-batch, PER corrects for this by using importance sampling (IS) weights w80

wi =

(
puniform

Pi

)β

(7)

where β ∈ [0, 1] controls the amount by which the change in gradient should be corrected and81

puniform = 1
N where N is the number of samples in the replay buffer. The loss attributed to each82

sample is weighed by the corresponding wi before the gradient is computed. In practice, β is either83

set to 0.5 or linearly annealed from 0.4 to 1 during training.84

While PER was initially proposed as an addition to DQN-style agents, Hou et al. [2017] have shown85

that PER can be a useful strategy for improving performance in Deep Deterministic Policy Gradients86

(DDPG) Lillicrap et al. [2016]. Another recent strategy to improve sample efficiency was to introduce87

losses from the transition dynamics along with the TD error as the priority Oh et al. [2022]. Although88

this has shown improvements, it involves additional computational complexity since it also requires89

learning a reward predictor and transition predictor for the environment. Our proposal does not90

require training additional networks and hence is similar in computational complexity to vanilla PER.91

This makes it very simple to integrate into any existing algorithm. Wang and Ross [2019] propose92

an algorithm to dynamically reduce the replay buffer size during training of SAC so that the agent93

prioritizes recent experience while also ensuring that updates performed using newer data are not94

overwritten by updates from older data. However, they do not distinguish between points based on95

learn-ablity and only assume that newer data is more useful for the agent to learn.96

2.2 Target Networks97

In Eqs. 3 and 5, the target action value depends not only on the rewards but also on the value of the98

next state, which is not known. So, the value of the next state is approximated by feeding the next99

state to the same network used for generating the current Q values. As mentioned in DQN Mnih100

et al. [2015], this leads to a very unstable target for learning due to the frequent updates of the Q101

network. To alleviate this issue, Mnih et al. [2015] introduce target networks, where the target Q102

value is obtained from a lagging copy of the Q network used to generate the current Q value. This103

prevents the target from changing rapidly and makes learning much more stable. So Eqs. 3 and 5 can104

be suitably modified to105

Lθ = (Qθ(st, at)− (rt + γ argmax
a

Qθtgt(st+1, a)))
2 (8)

and106

Lθ = (Qθ(st, at)− (rt + γ Qθtgt(st+1, µθ(st))))
2, (9)

respectively, where θtgt are the parameters of the target network, which are updated at a low frequency.107

Mnih et al. [2015] copies the entire training network θ to the target network, whereas Haarnoja et al.108

[2018] performs a soft update, where the new target network parameters are an exponential moving109

average (with a parameter τ) of the old target network parameters and the online network parameters.110

2.3 Off-Policy Algorithms111

Off-policy algorithms are those that can learn a policy by learning from data not generated from112

the current policy. This improves sample efficiency by reusing data collected by old versions of113

3

the policy. This is in contrast to on-policy algorithms such as PPO Schulman et al. [2017], which114

after collecting a batch of data and training on it, discard those samples and start data collection115

from scratch. Recent state-of-the-art off-policy algorithms for continuous control include Soft Actor116

Critic (SAC) Haarnoja et al. [2018] and Twin Delayed DDPG (TD3) Fujimoto et al. [2018]. SAC117

learns two Q networks together and uses the minimum of the Q values generated by these networks118

for the Bellman update equation to avoid over estimation bias. The Q target update also includes a119

term to maximize the entropy of the policy to encourage exploration, a formulation that comes from120

Maximum Entropy RL Ziebart et al. [2008]. TD3 is a successor to DDPG Lillicrap et al. [2016]121

which addresses the overestimation bias present in DDPG in a similar fashion to SAC, by learning122

two Q networks in parallel, which explains the “twin” in the name. It learns an actor network µ123

following Eq. 4 to compute the maximum over Q values. TD3 proposes that the actor networks be124

updated at a less frequent interval than the Q networks, which gives rise to the “delayed” name. In125

discrete control, Rainbow Hessel et al. [2017] combines several previous improvements over DQN,126

such as Double DQN van Hasselt et al. [2016], PER Schaul et al. [2016], Dueling DQN Wang et al.127

[2016], Distributional RL Bellemare et al. [2017] and Noisy Nets Fortunato et al. [2018].128

2.4 Reducible Loss129

The work of Mindermann et al. [2022] proposes prioritized training for supervised learning tasks130

based on focusing on data points that reduce the model’s generalization loss the most. Prioritized131

training keeps a held-out subset of the training data to train a small capacity model, θho at the132

beginning of training. During training, this hold-out model is used to provide a measure of whether a133

data point could be learned without training on it. The loss of the hold-out model’s prediction, ŷho on134

a data point x could be considered an estimate of the remaining loss after training on data other than135

(x, y), termed the irreducible loss. This estimate becomes more accurate as one increases the size of136

the held-out dataset. The difference between the losses of the main model, θ, and the hold-out model137

on the actual training data is called the reducible loss, Lr which is used for prioritizing training data138

in mini-batch sampling.139

Lr = Loss(ŷ | x, θ)− Loss(ŷ | x, θho) (10)
Lr can be thought of as a measure of information gain by also training on data point (x, y).140

3 Reducible Loss for Reinforcement Learning141

While PER helps the agent to prioritize points that the model has not yet learned based on high TD142

error, we argue that there are some drawbacks. Data points could have high TD error because they143

are noisy or not learnable by the model. It might not be the case that a data point with high TD error144

is also a sample that the model can actually learn or get a useful signal from. Instead of prioritization145

based on the TD error, we propose that the agent should focus on samples that have higher reducible146

TD error. This means that instead of the TD error, we should use a measure of how much the TD error147

can be potentially decreased, as the priority pi term in Eq. 6. We contend that this is better because148

it means that the algorithm can avoid repeatedly sampling points that the agent has been unable to149

learn from and can focus on minimizing error on points that are learnable, thereby improving sample150

efficiency. Motivated by prioritized training, we propose a scheme of prioritization tailored to the RL151

problem.152

In contrast to supervised learning, the concepts of a hold-out dataset or model are not well defined in153

the RL paradigm. In Q learning based RL methods, a good proxy for the hold-out model is the target154

network used in the Bellman update in Eq. 8. Since the target network is only periodically updated155

with the online model parameters and retains the performance of the agent on older data which are156

trained with outdated policies. Schaul et al. [2022] demonstrates how the policies keep changing with157

more training even when the agent receives close to optimal rewards. Thus, the target network can be158

easily used as an approximation of the hold out model that was not trained on the sample. In this159

way, we define the Reducible Loss (ReLo) for RL as the difference between the loss of the data point160

with respect to the online network (with parameters θ) and with respect to the target network (with161

parameters θtgt). So the Reducible Loss (ReLo) can be computed as162

ReLo = Lθ − Lθtgt (11)

When using ReLo as pi, there are similarities in the sampling behavior of low priority points when163

compared to PER. Data points that were not important under PER, i.e. they have low Lθ, will also164

4

remain unimportant in ReLo. This is because if Lθ is low, then as per Eq. 11, ReLo will also be low.165

This ensures that we retain the desirable behavior of PER, which is to not repeatedly sample points166

that have already been learned.167

However, there is a difference in sampling points that have high TD error. PER would assign high168

priority to data points with high TD error, regardless of whether or not those data points are noisy169

or unlearnable. For example, a data point can have a high TD error which continues to remain high170

even after being sampled several times due to the inherent noise of the transition itself, but it would171

continue to have high priority with PER. Thus, PER would continue to sample it, leading to inefficient172

learning. But, its priority should be reduced since there might be other data points that are worth173

sampling more because they have useful information which would enable faster learning. The ReLo174

of such a point would be low because both Lθ and Lθtgt would be high. In case a data point is175

forgotten, then the Lθ would be higher than Lθtgt , and the ReLo would ensure that these points are176

revisited.177

3.1 Implementation178

The probability of sampling a data point is related to the priority through Eq. 6 and requires the179

priority to be non-negative. Since Q value methods use the mean-squared error (MSE) loss, the180

priority is guaranteed to be non-negative. However, ReLo computes the difference between the MSE181

losses and it does not have the same property. Hence, we should create a mapping fmap for the182

ReLo error that is monotonically increasing and non-negative for all values. In practice, we found183

that clipping the negative values to zero, followed by adding a small ϵ to ensure samples had some184

minimum probability, worked well. That is, pi = max(ReLo, 0) + ϵ. This is not the only way185

we can map the negative values and we have studied one other mapping in Sec. 4.4. ReLo is not186

computationally expensive since it does not require any additional training. It only involves one187

additional forward pass of the states through the target network. This is because the Bellman backup188

(i.e., the right hand side of Eq. 2) is the same for Lθ and Lθtgt . The only additional term that needs to189

be computed for ReLo is Qtgt(st, at) to compute Lθtgt .190

In our implementation, we saw a negligible change in the computational time between PER and ReLo.191

ReLo also does not introduce any additional hyper-parameters that need to be tuned and works well192

with the default hyper-parameters of α and β in vanilla PER. An important point to note is that ReLo193

does not necessarily depend on the exact loss formulation given in Eq. 8 and can be used with the loss194

function Lalg
θ of any off-policy Q value learning algorithm. In order to use ReLo, we only have to195

additionally compute Lalg with respect to the target network parameters θtgt. Our experiments also196

show that ReLo is robust to the target network update mechanism, whether it is a hard copy of online197

parameters at a fixed frequency (as in DQN Mnih et al. [2015], and Rainbow Hessel et al. [2017])198

or if the target network is an exponential moving average of the online parameters (as in Soft Actor199

Critic Haarnoja et al. [2018]).200

Algorithm 1 Computing ReLo for prioritization

Given off-policy algorithm A with loss function Lalg, online Q network parameters θ, target Q
network parameters θtgt, replay buffer B, max priority pmax, ReLo mapping fmap, epsilon priority
ϵ, training timesteps T , gradient steps per timestep Tgrad, batch size b.
for t in 1, 2, 3, . . . T do

Get current state st from the environment
Compute action at from the agent
Store the transition < st, at, rt, st+1 > in the replay buffer B with priority pmax.
for steps in 1, 2, 3, . . . Tgrad do

Sample minibatch of size b from replay buffer
Compute the loss Lalg

θ and update the agent parameters θ
Compute Lalg

θtgt and calculate ReLo as per Eq. 11
Update priorities of the samples in mini-batch with the newly computed ReLo values as
fmap(ReLoi) + ϵ

end for
Update target network following the original RL algorithm A

end for

5

4 Results201

We study the effectiveness of ReLo on several continuous and discrete control tasks. For continuous202

control, we evaluate on 9 environments from the DeepMind Control (DMC) benchmark Tassa et al.203

[2018] as they present a variety of challenging robotic control tasks, with high dimensional state and204

action spaces. For discrete control, we use the MinAtar suite Young and Tian [2019] which consists205

of visually simpler versions of games from the Arcade Learning Environment (ALE) Bellemare206

et al. [2013]. The goal of MinAtar is to provide a benchmark that does not require the vast amounts207

of compute needed for the full ALE evaluation protocol, which involves training for 200M frames208

usually for 5 runs per game. This can be prohibitively expensive for researchers and thereby the209

MinAtar benchmark reduces the barriers present in studying deep RL research. We include scores on210

a few games from the ALE benchmark for a reduced number of steps to observe if there are signs of211

improvement when using ReLo over PER. We provide full training curves for each environment in212

the supplementary material.213

In addition to the per environment scores and training curves, we report metrics aggregated across214

environments based on recommendations from Agarwal et al. [2021] in Fig. 2. They treat performance215

across runs as a random variable and suggest that authors report statistical measures on these random216

variables. The mean and the median in Fig. 2 are the respective measures of the random variables.217

The interquartile mean (IQM) computes the mean of the middle 50% of runs while the optimality gap218

is a measure of how far an algorithm is from optimal performance aggregated across environments1.219

In the DMC benchmark, the optimal score for each environment is 1000, while we use the highest220

reported scores for each environment from the MinAtar paper for calculating the optimality gap for221

the benchmark. For the ALE benchmark, we normalize the scores of each game with respect to222

reported random and human level scores, i.e. norm score = score−random
human−random .223

We also aggregated the normalized scores across benchmarks and show the IQM and optimality gap224

of ReLo and PER in Fig. 1. The scores are aggregated across 21 environments (9 from DMC, 5 from225

MinAtar, and 7 from ALE) and 5 seeds. We can clearly see that ReLo has a significantly higher IQM226

with a smaller interval. This highlights the generality of ReLo since it performs better than PER227

across a diverse set of tasks.228

4.1 DMC229

In the continuous control tasks, Soft Actor Critic (SAC) Haarnoja et al. [2018] is used as the base230

off-policy algorithm to which we add ReLo. SAC has an online and an exponential moving average231

target Q network which we use to generate the ReLo priority term as given in Eq. 11. For comparison,232

we also include SAC with vanilla PER to showcase the differences in performance characteristics233

of PER and ReLo. The results are given in Table 1 and Fig. 2. On 6 of the 9 environments, ReLo234

outperforms the baseline SAC as well as SAC with PER. There is also a general trend where PER235

leads to worse performance when compared to the baseline algorithm, in line with previous work236

by Wang and Ross [2019] who show that the addition of vanilla PER to SAC hurts performance.237

However, this is not the case when using ReLo as a prioritization scheme. This trend in performance238

is visible in the aggregated scores in Fig. 2 where ReLo has a higher mean, median and IQM score239

along with a lower optimality gap when compared to SAC and SAC with PER.240

Table 1: Comparison of PER and ReLo on the DMC benchmark

Baseline PER ReLo
cheetah run 761.9 ± 112.3 831.9 ± 38.9 660.3 ± 141.2
finger spin 966.7 ± 29.3 975.4 ± 6.7 978.8 ± 14.4
hopper hop 264.7 ± 37.8 217.4 ± 113.7 247.8 ± 51.0
quadruped run 612.7 ± 143.9 496.4 ± 216.0 833.9 ± 81.0
quadruped walk 831.9 ± 74.3 766.3 ± 200 942.6 ± 9.7
reacher easy 983.1 ± 2.7 981.6 ± 6.3 979.1 ± 11.0
reacher hard 955.1 ± 38.5 935.1 ± 47.9 956.8 ± 38.7
walker run 759.1 ± 23.9 755.5 ± 64.3 795.1 ± 42.5
walker walk 943.7 ± 30.2 957.4 ± 8.2 963.3 ± 5.0

1Lower optimality gap is better.

6

Figure 2: Metrics aggregated across 9 environments and 5 seeds in DMC based on proposed metrics
from Agarwal et al. [2021]

4.2 MinAtar241

In the MinAtar benchmark, we use DQN Mnih et al. [2015] as a baseline algorithm and compare its242

performance with PER and ReLo on the 5 environments in the benchmark. DQN does not have a243

moving average target Q network and instead performs a hard copy of the online network parameters244

to the target network at a fixed interval. Similar to the implementation of ReLo in SAC, we use245

the online and hard copy target Q network in the ReLo equation for calculating priorities. The246

results on the benchmark are given in Table 2 and Fig. 3. Vanilla PER performs poorly on Seaquest247

and SpaceInvaders, with scores lower than the baseline DQN. These results are consistent with248

observations by Obando-Ceron and Castro [2021] which analysed the effect of the components249

of Rainbow in the MinAtar environment. In contrast, ReLo consistently outperforms PER and is250

comparable to or better than the baseline. Our previous observation that ReLo tends to help improve251

performance in situations where PER hurts performance is also true here.252

Table 2: Comparison of PER and ReLo on the MinAtar benchmark

Baseline PER ReLo
Asterix 12.5 ± 1.0 16.2 ± 1.0 16.1 ± 0.5
Breakout 9.4 ± 0.2 8.9 ± 0.7 9.4 ± 0.8
Freeway 52.8 ± 0.3 52.8 ± 0.2 53.2 ± 0.4
Seaquest 16.1 ± 2.8 6 ± 1.9 19.5 ± 0.6
Space Invaders 45.4 ± 1.6 37.4 ± 4.4 39.4 ± 3.1

Figure 3: Metrics aggregated across 5 environments and 5 seeds in MinAtar based on proposed
metrics from Agarwal et al. [2021]

4.3 ALE253

As an additional test, we modified the Rainbow Hessel et al. [2017] algorithm, which uses PER by254

default, to instead use ReLo as the prioritization scheme and compared it against vanilla Rainbow on255

a subset of environments from the ALE benchmark. Instead of the usual 200M frames of evaluation,256

we trained each agent for 2M frames to study if there are gains that can be observed in this compute-257

constrained setting. As shown in Fig. 4 and Table 3, we see that Rainbow with ReLo achieves better258

performance than vanilla Rainbow in nearly all the tested environments. These experiments show the259

versatility of ReLo as a prioritization scheme.260

Figure 4: Metrics aggregated across 7 environments and 5 seeds in the ALE Benchmark based on
proposed metrics from Agarwal et al. [2021]

7

Table 3: Comparison of Rainbow with PER and Rainbow with ReLo on the ALE benchmark

Rainbow w/ PER Rainbow w/ ReLo
Alien 1217.2 ± 207.2 1544.0 ± 685.6
Amidar 445.3 ± 47.3 393.7 ± 111.7
Assault 2531.5 ± 444.7 2506.9 ± 683.9
BankHeist 452.8 ± 131.2 525.4 ± 201.3
Frostbite 1842.0 ± 1450.5 3366.4 ± 1613.7
Jamesbond 663.0 ± 429.6 851.0 ± 580.6
Seaquest 1412.8 ± 402.6 1755.2 ± 262.0

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

Re
wa

rd
Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

Re
wa

rd

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000
Walker Walk

ClipBelowZero ExpLinear

Figure 5: Comparison of different mapping functions from ReLo to pi on a subset of environments
from the DMC benchmark. Performance is evaluated for 10 episodes over 3 seeds.

4.4 Mapping functions for ReLo261

Prioritized experience replay buffers expect the priorities assigned to data points to be non-negative.262

While the MSE version of the TD error used in vanilla PER satisfies this constraint, ReLo does not.263

Therefore, there must be a non-negative, monotonically increasing mapping from ReLo to pi. In the264

main experiments above we clipped negative ReLo values to zero. Another mapping we tried was to265

set pi = eReLo, in which case the probability of sampling a data point Pi, from Eq. 6, corresponds266

to the softmax over ReLo scores. However, for this choice the priority would explode if the ReLo267

crossed values above 40 which happened occasionally during the initial stages of learning in Rainbow.268

The second mapping function candidate was exponential when ReLo is negative and linear otherwise,269

that is,270

fExpLinear =

{
eReLo if ReLo < 0

ReLo + 1 otherwise (12)

The linear portion is shifted so that the mapping is smooth around ReLo = 0. As shown in Fig. 5,271

ExpLinear performs worse compared to just clipping ReLo below zero. When the ReLo values during272

training are analysed, we observe that the average of ReLo values (before the mapping) tends to be273

positive, so clipping does not lead to a large loss in information.274

4.5 Analysis of TD Loss Minimization275

To verify if using ReLo as a prioritization scheme leads to lower loss values during training, we276

logged the TD error of each agent over the course of training and these loss curves are presented in277

Figs. 6b and 6a. As we can see, ReLo does indeed lead to lower TD errors, empirically validating our278

8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

TD
Er

ro
r

Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

2

4

TD
Er

ro
r

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0.00

0.25

0.50

0.75

Walker Run

PER ReLo Baseline

(a)

0.0 0.5 1.0 1.5 2.0
0

1

2

3

TD
Er

ro
r

Alien

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Amidar

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

TD
Er

ro
r

Bank Heist

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

1

2

3

Jamesbond

Rainbow Rainbow+ReLo

(b)

Figure 6: Comparison of temporal difference loss curves for a) DMC and b) ALE. ReLo achieves
lower loss compared to the baseline and PER, showing that ReLo is able to prioritize samples with
reducible loss. Dark line represents the mean and the shaded region is the standard deviation over 3
seeds.

claims that using ReLo helps the algorithm focus on samples where the loss can be reduced. Another279

interesting point is that in Fig. 6a, SAC with PER has the highest reported TD errors throughout280

training. This is due to PER prioritizing data points with high TD error, however, as we noted these281

points need not necessarily be learnable. But since they have higher TD error, they repeatedly keep282

getting sampled making the overall losses during training higher. ReLo addresses this issue and is283

able to sample those data points which can be readily learned from, leading to the lowest TD errors284

during training.285

5 Conclusion286

In this paper, we have proposed a new prioritization scheme for experience replay, Reducible Loss287

(ReLo), which is based on the principle of frequently sampling data points that have potential for loss288

reduction. We obtain a measure of the reducible loss through the difference in loss of the online model289

and a hold-out model on a data point. In practice, we use the target network in Q value methods as a290

proxy for a hold-out model.291

ReLo avoids the pitfall that comes with naively sampling points based only on the magnitude of the292

loss since having a high loss does not imply that the data point is actually learnable. While alleviating293

this issue, ReLo retains the positive aspects of vanilla PER, thereby improving the performance of294

deep RL algorithms. This has been empirically verified on both continuous and discrete control tasks295

using a variety of algorithms: SAC, DQN, and Rainbow. It is very simple to implement, requiring296

just the addition of a few lines of code to vanilla PER. It is also general and can be applied to any297

off-policy algorithm and is agnostic to the choice of target network update mechanism. Since it298

requires only one additional forward pass through the target network, the computational cost of ReLo299

is minimal, and there is very little overhead in integrating it into an algorithm.300

While the reducible loss can be intuitively reasoned about and has been tested empirically, future301

work should theoretically analyse the sampling differences between ReLo and vanilla PER about the302

kind of samples that they tend to prioritize or ignore. This deeper insight would allow us to find flaws303

in how we approach non-uniform sampling in deep RL algorithms similar to work done in Fujimoto304

et al. [2020].305

9

References306

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.307

Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information308

Processing Systems, 2021.309

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-310

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:311

253–279, 2013.312

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement313

learning. In International Conference on Machine Learning, pages 449–458. PMLR, 2017.314

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):315

679–684, 1957. URL http://www.jstor.org/stable/24900506.316

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,317

Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,318

and Shane Legg. Noisy networks for exploration. In 6th International Conference on Learning319

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track320

Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rywHCPkAW.321

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error322

in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th323

International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning324

Research, pages 1587–1596. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/325

v80/fujimoto18a.html.326

Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and non-327

uniform sampling in experience replay. Advances in neural information processing systems, 33:328

14219–14230, 2020.329

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy330

maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and331

Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,332

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings333

of Machine Learning Research, pages 1856–1865. PMLR, 2018. URL http://proceedings.334

mlr.press/v80/haarnoja18b.html.335

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,336

Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining337

improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL http://338

arxiv.org/abs/1710.02298.339

Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with340

prioritized experience replay. In Systems, Man, and Cybernetics (SMC), 2017 IEEE International341

Conference on, pages 316–321. IEEE, 2017.342

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,343

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua344

Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,345

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL346

http://arxiv.org/abs/1509.02971.347

Longxin Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.348

Machine Learning, 8:293–321, 2004.349

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch,350

Winnie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin351

Gal. Prioritized training on points that are learnable, worth learning, and not yet learnt. In352

Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,353

editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of354

Proceedings of Machine Learning Research, pages 15630–15649. PMLR, 17–23 Jul 2022. URL355

https://proceedings.mlr.press/v162/mindermann22a.html.356

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.357

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-358

tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,359

10

http://www.jstor.org/stable/24900506
https://openreview.net/forum?id=rywHCPkAW
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1509.02971
https://proceedings.mlr.press/v162/mindermann22a.html

Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-360

forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL361

http://dx.doi.org/10.1038/nature14236.362

Johan Samir Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful363

and inclusive deep reinforcement learning research. In Marina Meila and Tong Zhang, editors,364

Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July365

2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 1373–1383.366

PMLR, 2021. URL http://proceedings.mlr.press/v139/ceron21a.html.367

Youngmin Oh, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. Model-augmented prioritized368

experience replay. In International Conference on Learning Representations, 2022. URL https:369

//openreview.net/forum?id=WuEiafqdy9H.370

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In371

Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representa-372

tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.373

URL http://arxiv.org/abs/1511.05952.374

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn,375

2022. URL https://arxiv.org/abs/2206.00730.376

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy377

optimization algorithms. arXiv preprint arXiv: Arxiv-1707.06347, 2017.378

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,379

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,380

Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine381

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go382

with deep neural networks and tree search. Nature, 529(7587):484–489, January 2016. doi:383

10.1038/nature16961. URL https://doi.org/10.1038/nature16961.384

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur385

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen386

Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,387

shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.388

aar6404. URL https://www.science.org/doi/abs/10.1126/science.aar6404.389

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,390

Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.391

Deepmind control suite. arXiv preprint arXiv: Arxiv-1801.00690, 2018.392

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-393

learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth394

AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages395

2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/396

paper/view/12389.397

Che Wang and Keith Ross. Boosting soft actor-critic: Emphasizing recent experience without398

forgetting the past. arXiv preprint arXiv: Arxiv-1906.04009, 2019.399

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.400

Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and401

Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine402

Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop403

and Conference Proceedings, pages 1995–2003. JMLR.org, 2016. URL http://proceedings.404

mlr.press/v48/wangf16.html.405

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://github.406

com/denisyarats/pytorch_sac, 2020.407

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible408

reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.409

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse410

reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.411

11

http://dx.doi.org/10.1038/nature14236
http://proceedings.mlr.press/v139/ceron21a.html
https://openreview.net/forum?id=WuEiafqdy9H
https://openreview.net/forum?id=WuEiafqdy9H
https://openreview.net/forum?id=WuEiafqdy9H
http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2206.00730
https://doi.org/10.1038/nature16961
https://www.science.org/doi/abs/10.1126/science.aar6404
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

A Implementation Details412

We build our experiments on top of existing implementations of SAC, DQN and Rainbow. For the413

DeepMind Control Suite experiments, we modify Yarats and Kostrikov [2020], adding a prioritized414

replay buffer and the ReLo version. We use an open source implementation of Rainbow2 for the415

Arcade Learning Environment and the DQN implementation from the MinAtar authors. Aside from416

the collected frames and number of seeds, we have not modified any of the hyper-parameters from417

these original implementations. The hyper-parameters as well as hardware and software used are418

given in Table 4.419

Table 4: Hyper-Parameters of all experiments

Environments Algorithm Algorithm Parameters Hardware & Software

ALE Rainbow

Frames = 2× 106

seeds = 5

Remaining hyper-parameters
same as Hessel et al. [2017]

Hardware-
CPU: 6 Intel Gold 6148 Skylake
GPU: 1 NVidia V100
RAM: 32 GB

Software-
Pytorch: 1.10.0
Python: 3.8

DeepMind Control Suite SAC

Frames = 1× 106

seeds = 5

Remaining hyper-parameters
same as Haarnoja et al. [2018]

Hardware-
CPU: 6 Intel Gold 6148 Skylake
GPU: 1 NVidia V100
RAM: 32 GB

Software-
Pytorch: 1.10.0
Python: 3.8

MinAtar DQN

Frames = 5× 106

seeds = 5

Remaining hyper-parameters
same as Mnih et al. [2015]

Hardware-
CPU: 6 Intel Gold 6148 Skylake
GPU: 1 NVidia V100
RAM: 32 GB

Software-
Pytorch: 1.10.0
Python: 3.8

Figure 7: Visualization of a few environments from each benchmark. Left to right: DeepMind Control
Suite, MinAtar, Arcade Learning Environment

B DeepMind Control Suite420

We choose 9 environments from the DeepMind Control Suite Tassa et al. [2018] for testing the421

performance of ReLo on continuous control tasks. Each agent was trained on proprioceptive inputs422

from the environment for 1M frames with an action repeat of 1. The training curves for the baselines423

and ReLo are given in Fig. 8.424

2https://github.com/Kaixhin/Rainbow

12

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Re
wa

rd

Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

Hopper Hop

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

Re
wa

rd

Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0

0

250

500

750

1000

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000

Re
wa

rd

Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000
Walker Walk

Baseline PER ReLo

Figure 8: Training curves of environments from the DeepMind Control Suite. Performance is
evaluated for 10 episodes over 5 random seeds.

C MinAtar425

We evaluate the baselines against all 5 environments in the MinAtar suite Young and Tian [2019].426

A visualization of a few environments from the suite is presented in Fig. 7. Each agent receives427

the visual observations from the environment and is trained for 5M frames following the evaluation428

methodology outlined in Young and Tian [2019]. The training curves are given in Fig. 9.

0 1 2 3 4 5
Steps 1e6

0

5

10

15

20

Re
wa

rd

Asterix

0 1 2 3 4 5
Steps 1e6

0

5

10

Breakout

0 1 2 3 4 5
Steps 1e6

0

20

40

60
Freeway

0 1 2 3 4 5
Steps 1e6

0

10

20

Seaquest

0 1 2 3 4 5
Steps 1e6

0

20

40

Space Invaders

Baseline PER ReLo

Figure 9: Training curves of environments from the MinAtar benchmark. Performance is evaluated
using a running average over the last 1000 episodes over 5 random seeds.

429

D Arcade Learning Environment430

We evaluate agents on a compute-constrained version of the Arcade Learning Environment Bellemare431

et al. [2013], training each agent for 2M frames. We chose a subset of 7 games from the suite for our432

evaluation. ReLo performs on par or better than vanilla PER Schaul et al. [2016] in each environment.433

The training curves are given in Fig. 10.434

13

0.0 0.5 1.0 1.5 2.0
0

1000

2000

Re
wa

rd

Alien

0.0 0.5 1.0 1.5 2.0
0

200

400

Amidar

0.0 0.5 1.0 1.5 2.0
0

1000

2000

3000

Assault

0.0 0.5 1.0 1.5 2.0

0

250

500

750

1000
Heist

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

2000

4000

Re
wa

rd

Frostbite

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

500

1000

1500

Jamesbond

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

500

1000

1500

2000

Seaquest

Baseline ReLo

Figure 10: Training curves of 7 environments from the ALE benchmark. Performance is evaluated
for 10 episodes over 5 random seeds.

14

	Introduction
	Background and Related Work
	Experience Replay
	Target Networks
	Off-Policy Algorithms
	Reducible Loss

	Reducible Loss for Reinforcement Learning
	Implementation

	Results
	DMC
	MinAtar
	ALE
	Mapping functions for ReLo
	Analysis of TD Loss Minimization

	Conclusion
	Implementation Details
	DeepMind Control Suite
	MinAtar
	Arcade Learning Environment

