
Under review as a conference paper at ICLR 2024

A SUPPLEMENTARY VIDEO

We recommend the reviewers to refer to the additional results presented in the supplementary video.

B DETAILS OF SEGMENTATION AND ALIGNMENT

We present the specific calculations for the segmentation and alignment of the background scene
and foreground objects, as introduced in Sec. 3.2 of the main paper. The overall process can be
summarized as follows:

Background scene alignment. Utilize highly overlapping static background information and cor-
responding point clouds to perform pose registration between different scenes. (B.1)

Background scene/foreground objects segmentation. Use the proposed fusion method to obtain
a clean background, and compare its differences with the point clouds from each scene to obtain the
union of all point clouds corresponding to foreground objects. Then employ a clustering algorithm
to obtain point clouds corresponding to each individual foreground object. (B.2)

Foreground objects matching and alignment Perform matching and registration of the point
clouds for each foreground object, thereby obtaining the relative poses between the foreground ob-
jects. (B.3)

The illustration is shown in Fig. 6. Note that a part of our method leverages existing point cloud
calculations, which can be implemented with minimal code using Open3D Zhou et al. (2018).

B.1 BACKGROUND SCENE ALIGNMENT

As a preparatory step for radiance field reconstruction, we independently run COLMAP Schönberger
& Frahm (2016); Schönberger et al. (2016) for N scenes to obtain camera registrations. In such
cases, the camera poses and optimized radiance fields are represented in different coordinate systems
belonging to their respective scenes. To enable comparison of radiance fields across scenes, we
introduce a method for aligning the scenes to a reference scene. Without loss of generality, we
choose the first scene as the reference scene. Due to the lack of scale information in COLMAP, the
alignment between scenes is a Sim(3) registration1 problem.

Naı̈ve solution. Given the scene point cloud {Pi} computed from each radiance fields, the scene
alignment task can be formulated as finding an appropriate transformation Qi 2 Sim(3) for the
point cloud Pi that minimizes the error ||Pref�QiPi|| where Pref is the point cloud of the reference
scene. Note that although the foreground object placements varies across scenes, we assume that the
static background provides sufficient information for obtaining reasonable scene registration results.
Then, Qi can be determined using traditional point cloud registration algorithms, e.g., FPFH feature
matching Rusu et al. (2009) with RANSAC Fischler & Bolles (1981) solver, followed by Iterative
Closest Point (ICP) Arun et al. (1987) refinement. Unless otherwise specified, the term “point cloud
registration” in the following text uses this two-step algorithm.

More robust solution. The above naı̈ve solution can yield reasonable results in some scenes.
However, for some challenging scenes, we have observed that relying solely on point cloud infor-
mation can lead to failure, since the geometric information of the background may not be unique
enough, leading to unstable registration results. Hence, we propose to leverage the available multi-
view image information to facilitate the registration process. Specifically, for scene i, we consider
the multi-view images {Il}i and the 3D position {ql}i of its registered camera, where ql 2 R3 is
expressed in the coordinate system of scene i. Using COLMAP registration of the reference scene,
we register images {Il}i to the reference scene to obtain the camera position {ql}0i expressed in
the reference coordinate system. Although the object placements in scene i differ from those in the
reference scene, the RGB information in the background provides sufficient information to com-
plete the registration. Here, since {ql}i and {ql}0i represent the same camera position expressed
in the coordinate systems of scene i and the reference scene, respectively, given the relative pose
between the scenes Qi, it should satisfy that {ql}0i = Qi{ql}i for all l. Therefore, we solve for the

1Sim(3) transformation represents SE(3) transformation with an additional scale factor.

13

Under review as a conference paper at ICLR 2024

…

Object segmentation
(B.2)

Matching & alignment
(B.3)

Reference scene

Fused background scene Scene Object
……

Figure 6: Pipeline of foreground objects segmentation and alignment. We use the point clouds
obtained from the original scenes and the reconstructed clean background to create a set of point
clouds representing all foreground objects. Then, we utilize point cloud matching and registration
algorithms to determine the correspondences between objects and their relative poses.

transformation Qi 2 Sim(3) that minimizes the registration error between camera positions, given
by

Q̃i = argmin
Qi

X

l

||{ql}0i �Qi{ql}i||. (7)

Similarly, we solve for Qi using RANSAC followed by ICP refinement.

B.2 BACKGROUND SCENE/FOREGROUND OBJECTS SEGMENTATION

Using the alignment obtained from B.1, we use the fusion method described in Sec. 3.4 to obtain a
clean background scene. Then, we extract the point cloud corresponding to the background scene,
denoted as P̂ , and we denote the surface point clouds of each scene {Si} as {Pi}. Here we represent
all of the point clouds in the reference coordinate system.

For each scene, we compare it with the background scene and calculate the distance between the
point clouds Pi and P̂ . As shown in Fig. 6, the difference between these point clouds corresponds
to the foreground objects. By setting an appropriate threshold � > 0, we can obtain the foreground
point clouds P̃i as follows:

P̃i = {p|dist(p, P̂) > �, p 2 Pi} (8)

where dist(p, P̂) denotes the Euclidean distance between p and the nearest point in the point clouds
P̂ . Note that P̃i is a concatenation of point clouds of all foreground objects in scene i. To obtain in-
dividual point clouds for each object, we apply a clustering method. Specifically, with user-specified
object number M , we use the DBSCAN Ester et al. (1996) clustering algorithm to identify M object
point clouds as:

{P̃i,j} = DBSCANM (P̃i) (9)

which satisfies the equation
P

j P̃i,j = P̃i, where
P

is the concatenation operation for point clouds.

B.3 FOREGROUND OBJECT MATCHING AND ALIGNMENT

So far, we have obtained M point clouds corresponding to foreground objects in each scene. How-
ever, since the M point clouds obtained from the DBSCAN algorithm are unordered, object match-
ing is required to obtain the correct registration of corresponding object point clouds.

Here, we propose an algorithm that simultaneously solves the issues of cross-scene object point
cloud registration and matching. Without loss of generality, we take the coordinates and clustering
order of the objects in the first scene as the reference and align the objects in scene i = 2, ..., N with
the corresponding objects in the reference scene. We approach this as a sequential point cloud regis-
tration problem. For simplicity, we consider the matching and registration of the foreground objects
in the second scene to the reference scene. Since the correspondence of M object point clouds in
these two scenes is unknown, we pair and register them one by one, computing the registered pose

14

Under review as a conference paper at ICLR 2024

and fitness score sjj0 . Here the subscript jj0 denotes the registration between the point cloud pair
(P̃1,j , P̃2,j0) where j, j0 2 {1, ...,M}. We solve the object matching as a bipartite matching prob-
lem between the second scene and the reference scene, aiming to maximize the overall registration
fitness. More specifically, for the j-th object in the reference scene, we pair it with j0-th object in
the second scene, align them, and calculate the aligned pose Q with the corresponding fitness score
s. This process is computed for all j, j0 2 {1, · · · ,M}, resulting in a total of M ⇥M relative poses
and corresponding fitness values, which are then recorded in {Q} and S, respectively. Next, we
use bipartite matching on the obtained cost matrix S 2 [0, 1]M⇥M to calculate the object matching
that maximizes the overall fitness, and finally obtain the optimal correspondences and relative poses.
Based on the optimal matching results, we rewrite the objects point clouds in a consistant indexing
order as {P̃i,j}. Also the relative poses of the objects of the second scene w.r.t. the reference scene
{T2,j} are obtained.

For the rest of scenes of i � 3, we repeat the above procedure to get the registered poses of all
objects in all scenes {Ti,j} where Ti,j 2 SE(3). Since we take the first scene as the reference
coordinates so that T1,j = I4⇥4 is an identity matrix.

The pseudo-code is shown in Alg. 1. We denote the point cloud registration algorithm as a function
register(·, ·), which takes two point clouds P1 and P2 as inputs and outputs their relative pose
Q 2 SE(3) and the registration fitness score s 2 [0, 1].

Algorithm 1: Foreground object matching and alignment

Input : Foreground object point clouds {P̃i,j}
Output: Foreground object poses {Ti,j}
T1,j I4⇥4

for i = 2, · · · , N do

S 0M⇥M

{Q} {I4⇥4}j=1,··· ,M ; j0=1,··· ,M
for j = 1, · · · ,M do

for j0 = 1, · · · ,M do

(Q, s) register(P̃1,j , P̃i,j0)
Sjj0 s 2 [0, 1]
{Q}j,j0 Q 2 SE(3)

end

end

index bipartite matching(S)
for j = 1, · · · ,M do

Ti,j {Q}j,index[j]
end

end

return {Ti,j}

C IMPLEMENTATION DETAILS

Radiance field representation We implement our method using Instant-NGP Müller et al. (2022),
a state-of-the-art radiance field representation with fast optimization, where each scene can be opti-
mized within a few minutes in order of magnitude.

Visibility field representation Given the recent advances in using an explicit grid to represent
neural field, we also use an explicit grid to model the proposed visibility field. Specifically, for the
target region we discretize the space into 643 grid points, each of which holds the computed visibility
of that point. Trilinear interpolation is used to compute the visibility of any point in the continuous
3D space. We observe that, in the original formulation of visibility (2), the discontinuous nature of
V (x) (i.e., the visibility may abruptly change from visible to invisible near the surface of an object)
may leads to discontinuous scene fusion and poor rendering results. Therefore, we apply smoothing
to the computed visibility field. Please refer to the supplementary material for more discussion.

15

Under review as a conference paper at ICLR 2024

Scene 1 Scene 2 Scene 3

Scene 1 Scene 2 Scene 3LabelsFused

Figure 7: Visualization of scene labels. We show the correspondence between different parts of
the fused scene and the original scenes. (Top) three original input scenes. (Bottom) background and
foreground objects with fused scene, the point cloud labels, and the segmented original scenes. We
can observe that, artifacts can appear when rendered from certain viewpoints due to occlusions in
the input scenes, while our method accurately segments the parts of the space with higher visibility
based on the proposed visibility field, thus synthesizing scenes without occlusion.

D FUSED SCENE LABELS VISUALIZATION

As our method fuses multiple scenes into one, we show in Fig. 7 which parts of the fused scene
come from which original scene. Specifically, for the background and foreground point clouds
obtained as Fig. 6, we compute the visibility of each point at their corresponding positions in each
original scene, and assign the label of the scene with the highest visibility to that point. The results
demonstrate that our method can accurately capture the unoccluded parts in each scene, leading to
clean background and 360� foreground object rendering. Moreover, it also implies that our simple
yet versatile concept of visibility field can accurately quantify visibility information in 3D space,
which may benefit future research in various fields.

16

Under review as a conference paper at ICLR 2024

I=0 I=2 I=4 I=8 I=32

Figure 8: Ablation on number of iteration for visibility field smoothing. Also refers to Fig. 7 for
the details of labels.

E VISIBILITY FIELD SMOOTHING

In the formulation of visibility (Eq. (4) in the main paper), Vl(x) exhibits a step function near
the object surface (e.g., from visible to invisible), resulting in discontinuous changes in visibility
near the surface. Such discontinuous values make the visibility of the object surface ambiguous
between different scenes, leading to an ineffective comparison of visibility between scenes. To
address the issue of discontinuity, we smooth the visibility field in our implementation. Specifically,
the visibility field is implemented by 3D grid, we apply a discrete Laplacian smoothing to its grid
points. For the visibility vd,h,w on the grid point, at each iteration its is updated as:

vd,h,w =
1

6

X
vN (d,h,w), (10)

where N (d, h, w) denotes the six adjacent grid points to the grid (d, h, w), i.e., (d±1, h, w), (d, h±
1, w), (d, h, w ± 1). We repeat the above update I times to obtain the smoothed visibility field for
subsequent fusion computation.

We present ablation study on the smoothing iterations I of the visibility field in Fig. 8. The visibility
field is implemented as a 643 grid. We can observe that without smoothing, the scene labels near the
object surface are very noisy, which also indicates that the visibility values near the surface are am-
biguous without smoothing, resulting in the incorrect selection of scenes with higher visibility. As
we increase the number of iterations for smoothing, we can observe that the scene labels and render-
ing results become smoother. This suggests that it pays more attention on the overall visibility of the
surrounding area rather than the visibility of just a single point. However, excessive smoothing (i.e.,
smoothing 32 times for a 643 grid) can make the visibility between scenes too similar to distinguish,
resulting in artifacts. Specifically, our setup assumes that the main difference between scenes lies in

17

Under review as a conference paper at ICLR 2024

the foreground, while the background remains consistent. Smoothing can be seen as averaging with
the surrounding areas, hence excessive smoothing can weaken the differences between foreground
objects, causing the calculated visibility field to become similar across all scenes and affecting the
scene fusion result.

In practice, we perform I = 4 iterations of smoothing for all experiments.

F MORE ABLATIONS AND DISCUSSIONS

…

…

(a) Input scenes (b) Background

Shadow removal The proposed visibility-aware
rendering can achieve shadow removal by select-
ing shadow-free area. We assume that this is be-
cause areas with shadows typically have lower vis-
ibility (due to occlusion by objects), and therefore
they can be replaced by parts of other scenes with-
out shadows. This example demonstrates that our
method is effective in removing shadows from the
rendered scenes while preserving the parts that are
illuminated by the light.

18

	Introduction
	Related work
	Method
	Method overview
	Object segmentation and alignment
	Visibility field: quantifying visibility in radiance field
	Visibility-aware rendering

	Experiments
	Datasets
	Results
	Ablation studies

	Limitations and Future work
	Conclusion
	Supplementary video
	Details of segmentation and alignment
	Background scene alignment
	Background scene/foreground objects segmentation
	Foreground object matching and alignment

	Implementation details
	Fused scene labels visualization
	Visibility field smoothing
	More ablations and discussions

