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A PROOFS FOR THE THEORETICAL RESULTS

We now provide the proofs for the results in Section 4.

A.1 PROOF OF PROPOSITION 1

Proof. Note that the posterior distributions ep(w|y,�) and pS(w|y,�) are both Gaussian. We thus
consider the squared 2-Wasserstein distance between two Gaussian distributions N (µ1,⌃1) and
N (µ2,⌃2), which has the following closed-form expression (Givens et al., 1984)4:
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A.2 PROOF OF COROLLARY 1.1

Proof. For H�1 = diag(�2
1 , . . . ,�

2
D

), the Wasserstein posterior gap in Eq. (12) simplifies to
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d
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d

�
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The optimal subnetwork selection strategy amounts to choosing the binary vector m = [mdd]Dd=1 withP
D

d=1 md = S (i.e., we select S out of D parameters) s.t. the posterior gap in Eq. (14) is minimized.
Observing that the contribution of the d-th parameter to the posterior gap is (1 + 1)�2

d
� 1 ⇥ 2�2

d
= 0

if it is selected (i.e. if mdd = 1), and (1 + 0)�2
d

� 0 ⇥ 2�2
d

= �
2
d

if it is not selected (i.e. if mdd = 0),
we see that the optimal subnetwork comprises of the S weights with the largest variances �2

d
.

B ADDITIONAL IMAGE CLASSIFICATION RESULTS

Table 1: AUC-ROC scores for out-of-distribution detection, using CIFAR10 vs SVHN and MNIST
vs FashionMNIST as in- (source) and out-of-distribution (target) datasets, respectively (Nalisnick
et al., 2019).

SOURCE TARGET OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG

CIFAR10 SVHN 0.85±0.03 0.86±0.02 0.85±0.01 0.86±0.02 0.91±0.00 0.86±0.02 0.83±0.00

MNIST Fashion 0.92±0.05 0.75±0.02 0.82±0.12 0.75±0.01 0.90±0.09 0.72±0.03 0.97±0.01

Table 2: MNIST – no rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �0.07±0.01 �0.01±0.00 �0.01±0.00 �0.04±0.03 �0.01±0.00 �0.01±0.00 �0.01±0.00 �0.14±nan

error 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.01±nan

ECE 0.05±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±nan

brier score 0.02±0.00 0.01±0.00 0.01±0.00 0.02±0.01 0.01±0.00 0.01±0.00 0.01±0.00 0.04±nan

4This also holds for our case of a degenerate Gaussian with singular covariance matrix (Givens et al., 1984).
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Figure 5: Rotated MNIST (left) and Corrupted CIFAR10 (right) results for deep ensembles (Lak-
shminarayanan et al., 2017) with large numbers of ensemble members (i.e. up to 55). Horizontal
axis denotes number of ensemble members, and vertical axis denotes performance in terms of log-
likelihood. Straight horizontal lines correspond to the performance of our method, as a reference.
Colors denote different levels of rotation (left) and corruption (right). It can clearly be observed that
the performance of deep ensembles saturates after around 15 ensemble members, meaning that adding
more members yields strongly diminishing returns. This is in agreement with recent works (Antorán
et al., 2020; Ashukha et al., 2020a; Lobacheva et al., 2020). Our method significantly outperforms
even very large deep ensembles, especially for high degrees of rotation/corruption.
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Figure 6: Rejection-classification plots. We simulate a realistic OOD rejection scenario (Filos et al.,
2019b) by jointly evaluating our models on an in-distribution and an OOD test set. We allow our
methods to reject increasing proportions of the data based on predictive entropy before classifying
the rest. All predictions on OOD samples are treated as incorrect. Following (Nalisnick et al., 2019),
we use CIFAR10 vs SVHN and MNIST vs FashionMNIST as in- and out-of-distribution datasets,
respectively. Note that the SVHN test set is randomly sub-sampled down to a size of 10,000.
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Figure 7: Full MNIST rotation and CIFAR10 corruption results, for ResNet-18, reporting predictive
error, log-likelihood (LL), expected calibration error (ECE) and brier score, respectively (from top to
bottom).
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Figure 8: MNIST rotation results for ResNet-50, reporting predictive error, log-likelihood (LL),
expected calibration error (ECE) and brier score. We choose a subnetwork containing only 0.167%
(39,190 / 23,466,560) of the parameters of the full network. We see that subnetwork inference still
results in an improvement in the calibration of predictive uncertainty. As expected, however, for
ResNet-50 the improvement over MAP is smaller than for ResNet-18 where we were able to choose
a subnetwork containing 0.38% of the parameters.

Table 3: MNIST – 15� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �0.14±0.02 �0.05±0.00 �0.05±0.00 �0.11±0.08 �0.04±0.00 �0.05±0.00 �0.04±0.00 �0.19±nan

error 0.02±0.00 0.02±0.00 0.01±0.00 0.03±0.02 0.01±0.00 0.02±0.00 0.01±0.00 0.02±nan

ECE 0.08±0.01 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.12±nan

brier score 0.05±0.01 0.03±0.00 0.02±0.00 0.05±0.03 0.02±0.00 0.02±0.00 0.02±0.00 0.07±nan

Table 4: MNIST – 30� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �0.42±0.04 �0.36±0.01 �0.32±0.02 �0.44±0.06 �0.28±0.02 �0.39±0.01 �0.30±0.00 �0.51±nan

error 0.11±0.01 0.10±0.00 0.09±0.01 0.12±0.01 0.08±0.01 0.10±0.00 0.08±0.00 0.14±nan

ECE 0.10±0.02 0.04±0.01 0.03±0.00 0.06±0.01 0.02±0.00 0.05±0.00 0.04±0.00 0.13±nan

brier score 0.19±0.02 0.16±0.00 0.14±0.01 0.18±0.02 0.12±0.01 0.16±0.00 0.12±0.00 0.23±nan

Table 5: MNIST – 45� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

midrule LL �1.09±0.03 �1.60±0.05 �1.44±0.11 �1.68±0.20 �1.36±0.07 �1.75±0.06 �1.35±0.02 �1.15±nan

error 0.36±0.01 0.35±0.01 0.33±0.01 0.35±0.03 0.31±0.01 0.35±0.01 0.29±0.00 0.40±nan

ECE 0.03±0.01 0.22±0.01 0.19±0.02 0.22±0.02 0.17±0.01 0.23±0.01 0.18±0.00 0.01±nan

brier score 0.49±0.02 0.55±0.02 0.52±0.02 0.55±0.04 0.48±0.02 0.56±0.02 0.46±0.01 0.53±nan

Table 6: MNIST – 60� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �2.10±0.03 �3.85±0.18 �3.54±0.23 �4.11±0.66 �3.60±0.10 �4.29±0.21 �2.95±0.08 �1.92±nan

error 0.63±0.01 0.63±0.01 0.62±0.01 0.62±0.05 0.61±0.01 0.63±0.01 0.53±0.02 0.64±nan

ECE 0.25±0.02 0.46±0.02 0.43±0.02 0.47±0.06 0.42±0.01 0.48±0.02 0.36±0.02 0.17±nan

brier score 0.85±0.02 1.04±0.03 1.00±0.03 1.05±0.10 0.98±0.02 1.07±0.03 0.86±0.03 0.80±nan
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Table 7: MNIST – 75� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.02±0.07 �5.93±0.28 �5.49±0.38 �6.92±0.32 �5.74±0.15 �6.63±0.33 �4.46±0.18 �2.54±nan

error 0.80±0.02 0.79±0.01 0.79±0.01 0.81±0.00 0.78±0.01 0.79±0.01 0.72±0.02 0.77±nan

ECE 0.41±0.04 0.62±0.03 0.59±0.01 0.65±0.01 0.58±0.01 0.64±0.03 0.51±0.02 0.26±nan

brier score 1.08±0.04 1.34±0.04 1.30±0.02 1.39±0.01 1.29±0.02 1.37±0.04 1.17±0.04 0.95±nan

Table 8: MNIST – 90� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.35±0.13 �6.46±0.15 �6.18±0.41 �7.32±0.67 �6.39±0.17 �7.18±0.22 �5.63±0.12 �2.91±nan

error 0.84±0.02 0.84±0.01 0.84±0.01 0.85±0.01 0.84±0.01 0.84±0.01 0.82±0.02 0.81±nan

ECE 0.43±0.03 0.64±0.04 0.62±0.01 0.66±0.03 0.62±0.01 0.66±0.04 0.60±0.01 0.29±nan

brier score 1.13±0.03 1.40±0.05 1.37±0.01 1.44±0.04 1.36±0.01 1.43±0.05 1.34±0.02 1.02±nan

Table 9: MNIST – 105� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.59±0.05 �7.06±0.45 �6.70±0.52 �7.69±0.99 �7.01±0.17 �7.87±0.53 �6.28±0.19 �3.10±nan

error 0.85±0.02 0.84±0.02 0.84±0.01 0.85±0.01 0.84±0.01 0.84±0.02 0.81±0.00 0.81±nan

ECE 0.47±0.04 0.67±0.05 0.63±0.01 0.67±0.03 0.64±0.01 0.68±0.04 0.61±0.01 0.34±nan

brier score 1.17±0.05 1.44±0.07 1.38±0.02 1.44±0.04 1.40±0.01 1.46±0.07 1.34±0.02 1.07±nan

Table 10: MNIST – 120� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.43±0.07 �6.73±0.53 �6.62±0.39 �7.92±0.59 �6.73±0.11 �7.53±0.63 �6.49±0.36 �3.07±nan

error 0.80±0.02 0.79±0.02 0.78±0.01 0.81±0.01 0.78±0.01 0.79±0.02 0.76±0.02 0.76±nan

ECE 0.40±0.03 0.62±0.05 0.58±0.01 0.65±0.04 0.59±0.01 0.63±0.04 0.58±0.03 0.30±nan

brier score 1.10±0.03 1.35±0.07 1.29±0.02 1.39±0.06 1.30±0.01 1.36±0.07 1.27±0.04 1.04±nan

Table 11: MNIST – 135� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.24±0.06 �6.43±0.38 �6.46±0.28 �7.05±0.88 �6.57±0.10 �7.24±0.48 �6.40±0.37 �2.89±nan

error 0.71±0.02 0.71±0.02 0.70±0.01 0.71±0.01 0.70±0.01 0.71±0.02 0.70±0.02 0.67±nan

ECE 0.32±0.01 0.55±0.03 0.52±0.01 0.56±0.02 0.52±0.01 0.56±0.03 0.53±0.02 0.25±nan

brier score 0.99±0.02 1.21±0.05 1.17±0.02 1.22±0.04 1.17±0.01 1.23±0.05 1.18±0.04 0.94±nan

Table 12: MNIST – 150� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.25±0.05 �6.56±0.18 �6.62±0.33 �7.04±0.36 �6.88±0.11 �7.41±0.25 �6.39±0.27 �2.69±nan

error 0.63±0.02 0.63±0.01 0.63±0.00 0.65±0.01 0.62±0.01 0.63±0.01 0.63±0.01 0.60±nan

ECE 0.29±0.01 0.50±0.01 0.48±0.01 0.52±0.01 0.48±0.01 0.51±0.01 0.49±0.01 0.23±nan

brier score 0.92±0.02 1.10±0.02 1.07±0.01 1.13±0.02 1.06±0.01 1.11±0.02 1.08±0.02 0.85±nan

Table 13: MNIST – 165� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.42±0.12 �7.01±0.15 �7.08±0.39 �7.80±0.12 �7.51±0.11 �7.91±0.18 �6.63±0.24 �2.67±nan

error 0.58±0.01 0.58±0.01 0.58±0.01 0.58±0.00 0.57±0.01 0.58±0.01 0.59±0.00 0.56±nan

ECE 0.32±0.02 0.49±0.01 0.48±0.01 0.49±0.01 0.48±0.00 0.51±0.01 0.48±0.00 0.25±nan

brier score 0.90±0.02 1.05±0.01 1.04±0.01 1.05±0.01 1.03±0.01 1.07±0.02 1.03±0.01 0.82±nan

Table 14: MNIST – 180� rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �3.32±0.13 �6.63±0.18 �6.87±0.32 �7.10±0.47 �7.16±0.16 �7.43±0.20 �6.61±0.22 �2.71±nan

error 0.56±0.01 0.56±0.01 0.56±0.00 0.55±0.01 0.55±0.00 0.56±0.01 0.57±0.00 0.55±nan

ECE 0.29±0.02 0.46±0.01 0.45±0.00 0.46±0.00 0.46±0.01 0.48±0.01 0.47±0.01 0.25±nan

brier score 0.86±0.02 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.00 1.01±0.02 1.01±0.01 0.82±nan
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Table 15: CIFAR10 – no corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �0.27±0.00 �0.43±0.01 �0.37±0.01 �0.50±0.02 �0.21±0.01 �0.46±0.02 �0.48±0.01 �0.61±nan

error 0.09±0.00 0.08±0.00 0.08±0.00 0.09±0.00 0.06±0.00 0.08±0.00 0.11±0.00 0.21±nan

ECE 0.01±0.00 0.06±0.00 0.04±0.00 0.06±0.00 0.01±0.00 0.06±0.00 0.07±0.00 0.03±nan

brier score 0.13±0.00 0.14±0.00 0.13±0.00 0.15±0.00 0.09±0.00 0.14±0.00 0.17±0.00 0.30±nan

Table 16: CIFAR10 – level 1 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �0.51±0.01 �0.91±0.01 �0.80±0.02 �1.03±0.02 �0.50±0.02 �0.96±0.02 �0.89±0.02 �0.99±nan

error 0.17±0.01 0.16±0.00 0.16±0.00 0.17±0.00 0.13±0.00 0.16±0.00 0.17±0.00 0.32±nan

ECE 0.03±0.00 0.11±0.00 0.10±0.00 0.13±0.00 0.04±0.00 0.12±0.01 0.11±0.00 0.03±nan

brier score 0.24±0.00 0.27±0.00 0.25±0.00 0.29±0.00 0.19±0.00 0.27±0.01 0.29±0.00 0.44±nan

Table 17: CIFAR10 – level 2 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �0.73±0.01 �1.29±0.06 �1.20±0.02 �1.50±0.12 �0.80±0.01 �1.40±0.03 �1.21±0.00 �1.31±nan

error 0.23±0.00 0.22±0.01 0.22±0.00 0.23±0.01 0.19±0.00 0.22±0.00 0.22±0.00 0.40±nan

ECE 0.06±0.00 0.16±0.01 0.14±0.00 0.17±0.01 0.07±0.00 0.16±0.00 0.15±0.00 0.10±nan

brier score 0.33±0.00 0.37±0.01 0.35±0.01 0.40±0.02 0.28±0.00 0.37±0.01 0.37±0.00 0.56±nan

Table 18: CIFAR10 – level 3 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �1.06±0.02 �2.06±0.12 �1.85±0.07 �2.13±0.17 �1.28±0.03 �2.18±0.08 �1.63±0.03 �1.83±nan

error 0.32±0.01 0.31±0.01 0.31±0.01 0.31±0.01 0.28±0.00 0.31±0.01 0.28±0.00 0.51±nan

ECE 0.11±0.01 0.24±0.01 0.21±0.01 0.24±0.01 0.12±0.00 0.24±0.01 0.20±0.00 0.19±nan

brier score 0.46±0.01 0.54±0.02 0.50±0.02 0.54±0.03 0.42±0.00 0.54±0.02 0.47±0.01 0.72±nan

Table 19: CIFAR10 – level 4 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �1.25±0.03 �2.43±0.18 �2.28±0.10 �2.54±0.18 �1.56±0.05 �2.57±0.15 �1.95±0.04 �1.99±nan

error 0.36±0.01 0.35±0.01 0.35±0.01 0.35±0.01 0.32±0.01 0.35±0.01 0.32±0.00 0.54±nan

ECE 0.13±0.01 0.27±0.01 0.24±0.01 0.27±0.01 0.14±0.01 0.27±0.02 0.23±0.00 0.22±nan

brier score 0.51±0.02 0.60±0.03 0.57±0.01 0.61±0.02 0.47±0.01 0.60±0.03 0.53±0.00 0.76±nan

Table 20: CIFAR10 – level 5 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL �1.47±0.03 �2.82±0.11 �2.71±0.13 �3.20±0.13 �1.88±0.05 �3.03±0.10 �2.31±0.09 �2.00±nan

error 0.41±0.00 0.40±0.01 0.40±0.01 0.41±0.01 0.37±0.01 0.40±0.00 0.36±0.01 0.54±nan

ECE 0.16±0.01 0.31±0.01 0.28±0.01 0.33±0.02 0.17±0.01 0.31±0.01 0.27±0.01 0.19±nan

brier score 0.58±0.00 0.69±0.01 0.65±0.01 0.72±0.03 0.55±0.01 0.69±0.01 0.61±0.01 0.75±nan
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C EXPERIMENTAL SETUP

C.1 TOY EXPERIMENTS

We train a single, 2 hidden layer network, with 50 hidden ReLU units per layer using MAP inference
until convergence. Specifically, we use SGD with a learning rate of 1 ⇥ 10�3, momentum of 0.9 and
weight decay of 1 ⇥ 10�4. We use a batch size of 512. The objective we optimise is the Gaussian
log-likelihood of our data, where the mean is outputted by the network and the the variance is a
hyperparameter learnt jointly with NN parameters by SGD. This variance parameters is shared among
all datapoints. Once the network is trained, we perform post-hoc inference on it using different
approaches. Since all of these involve the linearized approximation, the mean prediction is the same
for all methods. Only their uncertainty estimates vary.

Note that while for this toy example, we could in principle use the full covariance matrix for
the purpose of subnetwork selection, we still just use its diagonal (as described in Section 4) for
consistency. We use GGN Laplace inference over network weights (not biases) in combination with
the linearized predictive distribution in Eq. (8). Thus, all approaches considered share their predictive
mean, allowing us to better compare their uncertainty estimates.

All approaches share a single prior precision of � = 3. We chose to select the prior precision such
that the full covariance approach (optimistic baseline) presents reasonable results. We use the same
value for all other methods. We first tried a precision of 1 and found the full covariance approach to
produce excessively large errorbars (covering the whole plot). A value of 3 produces more reasonable
results.

Final layer inference is performed by computing the full Laplace covariance matrix and discarding
all entries except those corresponding to the final layer of the NN. Results for random sub-network
selection are obtained with a single sample from a scaled uniform distribution over weight choice.

C.2 UCI EXPERIMENTS

In this experiment, our fully connected NNs have numbers of hidden layers hd={1, 2} and hidden
layer widths wd={50, 100}. For a dataset with input dimension id, the number of weights is given
by D=(id+1)wd+(hd�1)w2

d
. Our 2 hidden layer, 100 hidden unit models have a weight count of

the order 104. The non-linearity used is ReLU.

We first obtain a MAP estimate of each model’s weights. Specifically, we use SGD with a learning
rate of 1 ⇥ 10�3, momentum of 0.9 and weight decay of 1 ⇥ 10�4. We use a batch size of 512. The
objective we optimise is the Gaussian log-likelihood of our data, where the mean is outputted by the
network and the the variance is a hyperparameter learnt jointly with NN parameters by SGD.

For each dataset split, we set aside 15% of the train data as a validation set. We use these for early
stopping training. Training runs for a maximum of 2000 epochs but early stops with a patience of
500 if validation performance does not increase. For the larger Protein dataset, these values are 500
and 125. The weight settings which provide best validation performance are kept.

We then perform full network GGN Laplace inference for each model. We also use our proposed
Wassertein rule together with the diagonal Hessian assumption to prune every network’s weight
variances such that the number of variances that remain matches the size of every smaller network
under consideration. The prior precision used for these steps is chosen such that the resulting
predictor’s logliklihood performance on the validation set is maximised. Specifically, we employ
a grid search over the values: � : [0.0001, 0.001, 0.1, 0.5, 1, 2, 5, 10, 100, 1000]. In all cases, we
employ the linearized predictive in Eq. (7). Consequently, networks with the same number of weights
make the same mean predictions. Increasing the number of weight variances considered will thus
only increase predictive uncertainty.

C.3 IMAGE EXPERIMENTS

The results shown in Section 5.3 and Appendix B are obtained by training ResNet-18 (and ResNet-50)
models using SGD with momentum. For each experiment repetition, we train 7 different models:
The first is for: ‘MAP’, ‘Ours’, ‘Ours (Rand)’, ‘SWAG’, ‘Diag-Laplace’ and as the first element of
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‘Ensemble’. We train 4 additional ‘Ensemble’ elements, 1 network with ‘Dropout’, and, finally 1
network for ‘VOGN’. The methods ‘Ours’, ‘Ours (Rand)’, ‘SWAG’, and ‘Diag-Laplace’ are applied
post training.

For all methods except ‘VOGN’ we use the following training procedure. The (initial) learning rate,
momentum, and weight decay are 0.1, 0.9, and 1 ⇥ 10�4, respectively. For ‘MAP’ we use 4 Nvidia
P100 GPUs with a total batch size of 2048. For the calculation of the Jacobian in the subnetwork
selection phase we use a single P100 GPU with a batch size of 4. For the calculation of the hessian
we use a single P100 GPU with a batch size of 2. We train on 1 Nvidia P100 GPU with a batch
size of 256 for all other methods. Each dataset is trained for a different number of epochs, shown in
Table 21. We decay the learning rate by a factor of 10 at scheduled epochs, also shown in Table 21.
Otherwise, all methods and datasets share hyperparameters. These hyperparameter settings are the
defaults provided by PyTorch for training on ImageNet. We found them to perform well across the
board. We report results obtained at the final training epoch. We do not use a separate validation set
to determine the best epoch as we found ResNet-18 and ResNet-50 to not overfit with the chosen
schedules.

Table 21: Per-dataset training configuration for image experiments.
DATASET NO. EPOCHS LR SCHEDULE

MNIST 90 40, 70
CIFAR10 300 150, 225

For ‘Dropout’, we add dropout to the standard ResNet-50 model (He et al., 2016) in between the 2
and 3 convolutions in the bottleneck blocks. This approach follows Zagoruyko & Komodakis (2016)
and Ashukha et al. (2020b) who add dropout in-between the two convolutions of a WideResNet-50’s
basic block. Following Antorán et al. (2020), we choose a dropout probability of 0.1, as they found
it to perform better than the value of 0.3 suggested by Ashukha et al. (2020b). We use 16 MC
samples for predictions. ‘Ensemble’ uses 5 elements for prediction. Ensemble elements differ
from each other in their initialisation, which is sampled from the He initialisation distribution
(He et al., 2015). We do not use adversarial training as, inline with Ashukha et al. (2020b), we
do not find it to improve results. For ‘VOGN’ we use the same procedure and hyper-parameters
as used by Osawa et al. (2019) in their CIFAR10 experiments, with the exception that we use
a learning rate of 1 ⇥ 10�3 as we we found a value of 1 ⇥ 10�4 not to result in convergence.
We train on a single Nvidia P100 GPU with a batch size of 256. See the authors’ GitHub for
more details: github.com/team-approx-bayes/dl-with-bayes/blob/master/
distributed/classification/configs/cifar10/resnet18_vogn_bs256_
8gpu.json.

We modify the standard ResNet-50 and ResNet-18 architectures such that the first 7 ⇥ 7 convolution
is replaced with a 3 ⇥ 3 convolution. Additionally, we remove the first max-pooling layer. Following
Goyal et al. (2017), we zero-initialise the last batch normalisation layer in residual blocks so that they
act as identity functions at the start of training.

At test time, we tune the prior precision used for ‘Ours’, ‘Diag-Laplace’ and ‘SWAG’ approximation
on a validation set for each approach individually, as in Ritter et al. (2018); Kristiadi et al. (2020).
We use a grid search from 1 ⇥ 10�4 to 1 ⇥ 104 in logarithmic steps, and then a second, finer-grained
grid search between the two best performing values (again with logarithmic steps).

C.4 DATASETS

The 1d toy dataset used in Section 5.1 was taken from Antorán et al. (2020). We obtained it from the
authors’ github repo: https://github.com/cambridge-mlg/DUN. Table 22 summarises
the datasets used in Section 5.2. Wine and Protein are available from the UCI dataset repository Dua
& Graff (2017). Kin8nm is available from https://www.openml.org/d/189 Foong et al.
(2019b). For the standard splits (Hernández-Lobato & Adams, 2015) 90% of the data is used for
training and 10% for validation. For the gap splits (Foong et al., 2019b) a split is obtained per input
dimension by ordering points by their values across that dimension and removing the middle 33% of
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Table 22: Datasets from tabular regression used in Section 5.2
Dataset N Train N Val (15% train) N Test Splits Output Dim Output Type Input Dim Input Type

Wine 1223 216 160 20 1 Continous 11 Continous
Wine Gap 906 161 532 11 1 Continous 11 Continous
Kin8nm 6267 1106 819 20 1 Continous 8 Continous

Kin8nm Gap 4642 820 2730 8 1 Continous 8 Continous
Protein 34983 6174 4573 5 1 Continous 9 Continous

Protein Gap 25913 4573 15244 9 1 Continous 9 Continous

the points. These are used for validation. The datasets used for our image experiments are outlined in
Table 23.

Table 23: Summary of image datasets. The test and train set sizes are shown in brackets, e.g. (test &
train).

NAME SIZE INPUT DIM. NO. CLASSES NO. SPLITS

MNIST (LeCun et al., 1998) 70,000 (60,000 & 10,000) 784 (28 ⇥ 28) 10 2
Fashion-MNIST (Xiao et al., 2017) 70,000 (60,000 & 10,000) 784 (28 ⇥ 28) 10 2
CIFAR10 (Krizhevsky & Hinton, 2009) 60,000 (50,000 & 10,000) 3072 (32 ⇥ 32 ⇥ 3) 10 2
SVHN (Netzer et al., 2011) 99,289 (73,257 & 26,032) 3072 (32 ⇥ 32 ⇥ 3) 10 2
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