
Under review as a conference paper at ICLR 2023

A ENVIRONMENTS

A.1 F1/10 RACE CAR

This simulator contains an agent that moves along a two-dimensional racetrack, which is modeled
after well known F1 tracks downscaled to 1:10, as used in O’Kelly et al. (2020). The racetrack
is assumed to be 2 m wide, and the observation space for the agent is two dimensional, reporting
the distance to centerline, as well as the relative angle from it. At every step, the agent takes an
action a ∈ [−1, 1]rad which indicates the steering angle. We use three tracks in our experiments:
Playground, Silverstone, and Austin, which can be visualized through Figure 3(a)-(c).

To generate expert trajectory data from this environment, we create an expert planner using search-
based model predictive control (MPC) which is able to generate collision-free paths between ran-
domly sampled start and goal states within the track. To delibrately produce unsafe demonstrations,
we randomly decrease the safety threshold in the MPC planner to generate trajectories that will
crash. We generate 1k trajectories with 711 safe trajectories and 289 unsafe trajectories. We ran-
domly sample 800 trajectories for training, and use the rest 200 trajectories for evaluation. The
average collected trajectory length is 100.

A.2 MUSHR CAR SIMULATOR

MuSHR is a robot car equipped with a 2-D LiDAR sensor. The LiDAR sensor scans the environ-
ment around the car using 720 laser beams (with an angular resolution of 0.5 deg) and returns an
observation of shape [720, 2], where each element is the x,y coordinate to the closest surface for that
ray angle. Similar to before, the MuSHR car also takes a steering angle as the input action, which is
of the range a ∈ [−0.34, 0.34] rad in the expert demonstrations.

We create a simulator for this vehicle which takes a 2D occupancy map as an input, and instantiates
the vehicle dynamics and the sensor model within it. We use a pre-mapped 2D office environment
for the simulation which can be visualized in Figure 3(d). We build a probabilistic roadmap over
the environment and sample start and goal states in the free space, from which we generate 10K
trajectories in total, where each trajectory spans around 110 timesteps. Similar to above, we use a
search-based MPC for computing the collision-free trajectories. We apply slight perturbations to the
expert planner to also occasionally result in unsafe trajectories. We generate 7550 safe demonstra-
tions and 2450 unsafe demonstrations. However, as shown in Supplementary C.7, ConBaT can be
trained with just 0.01X of the unsafe demonstrations (21 trajectories) here to outperform almost all
the baselines. The collected demonstration is shown in Figure 7

Figure 7: Visualization of the MuSHR environment occupancy map and collected data distribution

15

Under review as a conference paper at ICLR 2023

B IMPLEMENTATION

B.1 CONBAT IMPLEMENTATION

Transformer and Control Barrier Critic:
For both the F1/10 simulator and for MuSHR, we use a linear embedding to convert the observation
and action into state and action tokens respectively. For F1/10, we train the policy and world model
in phase 1 for 10 epochs, and then further train the control barrier critic for 10 epochs. For Mushr
data, we train the policy for 50 epochs and further train the control barrier critic for 10 epochs.
We use the Adam optimizer for training. Hyperparameters used for model training can be seen in
Table 3.

Hyperparameter Value

of layers 2
of attention heads 8
Embedding length 64
Sequence length 16
Batch size 32
Learning rate 1e-4
Optimizer Adam
of cbf layers 2
of cbf units 128
γ 1.0
α 0.1
λc 1
λs 5
λf 1

Table 3: Hyperparameters

Online Optimization:
During deployment, the general aim is to be able to roll out a safe trajectory for as long as possible.
At a high level, ConBaT is first given a short sequence of state-action pairs as a prompt. Based
on this prompt and the current observation, the model predicts the next action, which is sent to
the simulator to get the observation at the next time step. This roll out procedure of generating
new action and new state is carried on iteratively until a crash happens or a maximum number of
timesteps is reached. At timestep t of the rollout procedure, given the observed the history state and
action sequence (st−T+1, at−T+1, st−T+2, at−T+2, ..., st−1, at−1, st), we first compute the action
proposal for time t. Then we combine the action proposal ât with a learnable parameter ∆a and
forward them to the network. Initially, ∆a is set to zero. We evaluate the violation loss for the CBF
condition at time t as:

Lv = σ+(η − Cf (s
+
t , a

+
t)) (8)

where η is the conservative threshold. η being positive means the CBC value should be greater than
a positive value to satisfy the CBF condition, hence being more conservative. We only do online
optimization if Lv is nonzero. We use the RMSProp optimizer and do 1 ∼ 3 backward steps to
compute ∆a. A detailed ablation study for several online optimization configurations can be seen in
Appendix C

B.2 BASELINES

MPC: We implemented an optimization-based model predictive control baseline using the CasAdi
solver. At every step, we crop a 5m× 5m neighborhood centered at the MuSHR car from the map,
and convert the occupied cells in the neighborhood to circular obstacles. To alleviate the planning
burden, we only consider the obstacles that contain both occupied cells and free cells (which means
the obstacle is at the boundary of the lidar scan). Then we perform 3 ∼ 10 steps of MPC planning to
make sure the car is not colliding with any of the obstacles at any time in the MPC horizon. Our best
approach involves a 10-step MPC horizon and choose 0.2m as the collision threshold (the car should
be at least 0.2m far from the obstacle). After some grid-search, we find that this configuration gives
us the best performance.

16

Under review as a conference paper at ICLR 2023

SAC: We train a Soft-Actor-Critic approach (Haarnoja et al., 2018) for 1000 epochs, where under
each epoch, the model rolls out 1000 steps from the simulation and gets 1000 back-propagation
updates. The policy net is a 3-layer fully-connected network with hidden units [128, 128, 128] for
the layers. The gamma is 0.99, the learning rate is 1e-3, and the batch size is 256.

TRPO: We train a TRPO approach (Schulman et al., 2015) for 1000 epochs, where under each
epoch the model rolls out 1000 steps from the simulation and gets 1000 back-prop updates. The
policy net is a 3-layer fully-connected network with hidden units [128, 128, 128] for the layers. The
discount factor gamma is 0.99, the learning rate is 3e-4, and the batch size is 1000.

PPO: We train a PPO approach (Schulman et al., 2017) for 1000 epochs, where under each epoch
the model rolls out 1000 steps from the simulation and gets 1000 back-prop updates. The policy net
is a 3-layer fully-connected network with hidden units [128, 128, 128] for the layers. The discount
factor gamma is 0.99, the learning rate is 3e-4, and the batch size is 4000.

For all the RL algorithms, the agent receives a reward of 0.1 if it does not collide with anything, and
−3 if it does.

GAIL: We train a GAIL approach (Ho & Ermon, 2016) for 1000 epochs, where we only use the safe
set of the expert trajectories that were used in ConBaT and we train for 10000 iterations. The GAIL
framework consists of a value network, a generator (policy net), and a discriminator. The value
network is a 2-hidden-layer fully-connected network with 128 hidden units in each layer and the
learning rate is 1e-3. For the generator, we use a 2-hidden-layer fully-connected network with 128
hidden units in each layer. The discount factor gamma for the generator is 0.995 and the learning
rate is 3e-4. For the discriminator, we use a 2-hidden-layer fully-connected network with 128 hidden
units in each layer, with the learning rate as 1e-4. The sample batch size is 4000.

BC: We train a 3-hidden-layer fully-connected network with 128 hidden units in each layer for 100
epochs, with batchsize 32 and a learning rate of 1e-4, using the same set of safe data used by GAIL.

Algorithm Training time (h/m) Runtime (s)

MPC - 35580
BC 8h 6m 579.51

PPO 24h 560.87
TRPO 24h 558.62
SAC 24h 565.24
GAIL 24h 546.09
PACT 11h 2m 666.51

ConBaT 12h 5m 852.31

Table 4: Training and deployment time taken

C ADDITIONAL RESULTS

C.1 COMPUTATIONAL EFFORT

In Table 4, we outline the computational requirements for the different classes of algorithms we
implement in the MuSHR domain. We note MPC to be 1-2 orders of magnitude slower than the
learning-based methods during runtime as it requires solving a complex optimization problem at
every step, parameterized over the number of obstacles in the neighboring map. While the reinforce-
ment learning baselines are relatively faster in deployment than PACT or ConBaT, their training time
is much higher.

C.2 CBF CRITIC ABLATIONS

In Table 5, we compare two different architecture designs for the future state Cf : CBC-EF (CBC-
embedding/future) which takes state and action embeddings as input: ĉt+1 = Cf (s

+
t , a

+
t), and

CBC-TF (CBC-token/future) which takes state embedding and action tokens as input: ĉt+1 =
Cf (s

+
t , a

′
t). As shown in Table 5, the online optimization time for CBC-TF is 40% ∼ 60% shorter

17

Under review as a conference paper at ICLR 2023

Track Collision Rate (%) ATL (# steps) Runtime (sec)

E-CBC T-CBC E-CBC T-CBC E-CBC T-CBC

Playground 0 1.5 1000 983.46 134.17 76.78
Silverstone 0 54.6 1000 632.28 147.61 81.94

Austin 61.7 96.8 678.15 279.13 180.88 76.62

Table 5: Using action embedding vs. action token for the Control Barrier Critic

than the runtime of CBC-EF, which is because the action token is not temporally-fused with fea-
tures from other timesteps, whereas action embedding is, hence when performing backpropagation
at action-embeddings (in CBC-EF’s case) the computational burden increases. However, consis-
tently among all the three tracks, CBC-EF achieves much better collision rate and ATL compared to
CBC-TF, which we attribute to the expressiveness of the action embeddings after fusing with other
state-action history. Thus, we primarily use the CBC-EF architecture in our paper.

C.3 ONLINE OPTIMIZATION ABLATIONS

Table 6 contains the results from several ablation studies we perform on the F1/10 dataset to identify
how the online optimization routine behaves under varying influence of its hyperparameters. We
vary these three parameters: a) the number of gradient descent steps, b) the learning rate, and c) the
CBF threshold defined as the optimal critic cost value. From Table 6(a), we note that increasing the
optimization steps in the online optimization does not improve the performance. From Table 6(b),
we see that a fairly small learning rate can already make the online optimization achieve collision-
free performance on F1/10, whereas a larger learning rate leads to a more unstable optimization
process hence deteriorating the result. From Table 6(c), we see that the threshold η to some degree
reflects the conservativeness - a larger threshold will result in a more conservative result, which
potentially can lead to better performance.

Steps Collision ATL

0 1 175.45
1 0.0078 991.24
2 0.0078 991.22
3 0.0078 991.21
4 0.0078 991.21

(a) SGD step.

lr Collision ATL

0.05 0 999
0.1 0.0078 991.23
0.2 0.0078 991.22
0.3 0.0156 983.4
0.5 0.0234 975.73

(b) Learning rate (lr)

Threshold Collision ATL

-0.1 0.875 343.6
-0.05 0.3672 714.08
0.0 0.0469 958.29

0.05 0.0156 983.47
0.2 0.0078 991.22

(c) Threshold

Table 6: Ablation studies for online optimization (iterations, learning rates and thresholds)

C.4 LEARNED CONTROL BARRIER CRITIC VISUALIZATION

(a) Visualization from Control Barrier Crit-
ics (CBC)

(b) Visualization of the original MuSHR en-
vironment

18

Under review as a conference paper at ICLR 2023

To inspect how the control barrier critic (CBC) is learned, we plot the CBC prediction along the
expert trajectories and interpolate over unvisited regions on the map. As shown in 8a, the CBC is
able to predict safe values in the center of the pathways, and predict negative values in regions that
are close to the boundary of the wall, which is consistent with the expectation that the closer to the
center of the hallway, the safer. However, we do notice that there exists unsafe area that the CBC
mistakenly marks that area as “safe” (e.g., around the location (-30, -20)), which could be due to
interpolation error or network inability to predict the safety score at that spot.

C.5 CBF VISUALIZATION

To illustrate how well the CBF is learned, we visualize the simulation as well as the
observation/cbf/safety-label sequences along the trajectories. As shown in Fig. figure 9, in most
of the cases, the CBF value is postive for safe states and negative for unsafe states, which shows
that our learned CBF can correctly classify the safe/unsafe states. Besides, the decreasing trend
(timestep 100-120 in Fig. figure 9b) of CBF can alert the potential collision in near future (however
in this case, due to control limitation, the agent cannot escape from the collision).

(a) Safe case: The CBF value is always greater than 0 for safe states. The CBF value
is not just remembering the closest distance-to-wall, but also quantifies the difficulty to
escape from the potential future collision (timestep 450).

(b) Unsafe case: The CBF value will be negative when comes to collision (timestep 120-
125), and the decreasing trend (timestep 100-120) of the CBF value can alert the potential
collision in near future.

Figure 9: Visualization for the simulation and measurement/cbf/safety-label trajectories

19

Under review as a conference paper at ICLR 2023

C.6 HOW DOES THE NEGATIVE SAMPLES AFFECT THE TESTING PERFORMANCE

Although ConBaT requires negative demonstrations in training, it turns out only a few negative
samples will suffice to guide the CBF-critic training and to improve the rollout performance. Here
we train ConBaT under different number of negative samples (ranging from 21 to 2131) and evaluate
their 5000-step rollout trajectories under 128 initial conditions. We measure the rollout performance
by safety rate, i.e., the percentage of rollout trajectories that are safe. As shown in Fig. 9, even just
using 21 negative samples in training, the success rate of ConBaT already outperforms almost all
the baselines except SAC (which is 1% higher). By leveraging 106 negative examples, we already
surpass all the baselines considered in this paper. This showcases our algorithm is data-efficient.

Figure 10: Rollout performance under different numbers of negative samples in training. ConBaT
is the most efficient one that leverages negative samples: with only 21 negative examples, it can
already learn the safety concept and improve the safety rate of based model (PACT) by 9%, and
outperforms almost all the baselines.

C.7 ADDITIONAL BASELINES

Besides the baselines shown in the main paper, we also compare with constrained policy optimiza-
tion (CPO) (Achiam et al., 2017) and a model-base safe control approach called SABLAS (Qin
et al., 2022). For CPO, we adapted the implementation from https://github.com/
SapanaChaudhary/PyTorch-CPO as the official implementation is coded in Theano, which is
incompatible with our simulation framework. For SABLAS, we followed the official implementa-
tion https://github.com/MIT-REALM/sablas and adapted it to our simulation environ-
ment. For CPO and SABLAS, the (safety) constraint is that the shortest lidar beam should be always

20

https://github.com/SapanaChaudhary/PyTorch-CPO
https://github.com/SapanaChaudhary/PyTorch-CPO
https://github.com/MIT-REALM/sablas

Under review as a conference paper at ICLR 2023

Algorithm Training time (h/m) Runtime (s) Collision (%) ATL (# steps)

CPO (Achiam et al., 2017) 12h 449.54 1.00 82.14
SABLAS (Qin et al., 2022) 12h 600.79 0.99 145.47

PACT 11h 2m 666.51 0.35 3453.34
ConBaT 12h 5m 852.31 0.18 4271.54

Table 7: ConBaT outperforms extra baselines CPO and SABLAS on safe navigation in the 2D
MuSHr car domain.

greater than 0.1m. We trained the CPO for 10000 epochs using 12 hours and trained SABLAS for
20000 iterations using 12 hours. As shown in Table. 7, our approach outperforms the two base-
lines in both collision rate and average trajectory length. The inferior result of those two baselines
might result from the extremely high dimension system dynamics and the high dimension constraint
function (720x2=1440d), whereas our approach does not need to learn the explicit system dynamics
or learn from the constraint on the explicit state space (we learn the implicit system dynamics and
safety concept from the safe/unsafe demonstrations).

C.8 OPTIMALITY-MUSHR EXPERIMENT

Figure 11: Trajectory comparison between PACT and ConBaT for the MuShR goal-reaching task.
ConBaT results in higher goal-reaching success rate, and can preserve the same solution quality as
the PACT model when the PACT trajectory is not crashed. ConBaT also results in 64% overhead for
the average goal-reaching distance, which happens when the PACT trajectories crashes.

To investigate how ConBaT will affect the optimality of the solution, we design a goal-reaching
task under the MuShR simulation environment, collect expert demonstrations and train PACT and
ConBaT to reach the destination point. Specifically, the task is to reach a fixed destination point
(−9.2,−17.5)T on the map from a randomly initialized position. We collect 10000 expert trajecto-
ries using the search-based MPC, which is the same one used in the previous MuShR data collection
process in the main paper, but with a fixed destination point (and 10000 different initialized points).

We train the PACT and ConBaT on the expert data, following the same set of hyperparameters used
in the main paper. During testing, we test for 128 different initial starting points, use the controller
trained by PACT/ConBaT to rollout for at most 5000 time steps for evaluation. We define the success
rate as the percentage of rollout trajectories that can reach the goal without any collision, compute
the average trajectory length before reaching goal, and the average trajectory length before collision.

We plot the length of each trajectory before goal-reaching/collision for each method for comparison
in Figure. 11. We categorize the trajectories depending on the ”goal-reaching/crashing” consequence
of the PACT/ConBaT trajectories, and inside each region we sort those trajectories based on the
PACT trajectory length before crashing/goal-reaching. As shown in Figure. 11, ConBaT achieves
a success rate of 94.44%, which is 12.69% higher than the PACT model. Our method doesn’t im-
prove the optimality/quality of each individual solution, because ConBaT is designed for improving
safety rather than optimality. However, compared to PACT model, ConBaT maintains the quality of
the solution (indices 0-102) when the PACT trajectories are safe and only increases the trajectory

21

Under review as a conference paper at ICLR 2023

length when the PACT trajectories are crashing (indices 103-127). This shows ConBaT can work
in a shield-like fashion which preserves the base model behavior when safe, and only changes the
trajectory when the potential unsafe case emerges.

C.9 ABLATION STUDY FOR CBF TREND LOSS

One might think it is straight-forward to use safe/unsafe labels to guide the safe learning process.
Here we emphasize the importance of the smoothness loss (trend loss). From the same PACT base
model under MuSHr environment, we train the ConBaT to learn the safety score by differnet weight-
ing for the smoothness term (ranging from 0-50, where in the main paper we use Ls = 5). We follow
the same optimization process and rollout mechanism in rollout. As shown in Table. 8, without the
smoothness loss or when λs ≤ 2.0, the ConBaT cannot improve upon the PACT performance. This
makes sense as a smaller trend is not advance enough to prevent the states fall into unsafe region (but
too large trend loss will hurt the CBF classification result hence affect the correctness for the CBF-
critic to judge whether next state is really safe or unsafe). With large smoothness loss (λs ≥ 5.0)
added to the ConBaT training, the performance gets better than PACT and the peak is from λs = 5.
Thus we picked λs = 5 in our experiments.

Method Smoothness weight λs Collision (%) ATL (# steps)

PACT - 0.35 3453.34
ConBaT 0 0.63 2799.79
ConBaT 0.1 0.88 2086.95
ConBaT 0.2 0.88 2004.23
ConBaT 0.5 0.76 2262.83
ConBaT 1 0.66 2991.55
ConBaT 2 0.91 2147.82
ConBaT 5 0.18 4271.54
ConBaT 10 0.23 3944.15
ConBaT 20 0.30 3654.66
ConBaT 50 0.35 3453.34

Table 8: ConBaT training under different smoothness weights.

22

	Introduction
	Methods
	Base Architecture: Perception-Action Causal Transformer
	Control Barrier Transformer
	Control Barrier Critic
	Optimizing actions to improve safety

	Training procedure

	Experimental results
	Safe Navigation Analysis
	Comparison with Baseline Methods
	Learning a new safety definition
	Ablation studies

	Background
	Conclusions
	Ethics Statement
	Reproducibility Statement
	Environments
	F1/10 Race Car
	MuSHR car simulator

	Implementation
	ConBaT Implementation
	Baselines

	Additional Results
	Computational Effort
	CBF Critic Ablations
	Online Optimization Ablations
	Learned Control Barrier Critic Visualization
	CBF Visualization
	How does the negative samples affect the testing performance
	Additional baselines
	Optimality-MuShR experiment
	Ablation study for CBF trend loss

