Generating Traffic Matrices

Here we describe how traffic matrices are generated by tm-gen. As a starting point we
used the gravity-based model from [1], which we briefly rehash here. In that model the
volume of traffic (7'(n;,n;)) for each of the N(N — 1) pairs in the network is obtained by:
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where T is the total traffic in the network. The values T™(n;) and T°%“(n;) are drawn
from an exponential distribution. This model has been shown to produce realistic traffic
matrices, even though it uses only a single parameter—the mean value of the exponential
distribution. While it represents a good starting point, we note that this simple approach
exhibits a couple of significant drawbacks.

The first one is that there are no guarantees that the network will be able to fit the
resulting traffic matrix. The level of saturation of the network depends on both the mean
value of the exponential and the actual network topology. On one hand it may be that we
pick a mean value that results in a traffic matrix that exceeds the maximum flow of the
network—i.e., one for which no routing scheme will ever be able to fit the demand. On the
other hand, if we pick a mean value which is too low we will generate a traffic matrix that
is trivial—i.e., one for which every aggregate can be completely routed on its shortest path
without causing congestion.

Ideally we would like to have better control over the network’s load level. We take the
approach of previous work [2], which suggests scaling the traffic matrix after generation in
order to set the network’s load to an arbitrary point between the two extremes described
above. To do so we first generate a traffic matrix using a random exponential distribution
with an arbitrary mean value. We then obtain the minimum maximal link utilization possible
under any routing scheme by solving the theoretically optimal MinMax multi-commodity flow
problem (e.g., as described here [3]). If this link utilization value is u, then we know that
network is 1/u away from being saturated—e.g., if v = 0.3 then we know that if we scale all
demands by 1/0.3 = 3.3 we will achieve a maximally loaded network. If instead we want a
network which is e.g., 70% saturated we need to scale aggregates by ﬁ.

The second issue with the approach in Equation 1 is that it does not take into account
geographic distance between ingress and egress pairs. In a lot of scenarios traffic matrices
will exhibit a degree of geographic locality [4]—e.g., because big resource providers attempt
to locate resources as close as possible to end users. As we would like to explore how LDR
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functions in those scenarios as well as the non-local ones, we optionally add a degree of
locality to the matrix generated using Equation 1 while preserving its properties.

Crucially, when we add locality to an already generated traffic matrix we want to preserve
the values of both incoming and outgoing traffic at each node from the original traffic matrix.
We use the following LP:
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where B is the traffic volume between nodes ¢ and j in the new, localized, traffic matrix.
The constant BZ‘?fjd is the traffic volumes in the original matrix between nodes ¢ and j, the
constant D; ; is the distance of the shortest path between nodes ¢ and j. The constant [ is a
positive parameter which determines locality. The larger [ is the more freedom the optimizer
has to change different aggregates’ demands to minimize the total traffic volume per unit
of geographic distance—i.e., to make the traffic more local. If [ is 0 the optimizer will be
forced to set all B"" equal to B°?. If the parameter is 0.5 the optimizer will be free to
move up to 50% of each aggregate’s volume to another aggregate. It would seem that as
soon as [ reaches 1 the resulting traffic matrix will only have a handful of large aggregates,
as the optimizer will seemingly have the ability to move all of the volume of any aggregate
to a more local alternative, but notice that the constraints 2 and 3 will force it to preserve
the sums of incoming and outgoing traffic at each node, so the resulting matrix will never
be too far off the original one.

In summary, the algorithm that we use in tm-gen when generating a traffic matrix with
a given load and locality is as follows:

1. Using some random seed, generate a traffic matrix using the gravity-based model
from [1].

2. Add locality to the generated traffic matrix by solving the LP formulated above. If
the locality value is 0, then this step is a no-op.

3. Compute the MinMax link utilization u in the localized traffic matrix.

4. Scale the traffic matrix so that its load matches the desired one—e.g., if the load we
aim for is 70% of the maximal one, we will scale all aggregates’ volumes by ﬁ.

Notice that adding locality happens before scaling, as that ensures that the resulting
traffic matrix has exactly the desired load factor. Except for the second step, the process is
identical with the one recommended in [2].
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Figure 1: Cumulative fraction of total volume in Cogent’s topology that travels a given
shortest-path distance.

To see how the addition of locality in the second step behaves in practice we examine
three different traffic matrices generated with the same seed and the same load value, but
with three different values of locality—0, 1 and 5. The topology is that of Cogent—the
largest one in the TopologyZoo [5] dataset, and one with high LLPD (see [6]). In Figure 1
we show the locality of traffic volume in each of the three traffic matrices. To generate the
plot we sort all aggregates based on the length of their shortest path. Each point on the plot
is a separate traffic aggregate; the x value is the length of the aggregate’s shortest path and
the y value is the cumulative fraction of the total traffic volume in the entire traffic matrix.

Cogent’s topology contains large European and North American parts, connected by a
handful of long-haul trans-oceanic links which account for the flattening of the LOCALITY 0
curve. Looking at the that curve, we can see that 50% of the traffic volume travels 20 ms or
less—i.e., about half of all traffic is between Europe and North America. Recent studies of
Deutsche Telekom’s network [4] suggest that in large ISPs this is not the case, but instead
traffic is significantly more localized. As we increase locality we notice that less and less
traffic is being moved between the two continents, loading the long-haul links less and less.
At the extreme of LOCALITY 5 only about 10% of all traffic crosses between Europe and
North America, with long-haul links being underutilized. We conjecture that this is also
not a very realistic scenario. LOCALITY 1, which exhibits an 80/20 split between local and
remote traffic, is probably closer to reality.
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