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This supplementary includes the following items:
• Section 1 elaborates on the architectural details of our model
and our end-to-end training configuration.

• Section 2 delves into a comprehensive analysis of the hy-
perparameters in our VHMAE, specifically investigating the
impacts of varying degrees of the 𝛼 and 𝛽 in the loss function.

• Section 3 visualizes the qualitative results of our VHAME
and other advanced methods, showcasing the large-scale
results and analyzing frame consistency.

• Section 4 displays some samples and their corresponding
sources of our RCVH dataset.

Our source code and the RCVH dataset will be publicly available
for research purposes.

1 IMPLEMENTATION DETAILS
1.1 Model Architectures
Our masked video modeling framework adopts an asymmetric
encoder-decoder architecture for video reconstruction, similar to
VideoMAE [7]. Notably, our VHMAE operates as an end-to-end
network, generating frames directly through the projection head
without requiring a fine-tuning stage.We employ an 8-frame vanilla
ViT-based model, with detailed architectural specifications for the
encoder and decoder provided in Table 1. To enhance the capture of
spatio-temporal information within frames, we utilize joint space-
time attention [1, 3]. Furthermore, we introduce the Pattern Align-
ment Module (PAM), comprised of a series of MLPs, designed to
align the pattern style between the masked foreground and visible
background in the feature space, thereby providing initial informa-
tion for the masked tokens.

1.2 Training Configuration
Our training setting is depicted in Table 2. Following VideoMAE
[7], we do not use color jittering, drop path, or gradient clip.

2 HYPERPARAMETER ANALYSIS
As indicated in Eq. (6) in the manuscript, 𝛼 and 𝛽 serve as the fac-
tors governing the weights assigned to the two distinct losses in
our model, i.e., the Pattern Alignment Loss (𝐿𝑎𝑙𝑖𝑔𝑛) and the Patch
Balancing Loss (𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ), which are crucial for the video harmo-
nization performance. We conducted comprehensive comparison
experiments to determine the significance of each term, and the
results are presented in Table 3. We found that reducing the weights
of these factors during model optimization leads to degraded results,
underscoring their critical role in the effectiveness of our model.

3 VISUALIZATION ANALYSIS
3.1 Frames Consistency
In video harmonization, ensuring frame-to-frame coherence is crit-
ical. To evaluate this, we analyzed the color consistency between

Table 1: Architectures details of our VHMAE. 𝑀𝐻𝐴(·) de-
notes the joint space-time self-attention, 𝑀𝐿𝑃 (·) indicates
the multi-layer perceptions, and 𝑁𝑝𝑚 represents the number
ofmasked patches. The output sizes are denoted by {𝐶×𝑇 ×𝑆}
for channel, temporal, and spatial sizes.

Term Layer Output Size
input video resize to 256 × 256 3 × 8 × (256 × 256)

patch embedding 𝑀𝐿𝑃 (768) 768 × 4 × 256stride (2 × 16 × 16)

masked tokens foreground masking 768 × 4 × 𝑁𝑝𝑚patch index = 𝑝𝑚

PAM 𝑀𝐿𝑃 (768, 384) 384 × 4 × 𝑁𝑝𝑚

visible tokens remaining patches 768 × 4 × (256 − 𝑁𝑝𝑚 )patch index = 𝑃 − 𝑝𝑚

Transformer encoder
[
𝑀𝐻𝐴(768)
𝑀𝐿𝑃 (3072)

]
× 12 768 × 4 × (256 − 𝑁𝑝𝑚 )

encoder projector 𝑀𝐿𝑃 (384) 384 × 4 × (256 − 𝑁𝑝𝑚 )
concatenation merge all tokens 384 × 4 × 256

Transformer decoder
[
𝑀𝐻𝐴(384)
𝑀𝐿𝑃 (1538)

]
× 4 384 × 4 × 256

decoder projector 𝑀𝐿𝑃 (1536) 1536 × 4 × 256

output video reshape 1536 3 × 8 × (256 × 256)to 3 × 2 × 16 × 16

Table 2: Our end-to-end training setting.

Config Value
optimizer AdamW [5]

base learning rate 0.001
weight decay 0.05

optimizer momentum 0.9
learning rate schedule cosine decay [4]

batch size 32
training epochs 100
warmup epochs 10
augmentation rotation, flipping [6]

adjacent frames by comparing the RGB values of the same pixel, as
shown in Figure 1, which demonstrates the temporal consistency.
It is evident that the pixels in the same position across adjacent
frames in Huang et al.’s results display significant color variation,
indicating inconsistent harmonization across frames. This inconsis-
tency may lead to flickering artifacts in the video, compromising the
overall smoothness. Similarly, CO2Net also shows inconsistencies
between neighboring frames, while our method consistently main-
tains temporal coherence, improving the overall visual continuity
and video quality.
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Figure 1: Qualitative result of comparison between Ours, Huang et al. and CO2Net on RCVH dataset. The frames with red
borders are not consistent with their neighboring frames, which may cause flickering artifacts. We also show the RGB values
of temporally identical pixels in two adjacent frames.

Table 3: Comparison results of different value of 𝐿𝑎𝑙𝑖𝑔𝑛 and
𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 . The best results are in bold and the worst results are
in italics.

𝛼 (𝐿𝑎𝑙𝑖𝑔𝑛) 𝛽 (𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ) MSE ↓ fMSE ↓ PSNR ↑ fSSIM ↑
0.0 0.0 26.39 188.01 36.53 0.8821
0.3 0.3 26.13 185.23 36.61 0.8823
0.5 0.3 26.07 183.16 36.89 0.8827
0.7 0.3 26.10 179.04 36.73 0.8822
0.3 0.5 26.09 184.48 36.71 0.8824
0.5 0.5 25.94 182.93 36.96 0.8824
0.7 0.5 25.88 180.42 37.26 0.8826
0.3 0.7 26.02 184.19 36.99 0.8823
0.5 0.7 25.76 181.83 36.92 0.8828
0.7 0.7 25.64 175.92 37.41 0.8830
1.0 1.0 25.47 173.65 37.59 0.8832

3.2 Large-scale Results
To highlight our method’s effectiveness in handling large-scale
inharmonious foregrounds, we conducted extensive visual com-
parisons using the RCVH dataset. As illustrated in Figure 2, our
results showcase superior color recovery and overall coherence.
Examining the first two rows of Figure 2, the input composite video
features a cool-toned foreground against a warm-toned background.
In contrast, the results from Huang et al. [2] retain a cool tone in the
harmonized foreground, making it starkly different from the back-
ground. Meanwhile, CO2Net’s [6] results, though closer in tone
between the foreground and background, show a lack of uniformity
in the foreground’s color, likely due to inadequate background in-
formation, resulting in an overall lack of smoothness. In contrast,

our method provides a more authentic color representation and a
naturally integrated appearance.

4 DATASET VISUALIZATION
To supplement our proposed dataset, RCVH, in Section 3.4 of the
manuscript, we employ some example pairs of composite and cor-
responding real video samples from the RCVH dataset. As shown
in Figure 3, the RCVH dataset comprises entirely real composite
videos, where the foregrounds and backgrounds of each video are
sourced from different original videos and manually combined to
create new composite videos. Given that the foregrounds and back-
grounds originate from diverse sources, they inherently display
variations in semantic context and photometric information, pre-
senting a greater challenge than synthetic video data created simply
by altering foreground colors.
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Figure 2: Harmonious results of comparing with the large-scale foreground on RCVH dataset, our results are more superior.
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Figure 3: Some example pairs of composite video samples and their corresponding real video samples. The foregrounds are
highlighted with green outlines.
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