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A APPENDIX

A.1

Let SN represent a sequence of N tokens, denoted as wi
N
i=1, where wi corresponds to the ith element

in the sequence. The word embeddings for SN are represented as EN , given by xi
N
i=1, where each

xi is a d-dimensional word embedding vector for token wi, devoid of location information. Self-
attention initially incorporates location information into the word embeddings, transforming them
into queries, keys, and value representations.

Qm = fq(xm,m)

Kn = fk(xn, n)

Vn = fv(xn, n)

(15)

where Qm, Kn, and Vn are combined at positions m and n using functions fq , fk, and fv , respec-
tively. Typically, queries and keys are employed to calculate attentional weights, which are then used
as coefficients for computing the weighted sum of VALUE representations to generate the output.

am,n =
exp(

Q⊤
mKn√

d
)∑N

n=1 exp
Q⊤

mKn√
d

om =

N∑
n=1

am,nVn

(16)

Current position encoding methods for transformers primarily revolve around selecting the suitable
function to formulate the equation 15. Let P represent the position coding operator introduced into
the equation 15.

ft;t∈{Q,K,V }(xi, i) := Wt;t∈{Q,K,V }(P(xi)) (17)

Now bringing the HeterPos method into Equation 17, we can get

fq(xm,m) = WQ[x
m, sin(cxme−m ln(10000/d)), cos(cxme−m ln(10000/d))]w

(m)
PE

fk(xn, n) = Wn[x
n, sin(cxne−m ln(10000/d)), cos(cxne−n ln(10000/d))]w

(n)
PE

fv(xn, n) = WV [x
n, sin(cxne−n ln(10000/d)), cos(cxne−n ln(10000/d))]w

(n)
PE

(18)

We decompose Qm⊤Kn in Equation 18 using the analysis of Dai et al. (2019). To simplify the
analysis, we do not consider the weight matrix and have:

[xm, sin(cxme−m ln(10000/d)), cos(cxme−m ln(10000/d))]⊤·
[xn, sin(cxne−n ln(10000/d)), cos(cxne−n ln(10000/d))]

(19)

In this way, we can obtain Equation 7.

A.2 PROOF OF THEOREM 1

To better illustrate the derivation of our theorem, we first give the idea of the proof of Lemma 1. We
give the following assumption:

• The activation function is L-Lipschitz,i.e., for any x1, x2 ∈ Rk, Lσ∥σ(x1) − σ(x2)∥ ≤
∥x1 − x2∥.

• For any x ∈ Rd and W ∈ Rn×d, we have ∥Wx∥ ≤ Bw∥x∥
• softmax is continuously differentiable and its Jacobian satisfies for vectors θ1, θ2 ∈ Rp,
∥softmax(θ1)− softmax(θ2)∥ ≤ 2∥θ1 − θ2∥∞

Since the core part of the Transformer is the Attention mechanism, for this reason we need to first
give an upper bound on the covering number of the Attention head.
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Lemma 2 (Edelman et al. (2022)) ∀α ∈ [0, 1], the coverage number of the Attention head
Ftf−head satisfies

logN∞(Ftf−head; ϵ; {(X(i), z(i))}mi=1)

≤ inf α∈[0,1][logN∞(FQK ;
αϵ

2LσBV BX
; {(x(i)

t , z(i))}i∈[m],t∈[T ])

+logN∞(FV ;
(1− α)ϵ

Lσ
; {x(i)

t }i∈[m],t∈[T ]; ∥ · ∥2)]

(20)

where ϵ is any real number greater than 0, z is the additonal context of x, and BV and BX are upper
bounds on the weights WV and X, respectively.

Then, in order to further derive an optimization upper bound on the above covering number upper
bound, we make use of the conclusions on covering number upper bounds for the class of linear
functions given by Edelman et al. (2022).

Lemma 3 Let W : {W ∈ Rd1×d2 : ∥W⊤∥2,1 ≤ BW }, for the function class F : {x 7→ Wx :

W ∈ W}. For ∀ϵ > 0 and x(1), ..., x(N) ∈ Rd1 satisfying ∀i ∈ [N ], ∥x(i)∥ ≤ BX ,

logN∞(F ; ϵ;x(1), ..., x(N); ∥ · ∥2) ≲
(BXBW )2

ϵ2
log(d1N) (21)

For ease of arithmetic, we consider WKWQ used in the computation of self-attention scores as
a matrix with an upper bound of BKQ, and for this purpose, using the Lemma 2 we can easily
obtain upper bounds on the number of coverings for the class of linear transformation functions of
the linear transformations WKQX and WV X .

logN∞(FQK ; ϵQK ; {(x(i)
t , z(i))}i∈[m],t∈[T ]) ≲

(B2,1
QKBX)2log(dmT)

ϵ2QK

logN∞(FV ; ϵV ; {(x(i)
t , z(i))}i∈[m],t∈[T ]) ≲

(B2,1
V BX)2log(dmT)

ϵ2V

(22)

Then we get by our assumptions that when we want to choose ϵQK and ϵV such that the sum of the
above two terms is minimized, subject to

2LσBV BXϵV ≤ ϵ (23)

the solution (without position encoding) to this optimization leads to an optimal bound of:

logN∞(Ftf ; ϵ;X
(1), ..,X(M)) ≲ (LσBX)2 ·

((B2,1
V )

2
3 + (B2,1

QKBV BX)
2
3 )3

ϵ2
· log(dmT ) (24)

With Lemma 1 proof ideas laid out, we now proceed to prove the relevant properties of the model
after we introduce the positional encoding we devised. According to Equation 21, we have

∥Z∥ = ∥[[X0, sin(X0), cos(X0),X1, ...]W∥ (25)

From ∥X∥ ≤ BX , we can easily obtain ∥Z∥ ≤ BX + d based on the triangular inequality. There-
fore, according to Lemma 1, we can get the upper bound on the number of model coverings after
introducing the positional encoding after HeterPos

logN∞(F(X; ϵ;X(1), . . . ,X(n), ∥ · ∥)) ≲ ((B2,1V )2/3 + (2BQ,K2,1BV (BX + d))2/3)3

ϵ2
·

(Lσ(BX + d))2log(nd)

(26)

In order to obtain a further derivation of the relationship between the covering number and the
Rademacher Complex, we give the following theorem.
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Lemma 4 Consider a real-valued function class F such that |f | ≤ A for all f ∈ F . Then,

R̂ ≤ c · inf
δ≥0

(δ +

∫ A

δ

√
logN∞(F ; ϵ;x(1), ...,x(n))

n
dx) (27)

We may assume that logN∞(F ; ϵ;x(1), ...,x(n)) ≤ NF
ϵ2 . Based on Lemma 2, we have...

R̂(F ;x(1), ...,x(n)) ≤ c · inf
δ≥0

(δ +

∫ A

δ

√
logF ; ϵ;x(1), ...,x(n)

n
)dx

≤ c · inf
δ≥0

(δ +

∫ A

δ

√
NF

ϵ2n
dϵ)

= c · inf
δ≥0

(δ +

√
NF

n

∫ A

δ

∫ A

δ

1

ϵ
dϵ)

= c · inf
δ≥0

(δ +

√
NF

n
log(

A

δ
))

= c ·
√

NF

n
(1 + log(A+

√
n

NF
))

(28)

The NF is ((B2,1
V )2/3 + (2BPEB

2,1
Q,KBV (BX + d))2/3)3 · (LσBPE(BX + d))2log(nd), |f | ≤ A

for all f ∈ F .

B APPENDIX

B.1 DETAILED EXPERIMENTAL SETUP

We employed feature vectors, class labels, and 10 random splits (48%/32%/20% for train-
ing/validation/testing) from the work of Yan et al. (2022) for all baseline models. And we conducted
experiments over 2000 epochs and implemented early stopping if the validation loss decreased con-
sistently for 200 consecutive epochs.

The parameters used for MPformer experiments on each dataset are shown in Table 3

Table 3: Parameters used in each data set.

Hyperparameter Cora Citeseer Cornell Texas Wisconsin Actor Chameleon Squirrel

Layer 1 1 1 1 1 1 1 1

Heads 2 2 2 2 2 2 2 2

Hidden dim 64 256 16 16 16 128 16 16

Epoch 2000 2000 2000 2000 2000 2000 2000 2000

Learning rate 0.001 0.001 0.01 0.01 0.01 0.0001 0.01 0.01

Weight decay 5e-4 1e-4 5e-4 5e-4 5e-4 5e-5 5e-4 5e-4

Transformer dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Feature dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

The environment in which we run experiments is:

• CPU information:24 vCPU AMD EPYC 7642 48-Core Processor
• GPU information:RTX 3090(24GB)

14


	Introduction
	MPformer
	Tree2Token
	HeterPos
	what HeterPos can tell us about position?

	A rescaled regularization of WPE for better generalization

	EXPERIMENTS
	EXPERIMENTAL SETUP
	HOMOPHILY AND HETEROPHILY
	Effectiveness Study of HeterPos
	PARAMETER STUDY


	CONCLUSION
	Appendix
	
	Proof of Theorem 1

	Appendix
	Detailed Experimental Setup




