
A Algorithm: Differentiable Surrogate Assisted Scenario Generation489

The improvements proposed in Sec. 4 result in two versions of our algorithm. In Algorithm 1,490

we present DSAS with the state-of-the-art DQD algorithm CMA-MAEGA in the inner loop. SAS491

follows a similar structure but with CMA-MAE in the inner loop.492

On each iteration of the outer loop, we initialize a new surrogate archive to store solutions that the493

surrogate model predicts are high performing and diverse (line 3). Then, we begin the inner loop494

(line 5). On line 6, we evaluate the current solution point θ with the surrogate model to obtain495

the predicted objective f̂ , measures m̂, and the branching gradients ∇f̂ and ∇m̂. We then add496

the solution θ to the surrogate archive (line 8) based on the predicted evaluations, after applying497

the regularization penalty (line 7). Next, we generate a batch of solutions based on the branching498

gradients (line 9). For each solution, we sample gradient coefficients, which, combined with the499

gradients, produce a new candidate solution (lines 10-12). We evaluate each new candidate solution500

θ′
i with the surrogate model (line 13), apply the regularization penalty (line 14), and add the solution501

to the surrogate archive (line 15). After processing a batch, we update the search parameters of502

CMA-MAEGA to move the search towards maximizing the QD objective (line 17).503

After completing an inner loop, we select a subset of solutions from the surrogate archive to label504

(line 19). For each set of scenario parameters θ, we generate-and-repair a scenario (line 21), evaluate505

the robotic system on the scenario (line 22), update our dataset by adding the scenario labeled with506

the true objective f , measures m, robot occupancy grid yr, and human occupancy grid yh (line 23),507

and finally add the scenario to our ground-truth archive (line 24). After updating the training data508

with newly labeled scenarios, we train the occupancy predictor for both the robot (line 27) and509

human (line 28), then train the surrogate model to predict the objectives and measures (line 29). The510

inner loop in future iterations exploits the more accurate surrogate model to produce better scenarios.511

B Surrogate Model Details512

Our surrogate model follows a two-stage prediction process by first predicting the robot and the513

human occupancy grids given the scenario parameters as input, followed by a downstream prediction514

of the objective and measures.515

The occupancy predictor (blue arrows in Fig. 6) consists of deconvolution layers followed by batch516

normalization and ReLU that treat the scenario parameters as a 1 × 1 image with the number of517

channels equal to the solution size and expand it into a 32× 32 image. In the shared control teleop-518

eration domain, there is only one occupancy grid since only the robot arm is moving. In the shared519

workspace collaboration domain, there are two occupancy grids (stacked into two channels) corre-520

sponding to the robot and the human motion. We pass each channel in the final output through a521

softmax operator and minimize the KL divergence loss between the predicted and the true occupancy522

grids.523

The downstream predictor (red arrows in Fig. 6) consists of a fully connected network with linear524

layers followed by batch normalization and ReLU to extract features from the scenario parameters.525

It also consists of convolutional layers followed by batch normalization and leaky ReLU to extract526

features from the occupancy grids. We pass the features through a linear layer and minimize the527

mean squared error (MSE) between the predicted and the true objective and measures.528

The losses for the occupancy predictor and the downstream predictor have different scales and hence,529

are hard to balance. Thus, we separately train both networks on data obtained from ground-truth530

evaluations for 100 epochs in each outer iteration using Adam [62] optimizer with a learning rate531

of 0.0001 and batch size of 64. We first train the occupancy predictor, freeze the weights, and then532

train the downstream predictor by leveraging occupancy predictions from the occupancy predictor.533

We implement and train the networks with the PyTorch library [63].534

14



Algorithm 1: Differentiable Surrogate Assisted Scenario Generation (DSAS).
Input: N : Maximum number of evaluations, Nexploit: Number of iterations in the model

exploitation phase, θ0: Initial solution for CMA-MAEGA, B: Batch size for
CMA-MAEGA

Output: Final version of the ground-truth archive Agt

1 Initialize the ground-truth archive Agt, the dataset D, robot occupancy predictor smr, human
occupancy predictor smh, objective and measure predictor sm

2 while evals < N do
3 Initialize CMA-MAEGA with the surrogate archive Asurr and initialize solution θ to θ0
4 Initialize CMA-ES parameters µ, Σ
5 for itr ∈ {1, 2, . . . , Nexploit} do
6 f̂ ,∇f̂ , m̂,∇m̂ ← sm(θ, smr(θ), smh(θ))

7 f̂ ← f̂ − reg(θ)

8 Asurr ← add solution(Asurr, (θ, f̂ , m̂))
9 for i ∈ {1, 2, . . . , B} do

10 c ∼ N (µ,Σ)

11 ∇i ← c0∇f̂ +Σk
j=1

(
cj∇m̂j

)
12 θ′

i ← θ +∇i

13 f̂ ′, ∗, m̂′, ∗ ← sm(θ′
i, smr(θ

′
i), smh(θ

′
i))

14 f̂ ′ ← f̂ ′ − reg(θ′
i)

15 Asurr ← add solution(Asurr, (θ
′
i, f̂

′, m̂′))
16 end
17 Update θ, µ, Σ via CMA-MAEGA update rules
18 end
19 Θ← select solutions(Asurr)
20 for θ ∈ Θ do
21 scenario← G(θ)
22 f,m,yr,yh ← evaluate(scenario)
23 D ← D ∪ (θ, f,m,yr,yh)
24 Agt ← add solution(Agt, (θ, f,m))
25 evals← evals+ 1
26 end
27 smr.train(D)
28 smh.train(D)
29 sm.train(D, smr, smh)
30 end

32 4

16 8

Deconv(4,1,0)
Batch Norm

ReLU

Deconv(4,2,1)
Batch Norm

ReLU

Linear
Batch Norm

ReLU

Linear
Batch Norm

ReLU

Linear
Batch Norm

ReLU

Deconv(4,2,1)
Batch Norm

ReLU

Deconv(4,2,1)
Batch Norm

Softmax

Scenario 
Parameters Measures

Objective1

2

8 16 Occupancy
Grids

16 16

32 8

64 4

12
8

25
6

25
6

Conv(4,2,1)
Batch Norm
Leaky ReLU

Conv(4,2,1)
Batch Norm
Leaky ReLU

Conv(4,2,1)
Batch Norm
Leaky ReLU

Conv(4,2,1)
Batch Norm
Leaky ReLU

Figure 6: Architecture of the surrogate model including the occupancy predictor (blue arrows) and
the downstream predictor (red arrows).

15



0.05 0.32
Min Distance Between Goals

0.35

1.00

M
ax

 W
ro

ng
 G

oa
l B

el
ie

f P
ro

b

Surrogate Archive

65

70

75

80

85

0.05 0.32
Min Distance Between Goals

0.35

1.00

M
ax

 W
ro

ng
 G

oa
l B

el
ie

f P
ro

b

Ground-Truth Archive

55

60

65

70

75

80

85

90

95

Figure 7: Comparison between the surrogate archive (left) after an inner loop and the corresponding
ground-truth archive (right) after evaluating the solutions in the surrogate archive.

Table 1: Mean absolute error of the objective and measure predictions by the surrogate models.
DSAS SAS

Domain Objective
MAE

Measure
1 MAE

Measure
2 MAE

Objective
MAE

Measure
1 MAE

Measure
2 MAE

Shared Control
Teleoperation 0.35 0.01 0.01 0.64 0.02 0.01

Collaboration I 3.41 0.02 0.09 3.47 0.02 0.08
Collaboration II 3.22 0.27 0.56 3.39 0.29 0.59

B.1 Evaluating the Surrogate Model Predictions535

We evaluate the predictions of the surrogate model similar to DSAGE [21] by taking the dataset536

generated in one trial of an algorithm and treating it as the test set for the trained surrogate model537

from another trial of the same algorithm. Table 1 shows the mean absolute error (MAE) in all three538

domains for the surrogate models trained as a part of both DSAS and SAS. Note that Measure 1 and539

Measure 2 columns in the table correspond to the respective measures in each domain described in540

Sec. 5.541

The surrogate model is able to accurately predict the measures in the shared control teleoperation542

domain since they can be calculated directly from the solution and do not depend on the robot policy.543

In contrast, measures that depend on the robot policy such as the maximum wrong goal probability544

(Measure 2 in the collaboration I domain) have a comparatively higher error, with predictions being545

off by around 9% on average.546

Furthermore, we observe that the percentage of predictions landing in their true archive cell is only547

around 2-4% in all domains. Nonetheless, the predictions are close to their true archive cell as evi-548

dent in the MAEs. We also confirm this by computing the average Manhattan distance between the549

predicted archive cell and the true archive cell for each solution. In the shared control teleoperation550

domain, the average Manhattan distance was 6.48 and 11.26 for DSAS and SAS respectively. The551

average Manhattan distances for DSAS and SAS were 11.26 and 9.88 in the collaboration I domain,552

and 6.89 and 7.20 in the collaboration II domain, indicating that the predicted archive cells are only553

a few cells away from the true archive cells on average.554

Thus, despite inaccuracies in placing the solutions into their true archive cells, the solutions in555

the surrogate archive are diverse with respect to the true measure functions. Hence, when these556

solutions are evaluated, they occupy different parts of the ground-truth archive and rapidly improve557

the QD-score. Fig. 7 shows the surrogate archive after one inner loop and the corresponding ground-558

truth archive obtained by evaluating the solutions in the surrogate archive in the collaboration I559

domain.560

16



C Mixed Integer Program for Repairing Scenarios561

To ensure that the objects in the scenario generated by QD search satisfy the object arrangement562

constraints in the shared workspace collaboration domain, we adopt a generate-then-repair strategy.563

We formulate a mixed integer program (MIP) with constraints to ensure that the objects in the564

scenario are inside the workspace boundaries and not in collision with each other. Since we wish the565

repaired scenario to be as close as possible to the generated scenario, we set the MIP objective to be566

the L2 distance between the original position and the repaired position of the objects. The quadratic567

objective makes the MIP a mixed integer quadratic program (MIQP).568

C.1 Variables and MIP Objective569

We treat the x and y coordinates of each object as the MIP variables. Let x′
i and y′i be the coordinates570

of object i in the generated scenario and let xi, and yi be the corresponding coordinates after MIP571

repair. We set the objective to be:572

minΣi(xi − x′
i)

2 + (yi − y′i)
2 (2)

C.2 Constraints573

Let x(min)
r , x(max)

r , y(min)
r , and y

(max)
r be the minimum and maximum allowed x and y values574

respectively for objects in a rectangular workspace region r. For each workspace region, we need575

to construct a binary variable z
(in)
ir , which resolves to true if object i occupies workspace r. We576

create four auxiliary decision variables z(up)ir , z(dn)ir , z(lt)ir , and z
(rt)
ir , representing the four boundary577

constraints of the rectangle. Specifically, z(up)ir represents if object i occupies ⟨xi, yi⟩ coordinates578

below the top of the bounding rectangle for region r. The variables z
(dn)
ir , z(lt)ir , and z

(rt)
ir satisfy579

the same conditions for the bottom, left, and right of the bounding rectangle, respectively. For each580

pair of object i and region r, we add the following constraints to the MIP to resolve the decision581

variables:582

x(min)
r ≤ xi +∞(1− z

(lt)
ir ) (3)

xi ≤ x(max)
r +∞(1− z

(rt)
ir ) (4)

y(min)
r ≤ yi +∞(1− z

(dn)
ir ) (5)

yi ≤ y(max)
r +∞(1− z

(up)
ir ) (6)

In the above constraints, the∞ value represents a sufficiently large constant (e.g., the maximum of583

the width and height of a global bounding box) that causes the constraint to always be satisfied. For584

example, in Eq. 3, the inequality is always satisfied if the binary decision variable z
(lt)
ir is false as585

we do not need to put any constraints if we do not occupy region r with object i. However, if the586

variable is true, we require that the coordinate xi is to the right of the x-boundary x
(min)
r . We create587

an equivalent constraint for the remaining three rectangular constraints (see Eq. 4-Eq. 6).588

Finally, we add a constraint that resolves the decision variable z
(in)
ir to true if all four rectangular589

constraints hold:590

4 ≤ z
(lt)
ir + z

(rt)
ir + z

(dn)
ir + z

(up)
ir +∞(1− z

(in)
ir ) (7)

Once again, if z(in)ir is false, the inequality holds as we do not need to satisfy the rectangle inclusion591

constraints if our object i is not in region r. Otherwise, all four inclusion variables must be true, by592

summing to four, to indicate that the object i occupies region r.593

We then add an additional constraint to ensure that each object occupies at least one region:594

∀i,Σrz
(in)
ir >= 1 (8)

Next, we ensure that all pairs of objects in the scene do not overlap. To do this, we constrain the595

bounding boxes of each object to not overlap. Let ai be half of the side length of the bounding box596

17



of object i. There are four ways a pair of objects with axis-aligned bounding rectangles can avoid597

overlapping: object i is left of object j, object i is right of object j, object i is above object j, or598

object i is below object j. We create indicator variables representing these conditions as c(lt)ij , c(rt)ij ,599

c
(up)
ij , c(dn)ij , respectively. Next, we add the following constraints to the MIP to correctly set the600

collision indicator variables:601

(xi + ai) ≤ (xj − aj) +∞(1− c
(lt)
ij ) (9)

(xj + aj) ≤ (xi − ai) +∞(1− c
(rt)
ij ) (10)

(yi + ai) ≤ (yj − aj) +∞(1− c
(dn)
ij ) (11)

(yj + aj) ≤ (yi − ai) +∞(1− c
(up)
ij ) (12)

If there is no collision between i and j, at least one of the four indicator variables must be true.602

Hence, we set an additional constraint to ensure no collision:603

∀i,j , c(lt)ij + c
(rt)
ij + c

(dn)
ij + c

(up)
ij >= 1 (13)

We solve the MIP problem with IBM’s CPLEX optimization library [64].604

D Domains605

The following subsections provide a brief description of the search space, objective, and measure606

functions in our domains.607

D.1 Shared Control Teleoperation608

A teleoperation task involves a user providing joystick inputs to a robot arm with the intention of609

reaching a goal in the environment. It is generally hard for users to teleoperate a 6-DoF robot arm to610

the correct configuration [51]. Thus, in shared control teleoperation, the robot attempts to infer the611

human goal from a set of candidate goals by observing the low-dimensional joystick inputs provided612

by the user.613

Following the shared control teleoperation framework from previous work [51], the robot solves a614

POMDP with the user’s goal as a latent variable while it updates its belief about the goal based on615

the human input trajectory assuming a noisily-optimal user. To enable real-time decision-making,616

the robot performs hindsight optimization to approximate the POMDP and assumes a first-order617

approximation of the value function. This results in the robot’s actions being a weighted average618

of the optimal path towards each goal, where the weights are proportional to the respective goal619

probabilities.620

To formalize the scenario generation problem in the shared teleoperation domain, we follow the621

QD formulation of prior work [1, 2]. The environment parameters are the positions of the two622

goal objects in a bounded workspace, constrained to be reachable by the robot arm. The simulated623

human provides a trajectory of joystick inputs towards their goal object, parameterized by a set624

of waypoints. The human model parameters are disturbances to these waypoints. The scenario625

parameters θ include the environment and human model parameters. The objective function f in626

the QD search is the time taken to reach the correct goal, with a maximum time limit of 10 seconds627

if the robot fails to reach the goal. The search aims to find scenarios that are diverse with respect to628

the noise in human inputs and the scene clutter, thus the measures m are the human variation from629

the optimal path and the distance between goals.630

D.2 Shared Workspace Collaboration631

We consider a package labeling task, which instantiates the human-robot shared workspace collab-632

oration domain of previous work [42, 53]. The human and the robot have different actions, i.e., the633

18



human labels a package while the robot presses a stamp, and they share a set of goals, i.e., boxes to634

perform the task. The human and the robot cannot work simultaneously on the same object and the635

task finishes when all boxes are labeled and stamped.636

We assume that the human picks a label for an object from a starting point and moves towards that637

object. Different boxes require different labels, thus we model the human as attempting to reach the638

box corresponding to the label they picked up, regardless of the robot’s actions. On the other hand,639

the robot can switch its goal while moving, since stamping can be performed on any goal object640

with the same tool. This domain is more complex than the shared control teleoperation task because641

it includes manipulating a sequence of objects, rather than reaching a single object, and the objects642

are in disjoint workspace regions.643

As in the shared control teleoperation task, the robot reasons over the human goal by treating the644

human as noisily-optimal. However, unlike in shared control teleoperation, the robot attempts to645

avoid the goal intended by the human.646

The scenario parameters consist of the locations of three goal objects in a larger, disconnected647

workspace. We set the workspace boundaries to the quadrants of the L-shaped table in Fig. 1 that are648

reachable by both the human and the robot arm. We model the human as moving to their goal while649

avoiding obstacles by solving a softmax MDP. The objective f is again the time to task completion650

since we wish to find challenging scenarios.651

We choose two sets of measures m described below:652

Minimum distance between goal objects and maximum wrong goal probability: We adopt the653

minimum distance measure from the shared control teleoperation domain in previous work [1].654

Furthermore, one of the failure scenarios found in that work was caused by incorrect inference of655

the human goal by the robot. Thus, we set as our second measure the maximum probability that is656

assigned to the wrong goal by the robot during the task, to search for potential failures in which the657

robot actually infers the human goal correctly.658

Robot path length and total wait time: In the shared workspace collaboration task that we con-659

sider, there are two main sources of delay: the robot needing to move across the two workspaces to660

reach different goals, and the wait time caused due to both the human and the robot wanting to work661

on the same goal. Hence, we choose the path length of the robot and the total wait time as the two662

measures to see how the team performance changes as these are varied.663

E Human and Robot Policies664

E.1 Robot Policy665

We adopt the robot policy defined in prior HRI works [51, 42] that introduced the domains consid-666

ered in this paper. In both domains in this paper, the robot solves a POMDP with human goal as the667

latent variable. As in prior work [51], the robot assumes that the human is stochastically optimal668

and updates its belief based on observed human actions. It performs hindsight optimization to cal-669

culate the values and update the belief in real-time, followed by a first-order approximation to select670

the optimal action that maximizes the Q-value. In both domains, we follow the cost function def-671

inition in the corresponding prior work [51, 42], which makes the resulting optimal value function672

proportional to the distance to the goal and the optimal policy a straight line.673

We briefly discuss the specifics of the robot policy in the two domains below. In both domains,674

the robot action is computed as the twist that should be applied to its end effector, which is then675

converted to the required joint velocities by inverse kinematics computation.676

E.1.1 Shared Control Teleoperation677

In shared control teleoperation, the human provides an input action to the robot. The Q-value of this678

action is defined as the sum of the cost incurred while executing the action and the value at the new679

19



position after action execution. The robot’s belief is then updated based on the difference between680

the value and the Q-value at the current position corresponding to each goal.681

Hindsight optimization followed by first-order approximation results in the robot’s assistive action682

being a weighted average of the straight-line paths to each goal, weighted by the corresponding683

probabilities assigned to them in the belief.684

In App. G.1, we consider a different robot policy called policy blending [52]. The robot fully follows685

the user inputs while updating its belief like before. Once the probability assigned to a goal is higher686

than a threshold, the robot takes over and moves to the predicted goal.687

E.1.2 Shared Workspace Collaboration688

In shared workspace collaboration, the human acts independently. Hence, we maintain two sets689

of value functions - one for the human and one for the robot. We calculate the human Q-value as690

the sum of the cost of executing the current action and the value at the new position after action691

execution, similar to the shared control teleoperation domain. The robot’s belief is updated based692

on the difference between human value and human Q-value at the current position corresponding to693

each goal.694

We track the constraints on the robot’s goals with the feasible goal-set formulation from prior695

work [42]. For each potential human goal, the robot maintains a set of goals that it has not worked696

on and is different from the human goal. The goal set can be empty for some candidate human goals697

if the robot has finished working on all other goals. The robot then treats all the goals that it has698

not worked on as the feasible goal set corresponding to that human goal. For action calculation, the699

robot creates a mapping from each human goal to a corresponding goal-to-go, which is the goal with700

minimum value (the closest goal) in the corresponding feasible goal set.701

The robot’s action is based on the robot’s value functions. Since we assume that the robot acts702

optimally, we do not explicitly calculate these values and simply assume a straight-line path to each703

goal. Hindsight optimization followed by first-order approximation once again results in the robot’s704

action being a weighted average of optimal actions towards each goal-to-go.705

Specifically, let b(g) be the probability assigned to goal g and let F (g) be the goal-to-go correspond-706

ing to human goal g. Then, the weight corresponding to goal g′ is given by Σg:F (g)=g′b(g).707

E.2 Human Policy708

E.2.1 Shared Control Teleoperation709

In shared control teleoperation, we search for human policy parameters in the form of noise added710

to the waypoints from the starting location to the intended goal location. The human policy keeps711

track of the waypoints and computes the waypoint-to-go and the corresponding velocity based on712

the current position of the robot arm.713

E.2.2 Shared Workspace Collaboration714

In shared workspace collaboration, the human moves independently towards the goal and avoids715

obstacles on the way. We model the human policy through a softmax MDP whose values are pre-716

computed before simulating the scenario.717

First, we discretize the space in which the human can move into a grid with cell sizes equal to the718

size of the goal object so that each goal is in one cell. We treat these cells as the states of the MDP719

and allow the human to move to any neighboring cell, receiving a reward of either−0.01 for moving720

to an orthogonally adjacent cell, −0.01
√
2 for moving to a diagonally adjacent cell, −1 for moving721

into an obstacle, or 1 for moving into a goal cell. We set the discount factor to 0.9999 and perform722

softmax value iteration [54] with a softmax temperature of 0.001 to compute the Q-values for each723

state-action pair.724

20



Since we have three goals in a scenario, we compute three sets of Q-values, one corresponding to725

each goal. Each value iteration instantiation treats the scenario’s other goals as obstacles.726

During simulation, the human policy converts the current location of the human into the grid cell it727

belongs to, chooses the next grid cell based on the Q-values corresponding to the current goal, and728

returns the velocity required to move to the center of the next cell.729

In App. G.2, we consider a new setting in which we search over two human model parameters: the730

inverse of softmax temperature (higher values result in a more rational human) and a multiplier to731

the velocity (higher multiplier makes the human move faster).732

F Implementation Details733

We implement surrogate assisted scenario generation in a server-client framework. The server sim-734

ulates a given scenario in OpenRAVE [65] while the client executes QD search to generate new735

scenarios.736

F.1 Scenario Simulation737

We adapt the scenario simulation code from the open-source implementation of shared autonomy738

via hindsight optimization [66] to include the feasible goal set formulation for the shared workspace739

collaboration domain (described in App. E.2) and to simulate generated scenarios instead of a fixed740

one.741

We start a flask server that waits for the client to run QD search and send solutions to evaluate. Once742

we receive a candidate solution, we pass it through the MIP solver and instantiate the objects, the743

robot, and the human in the OpenRAVE simulator.744

We discretize the simulation into ticks, with each tick being divided into three phases that are ex-745

ecuted in sequence: human action selection, robot action selection, and environment simulation.746

Human action selection and robot action selection follow the policy given in App. E.2 and App. E.1747

respectively. In the environment simulation phase, the actions are executed, moving the human and748

the robot to a new state.749

The shared control teleoperation task executes these phases in a loop until the robot reaches the750

intended human goal or the time limit of 10 seconds is reached.751

Since the shared workspace collaboration task consists of multiple steps, the human and the robot752

policies are wrapped into state machines. The human state machine has five states: a) moving to753

a goal; b) waiting for space; c) working on a goal; d) resetting; e) done. The human is initially754

in moving to goal state and simply selects actions according to the human policy. Once a goal is755

reached, the human waits till the goal is free to work on (waiting for space) and then starts working756

on the goal (working on a goal). Once the work is complete, the human switches to the terminal757

state, done, if that was the last goal or moves back to the initial position (resetting). To simulate758

working on the goal and moving back to the initial position, we simply pause the human for a759

specified amount of time. After the reset, the human starts moving to the next goal (moving to goal).760

The robot state machine has six states: a) moving to a goal; b) replanning; c) waiting for space; d)761

working on a goal; e) resetting; f) done. The state transitions are similar to those of the human state762

machine, except for the moving to a goal state. Since the robot can get into configurations close to763

self-collision or joint limits when following a straight line path, it needs to replan back to the start764

before moving again. We simulate this by switching to replanning state, moving the robot back to765

its initial position, and then switching back to moving to a goal state.766

The shared workspace collaboration task ends either after 100 seconds or after both the human and767

the robot reach the done state.768

21



F.2 QD Search769

We implement QD search on the client by modifying the pyribs library [67] and the open-source770

code for DSAGE [21] to match Algorithm 1.771

We implement the inner loop through a pyribs scheduler that interfaces a QD algorithm via two772

functions: ask, which outputs candidate solutions from the algorithm, and tell, which accepts the773

corresponding objective and measures, adds them to the archive, and updates the algorithm param-774

eters. The scheduler interfaces CMA-MAEGA and CMA-MAE for DSAS and SAS respectively.775

The inner loop runs fully on the client, exploiting the surrogate model described in App. B.776

We then select a set of solutions from the surrogate archive and send it to the simulation server for777

evaluation. The objective and measures obtained from the simulation are returned by the server,778

which we add to the ground-truth archive and the dataset.779

For baselines, we use the existing implementation of CMA-MAE and MAP-Elites in pyribs. Addi-780

tionally, for ease of execution, we implement Random Search similar to a QD algorithm in the pyribs781

framework. It simply returns a batch of uniformly randomly sampled candidate solutions whenever782

requested. Since these baselines do not leverage a surrogate model, the candidate solutions are783

always sent to the simulation server for evaluation.784

To include objective regularization, we maintain two archives, the final archive that retains solutions785

maximizing the unregularized objective, and the training archive, which maintains scenarios that786

maximize the regularized objective to guide the QD search. The pyribs scheduler interfaces with787

the training archive, while solutions are directly added to the final archive. For surrogate assisted788

algorithms, the surrogate archive acts as the training archive while the ground-truth archive acts as789

the final archive.790

We include the search details specific to the domains below.791

F.2.1 Shared Control Teleoperation792

In shared control teleoperation, we search over the ⟨x, y⟩ coordinates of two goal objects and five793

noise variables that define the human path towards the goal, creating a 9-dimensional search space.794

We define the measures as the distance between the goals
√
(x1 − x2)2 + (y1 − y2)2, and the vari-795

ation in human input
√
Σ5

i=1θh,i, where θh refers to the five noise parameters in the generated796

solution. Following prior work [1], we assume the ranges of the measures to be [0, 0.32] for the797

distance and [0, 0.112] for variation, and create an archive with 25× 100 cells.798

We adopt the hyperparameters for MAP-Elites from prior work [1], setting the standard deviation799

of perturbation, σ, to 0.01 for parameters corresponding to the goal coordinates and 0.005 for those800

corresponding to the human noise. For CMA-MAE, SAS, and DSAS, we set the initial standard de-801

viation for CMA-ES, σ0, to 0.01, archive learning rate, α, to 0.1, and minimum acceptance threshold,802

minf , to 0. We set all other hyperparameters to their default values defined in pyribs.803

F.2.2 Shared Workspace Collaboration804

In shared workspace collaboration, we search over the ⟨x, y⟩ coordinates of three goal objects, cre-805

ating a 6-dimensional search space.806

The four measure functions in our experiments are defined as follows:807

1. Minimum distance between goal objects (archive range [0.05, 0.32]; discretized into 27808

archive cells): mini̸=j

√
(xi − xj)2 + (yi − yj)2809

2. Maximum wrong goal probability (archive range [0.35, 1]; discretized into 65 archive810

cells): Let b(max)(t) be a function that returns the highest probability assigned by the robot811

to a goal other than the true human goal at time t. Maximum wrong goal probability is812

defined as the maximum value attained by b(max)(t) during the scenario: maxt b
(max)(t).813

22



Table 2: QD-score at the end of 10,000 evaluations.

Shared Autonomy Collaboration I Collaboration II

DSAS 21,400.33± 45.91 106, 874.93± 844.00 19,261.95± 182.57
SAS 21, 043.49± 40.08 112,962.22± 572.96 18,733.82± 182.40
CMA-MAE 17, 972.31± 74.71 87, 399.75± 1, 085.14 15, 612.29± 284.34
MAP-Elites 11, 757.84± 358.31 67, 731.48± 576.30 18,435.18± 398.87
Random Search 9, 647.24± 24.94 62, 376.62± 200.68 13, 856.14± 156.67

0.05 0.32
0.35

1.00

M
ax

 W
ro

ng
 G

oa
l B

el
ie

f P
ro

b DSAS

0.05 0.32

SAS

0.05 0.32

CMA-MAE

0.05 0.32

MAP-Elites

0.05 0.32

Random Search

0

25

50

75

100

Min Distance Between Goals

Figure 8: Comparison of the final archive heatmaps in the collaboration I domain.

3. Robot path length (archive range [1, 5]; discretized into 20 archive cells): Let the robot’s814

trajectory in the scenario be a function τ : [0, 1] → R2, with τ(0) and τ(1) denoting the815

coordinates of the start and end-points respectively. The robot path length is defined as the816

length of this trajectory:
∫ 1

0
∥dτ∥2.817

4. Total wait time (archive range [0, 5]; discretized into 50 archive cells): Let w(t) be a func-818

tion that returns 1 when either the robot or the human state machine is in waiting for space819

state (see App. F.1) and 0 otherwise. Total wait time is defined as
∫ T

0
w(t)dt, where T is820

the total scenario time.821

Note that we approximate the integrals with discrete sums of the corresponding values at each sim-822

ulation tick.823

We tuned the initial standard deviation for CMA-ES, σ0, in the case of CMA-MAE, SAS, and DSAS824

and set it to 1. We also tuned the perturbation standard deviation, σ, for MAP-Elites and set it to 0.1.825

We set α = 0.1, minf = 0, and all other hyperparameters to the default values provided in pyribs.826

In the new setting described in App. G.2, we add two additional parameters to the search: the827

inverse of softmax temperature (higher values result in a more rational human) and the coefficient828

of velocity (higher coefficient makes the human move faster). We limit these parameters to ensure829

that the scenarios are not bottlenecked by an unrealistically slow or irrational human.830

G Additional Results831

We tabulate the results from our experiments in Table 2. We also show the final archives in the832

collaboration I (Fig. 8) and collaboration II (Fig. 9) domains.833

We observe that the archives generated by DSAS and SAS are more densely packed compared to834

other algorithms in collaboration I. In collaboration II, we see that CMA-MAE, SAS, and DSAS835

find fewer solutions in the bottom left part of the archive (mostly corresponding to all goal objects836

in one workspace region) compared to MAP-Elites and random search, but find more and higher837

quality solutions in other parts of the archive which requires placing the goals in multiple regions.838

23



1 5
0

5

To
ta

l W
ai

t T
im

e

DSAS

1 5

SAS

1 5

CMA-MAE

1 5

MAP-Elites

1 5

Random Search

0

25

50

75

100

Robot Path Length

Figure 9: Comparison of the final archive heatmaps in the collaboration II domain.

Table 3: QD-score at the end of 10,000 evaluations.

Teleoperation (Policy Blending) Collaboration I (Human Policy Search)

DSAS 41,249.88± 205.56 106, 573.18± 1, 461.34
SAS 40, 726.15± 300.61 120,789.83± 1,378.82
CMA-MAE 33, 797.07± 1, 455.82 120,687.02± 2,959.76
MAP-Elites 24, 151.97± 836.97 81, 006.04± 2, 483.23
Random Search 19, 850.68± 184.97 65, 513.84± 334.12

G.1 Additional Setting: Shared Control Teleoperation with Policy Blending839

The QD formulation for scenario generation is independent of the robot and human policies. Here,840

we show scenario generation with a new robot policy, policy blending (App. E.1), in the shared841

control teleoperation domain without any modifications to the QD hyperparameters or the surrogate842

model architecture.843

Table 3 shows the QD-score at the end of 10,000 evaluations. We see that the surrogate assisted844

algorithms outperform other algorithms, showing that these algorithms can work across multiple845

robot policies. Note that the maximum time for a scenario was set to 20s, so the QD-scores are846

around twice as large as in the main shared teleoperation experiments.847

G.2 Additional Setting: Shared Workspace Collaboration with Human Policy Search848

In the main shared workspace collaboration experiments, the scenario was only parameterized by849

object locations. However, as described in our problem formulation, scenario parameters can also850

include parameters of the human model. Here, we perform an additional experiment in which we851

search for human model parameters in addition to the object locations to find failures in the collab-852

oration I domain. We add two more scenario parameters related to human speed and rationality as853

described in App. F.2 and run the QD algorithms with no other changes to the hyperparameters.854

We tabulate the QD-scores in Table 3. We see a small increase in the QD-scores of all algorithms855

compared to the main experiments (Table 2), since the QD search can now control the human policy856

to cause failures. Surprisingly, CMA-MAE performs similar to SAS. We hypothesize that this is857

caused by the sensitivity of the scenario outcomes to the human model parameters: Changes to858

human speed or rationality affect the human trajectory much more than changes to goal locations.859

Hence, predicting the trajectory and scenario outcomes is much harder in this setting compared to860

the main experiments. Thus, CMA-MAE, a model-free QD algorithm, performs as well as SAS and861

outperforms DSAS.862

However, the failures broadly fell into the same categories as those found in the main experiment.863

We hypothesize that this results from the bounds of the human policy parameters. Rational and864

fast human actions allow the robot to accurately predict the human’s goal, leading to fast scenario865

completion. On the other hand, we have set the bounds on the parameters to not allow QD search to866

24



make the human unrealistically slow or irrational. Hence, the failures found in this experiment are867

similar to those found with a fixed human policy.868

G.3 Ablation: Effect of Objective Regularization869

In Sec. 4, we proposed objective regularization as a way to guide QD search towards valid workspace870

configurations. While objective regularization benefits general QD search, we note that surrogate871

assisted methods like DSAGE inherit additional benefits. As the surrogate model makes predictions872

for all possible scenarios, and not only scenarios satisfying the workspace constraints, the QD search873

that exploits the surrogate model can move towards high-magnitude inputs in invalid regions of the874

scenario space when these inputs result in high objective values. Objective regularization helps pre-875

vent QD algorithms from exploiting errors in the surrogate model at extreme regions of the scenario876

parameter space.877

To test the effect of objective regularization on performance, we choose the collaboration I domain878

and run 10 trials of DSAS, SAS, CMA-MAE, and MAP-Elites without objective regularization.879

Hence, due to numerical errors resulting from exploiting errors in the surrogate model, none of the880

SAS or DSAS runs without objective regularization could be completed.881

We compare the results of MAP-Elites and CMA-MAE runs with their corresponding runs from the882

previous section that included objective regularization. Pairwise t-tests showed that MAP-Elites per-883

formed similarly with and without regularization, while CMA-MAE performed significantly worse884

without objective regularization (t = −7.08, p < 0.001). We attribute this to the fact that perturba-885

tions of existing solutions in MAP-Elites are not guided by the objective values. On the other hand,886

CMA-MAE guides the search based on the objective improvements of the sampled solutions; hence887

objective regularization has a significant effect on performance.888

H Additional Real World Scenarios889

Incorrect human goal inference with limited effect on robot motion (Fig. 5b): We select a scenario890

from the archive generated by SAS with a relatively average scenario time of 77s and a very high891

maximum wrong goal probability of 0.9.892

The human finishes working on G1 and the robot on G2. As the human moves towards G2, the robot893

incorrectly thinks that the human is moving to G3, which is near the optimal path to G2, causing894

the robot to slow down in anticipation of the human motion. After the human reaches G2, the robot895

continues moving to G3. Hence, the incorrect prediction does not affect the overall scenario time896

much.897

Long wait time due to both teammates needing to work on the same goal (Fig. 5d): Finally, we select898

a scenario from a DSAS archive in the collaboration II domain that has a high human and robot wait899

time.900

This scenario was simple, albeit unanticipated. The human goes to G1, followed by G2, while the901

robot goes to G2, followed by G1. The team coordinates smoothly until both agents need to work902

on G3 to finish the task, causing a delay.903

I Scenarios with High Team Performance904

In addition to finding failures, QD scenario generation can also find scenarios that are ideal for905

human-robot collaboration. As an example, we modified the objective function in the collaboration906

I domain to 100−T , with T being the scenario completion time that has a maximum value of 100s.907

We ran SAS, which performed the best in this domain, and visualized example scenarios. We found908

two main types of success scenarios:909

Objects placed far apart to avoid confusion (Fig. 10a): The first type of success involved placing910

the objects far apart to allow accurate goal inference. However, placing them too far would require911

25



(a) High Team Performance Scenario 1 (b) High Team Performance Scenario 2

Figure 10: Examples of scenarios with high team performance. The purple line shows the simulated
human path.

the human and the robot to move a lot, delaying completion. This scenario balanced these trade-offs,912

leading to a relatively short robot path length of 1.7m, a low maximum wrong goal probability of913

0.4, and a fast completion time of 38s. The resulting goal completion order also avoided the failure914

found in Fig. 5d.915

Objects placed close together to quickly change goals (Fig. 10b): The second type of success ignored916

making goal inference easier but instead made it easier for the robot to correct itself if required.917

Since the goals are close to each other, the robot can start moving towards them irrespective of918

human actions. Once the human starts working on a goal, the robot can quickly switch to a different919

goal. Despite having a high maximum wrong goal probability of 0.8, this scenario only took 31s to920

complete.921

26


	Algorithm: Differentiable Surrogate Assisted Scenario Generation
	Surrogate Model Details
	Evaluating the Surrogate Model Predictions

	Mixed Integer Program for Repairing Scenarios
	Variables and MIP Objective
	Constraints

	Domains
	Shared Control Teleoperation
	Shared Workspace Collaboration

	Human and Robot Policies
	Robot Policy
	Shared Control Teleoperation
	Shared Workspace Collaboration

	Human Policy
	Shared Control Teleoperation
	Shared Workspace Collaboration


	Implementation Details
	Scenario Simulation
	QD Search
	Shared Control Teleoperation
	Shared Workspace Collaboration


	Additional Results
	Additional Setting: Shared Control Teleoperation with Policy Blending
	Additional Setting: Shared Workspace Collaboration with Human Policy Search
	Ablation: Effect of Objective Regularization

	Additional Real World Scenarios
	Scenarios with High Team Performance

