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A EXPERIMENTAL DETAILS

Model. See Fig. 3 for an overview of the model. The encoder and the decoder of the VAE are
simple three-layer MLPs (multilayer perceptrons). Given a protein with M backbone atoms, the
encoder takes (2 ⇥ M � 5) ⇥ 2 inputs, corresponding to (M � 3) dihedrals and (M � 2) bond
angles which are fed in as pairs of (sin, cos) inputs to avoid periodicity issues. Similarly, the decoder
yields (2 ⇥ M � 5) ⇥ 2 outputs, which can be converted to angles in the [�⇡,⇡] interval using
the 2-argument arctangent (atan2). The MLP linear layer sizes of the encoder are [128, 64, 32],
mapping to a 16-dimensional latent space, and layer sizes of the decoder are [32, 64, 128] (reverse of
the encoder).

We use a standard U-Net (Ronneberger et al., 2015) to predict atom fluctuation constraints � from the
mean predictions that the decoder outputs. The predicted mean for the internal degrees of freedom
µ is translated into a mean structure µx using pNeRF (AlQuraishi, 2018), from which we calculate
a pairwise distance matrix. This M ⇥M matrix with a single “channel” serves as the input to the
U-Net, which scales the number of channels up to 1024 in four steps before scaling back down to one
channel in four steps.

All datasets were split 90%-10% into a training and validation set. The best model is selected based
on the validation loss. The weights for the -prior and auxiliary loss were explored with grid search
(see Appendix D), values chosen for the models reported in the main paper are shown in Table A1
together with other experimental details. The model training starts with a warm-up phase in two
different ways: 1) predicting µ only, with ⌃ = I and 2) linearly increasing the weight of the
KL-term from 0 to 1. Proteins in the low data regime (unimodal setting) have a 100 epoch mean-only
warm-up and a 200 epoch KL warm-up, while proteins in the high data regime (multimodal setting)
have a 3 epoch mean-only warm-up and an 8 epoch KL warm-up. All models were trained using an
Adam optimizer with a learning rate of 5e�4, on a Nvidia Quadro RTX (48GB) GPU.

Final metrics are calculated on structures sampled from the model. For the evaluation in the unimodal
setting, the number of samples was chosen to be equal to the total number of data points (25, 41
and 400 for 1unc, 1pga and 1fsd, respectively). For the multimodal cases, 400.000 samples were
drawn for TIC analysis. TICA was done using the Deeptime library (Hoffmann et al., 2021), using
a lagtime of 100 and reducing the high-dimensional input to two dimensions. The TICA model is fit
on the reference data (ordered in time), from which the resulting linear map is stored and applied to
sampled structures from the VAE and baselines. All structure visualizations were done using PyMOL
(Schrödinger, version 2.5.2).

Table A1: Experimental details for test cases.

# train # validation # residues # epochs batch size a waux

1unc 23 2 36 1000 32 50 1

1fsd 37 4 28 1000 32 25 1

1pga 360 40 56 1000 32 50 25

cln025 481269 53474 10 50 64 25 50

2f4k 565117 62790 35 50 32 50 1

Molecular dynamics details. The molecular dynamics simulation for 1pga was done in OpenMM
(Eastman et al., 2017), using an Amber forcefield (Maier et al., 2015), water type TIP3P, box geometry
“rhombic dodecahedron” and a padding of 1 nm on each side of the solvated protein (i.e. 2 nm in
total). The simulation is 20ns in total with a 50ps time lag, giving 400 structures. For MD details on
cln025 and 2f4k we refer the reader to Lindorff-Larsen et al. (2011).
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B QUANTITATIVE RESULTS

B.1 UNIMODAL SETTING, LOW DATA REGIME

Table A2: MSE (lower is better) to reference for atom fluctuations, unimodal setting.

VAE -prior (fixed) -prior (learned) Standard estimator Flow

1unc 0.021 2.080 0.013 5.888 122.490

1fsd 0.585 13.949 12.732 9.666 107.052

1pga 0.040 3.654 1.709 1154.914 3157.693

B.2 MULTIMODAL SETTING, HIGH DATA REGIME

Table A3: Jensen-Shannon distance (lower is better) between binned Boltzmann distributions, i.e.
exp

⇣
� free energy

kBT

⌘
, comparing VAE and baselines to the reference, multimodal setting.

VAE -prior (fixed) -prior (learned) Standard estimator Flow

cln025 0.456 0.539 0.606 0.686 0.194

2f4k 0.373 0.297 0.342 0.517 0.183
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C VAE SAMPLING

C.1 COMPARING CONSTRAINTS TO ATOM FLUCTUATIONS ACROSS SAMPLES

As derived in Eq. (9), we can evaluate the constraint value Cm for each atom m given a set of
Lagrange multipliers. These constraints were placed on the squared atom displacements, which is
equivalent to the variance along the atom chain. Fig. A1 demonstrates that the isotropic fluctuations
of 400 1pga samples drawn from the VAE are indeed quite close to C calculated from 400 separately
sampled sets of Lagrange multipliers. Since the constraints are placed on non-superposed (i.e.
not structurally aligned) protein structures3, this plot shows the variance along the atom chain for
non-superposed structures.
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Figure A1: Variance along the atom chain for non-superposed 1pga structures sampled with the VAE
(orange) compared to constraints C calculated from predicted �-values (grey dashed). Secondary
structure element locations are indicated.

C.2 VISUALIZATION OF SAMPLED STRUCTURES IN THE UNIMODAL SETTING

Fig. A2 shows sampled superposed ensembles for our model and baselines, as well as the MD/NMR
reference. This demonstrates that VAE samples, where global constraints were enforced, generally
have globally consistent fluctuations compared to the reference data. In contrast, the baselines tend to
exhibit fluctuations that are too large, which can lead to unphysical structures containing crossings
and, in some cases, lacking secondary structure elements.

3Sampled protein structures are built using pNeRF(AlQuraishi, 2018), which builds the chain step-by-step,
thereby corresponding to our post-rotational constraints.
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Figure A2: Visualization of ensembles for reference data, the VAE model and baselines for 1pga,
1fsd and 1unc. Number of samples is equal to the reference ensemble (400, 41 and 25 for 1pga, 1fsd
and 1unc, respectively.)
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C.3 LATENT SPACE VISUALIZATION IN THE MULTIMODAL SETTING

In this section, we visualize the VAE latent space in the multimodal setting (cln025) in Fig. A3.
Moreover, we demonstrate how 100 random samples from latent space map to structure samples
in the TICA free energy landscape, and show the 3D structures that correspond to these samples.
Transitions from the native state to more unfolded conformations can be observed when going from
the cluster in the top right of TICA space towards the left. Depending on ⌃̃, fluctuations around the
means (which are decoded from the latent space samples) can vary in size. Therefore, means that
are close together in terms of latent space location do not necessarily lead to sampling similar 3D
structures. Moreover, we used a UMAP to reduce the number of latent dimensions from 16 to 2, and
this simplified representation might not capture the full complexity of the latent space. Nonetheless, it
is apparent that more unfolded structures largely originate from the rightmost cluster in latent space.
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Figure A3: Top left: UMAP reduction to 2D of the originally 16-dimensional VAE latent space, with a
100 samples shown in random shapes and colors. The grey scatterplot depicts the aggregated posterior,
with the KDE of the aggregated posterior as grey lines. Annotated green numbers correspond to
boxes in the TICA free energy landscape (all structures corresponding to box 1 are left unlabelled to
avoid clutter). Top right: structure samples corresponding to latent space samples visualized in TICA
space with the same symbols and colors as the latent space samples. Samples are grouped together in
green numbered boxes. Bottom row: 3D structures corresponding to the different numbered boxes in
the TICA plot.
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D ABLATION FOR HYPERPARAMETERS

The two main hyperparameters that need to be chosen in the VAE setting are the strength of the
-prior a, and the weight of the regularizing loss waux. These two weights can be set to prioritize
local or global constraints in different ways. We demonstrate the effect on a unimodal case (protein
G, 1pga) and a multimodal case (chignolin, cln025). In both cases, results are shown for a gridsearch
over a = [1, 25, 50] and waux = [1, 25, 50].

D.1 UNIMODAL

Fig. A4 shows results for the ablation on a and waux in the unimodal setting. Increasing the strength
of the -prior through a while keeping waux constant corresponds to narrower distributions in the
Ramachandran plot and bond angle distributions. A higher weight waux for a constant a leads to
stronger global constraints, as demonstrated by the fluctuations along the atom chain.

D.2 MULTIMODAL

To understand the impact of hyperparameters in the multimodal setting, we first consider the impact
on samples drawn from the VAE that was trained with a fixed -prior, which depends on hyperpa-
rameter a. Fig. A5 illustrates how the distribution in the TIC free energy landscape changes when
strengthening the prior. For a = 1, there is a preference towards the metastable cluster on the top left,
while increasing the value of a leads to a stronger preference for the lowest energy cluster on the top
right.

When sampling from the VAE, where constraints are imposed on top of the -prior, there is interplay
between a and waux, as shown in Fig. A6. Even though the exact trend is less clear here, the relative
values of the hyperparameters have an observable influence on e.g. the width of the ”bridge” between
the topmost two clusters, the size of the higher-energy downward extrusion of the top left cluster, and
the spread towards the less populated cluster on the bottom right.
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Figure A4: Ablation of a and waux for protein G (1pga, structure shown at top left). From left to
right: precision matrix example predicted by the VAE, Ramachandran plot, bond angle distributions,
fluctuations along the atom chain (secondary structure elements indicated, VAE -prior (fixed) out of
scale for a = 1).
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Figure A5: Influence of hyperparameter a on samples drawn from the VAE with a fixed -prior
(without imposing constraints) for chignolin (cln025), visualized in TIC space.
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Figure A6: Hyperparameter ablation of a and waux VAE samples for chignolin (cln025), visualized
in TIC space.
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