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APPENDIX

A  RELATED WORK

In this section, we introduce deepfake generation techniques, deepfake detection algorithms and
existing evaluation approaches and their limitations.

A.1 DEEPFAKE GENERATION TECHNIQUES

Deepfake generation technologies can be categorized into the following four major types: Face
Swapping, Facial Reenactment, Facial Attribute Manipulation, and Entire Face Synthesis. Face
Swapping is used to replace face A in the target image with face B in the source image. The
most popular face-swapping algorithms are FaceShifter (L1 et al.l 2019), FSGAN (Nirkin et al.,
2019), SimSwap (Chen et al., [2020), and MegaFS (Zhu et al |2021). Facial Reenactment is used
to reenact the facial expressions and movements of a target video on the face in a source image.
Face2Face (Thies et al., 2016}, Neural Textures (Thies et al., 2019), DG (Hsu et al.l [2022), and
HyperReenact (Bounareli et al., 2023) are classical algorithms for achieving Facial Reenactment.
Facial Attribute Manipulation is also known as face editing. It is used to modify the attributes of
a human face, including gender, hair color, age, etc. Many studies pay attention to this category,
such as STGAN (Liu et al. [2019), StarGAN2 (Choi et al. 2020), and FDNeRF (Zhang et al.,
2022). Entire Face Synthesis is used to generate non-existent human face images or videos. The
classical algorithms are ProGAN (Gao et al} 2019), StyleGAN (Karras et al., [2019), StyleGAN-
v (Skorokhodov et al., 2022). Please note that Entire Face Synthesis can generate videos, such as
StyleGAN-v (Skorokhodov et al,2022)). Large Multimodal Models, which are based on diffusion
models, have become popular in recent years for generating images and videos. These include
two generation categories: text-to-image and image-to-video. Due to their realistic effects, they are
widely used in face synthesis. Stable Diffusion (Rombach et al.| 2022a)), Mini-dalle3 (Zeqiang et al.,
2023)), and Stable Video Diffusion (Blattmann et al., [2023)) are widespread Algorithms.

A.2 DEEPFAKE DETECTION ALGORITHMS

Detection algorithms can be categorized into three types based on detection cues: data-driven detec-
tors, spatial artifact-based detectors, and frequency artifact-based detectors. Data-driven detectors
use a large dataset of real and fake data (images and videos) to train the detection algorithm to learn
the differences between real and fake images. The well-trained model is then used to detect the
authenticity of images. Classical detectors are MesoNet (Afchar et al., | 2018)), EfficientNet-B4 (Tan
& Lel [2019), Capsule-forensics (Nguyen et al., [2019b), and Xception (Rossler et al.l [2019). This
type of detector is relatively simple in design but heavily relies on the training data. If the test data
significantly differs from the training data, the detection performance will degrade substantially.
Spatial artifact detectors take image inconsistencies as clues for detection. Techniques related to
Face Swapping, Facial Reenactment, and Facial Attribute Manipulation usually only forge the facial
region of an image, leaving other non-facial background areas unchanged. This leads to incon-
sistencies between the modified and unmodified regions. Many inconsistencies have already been
studied, such as color space (He et al.l [2019), saturation cues (McCloskey & Albright, 2019), and
noise (Wang & Chow| [2023). The advantage of these detectors lies in their stronger generalization
capabilities compared to data-driven detectors. Frequency artifact detectors first transform images
from the time domain to the frequency domain. Then, they draw the detection conclusion by ex-
amining whether the frequency domain features are abnormal. There are many studies in this field,
such as F3-Net (Qian et al.|[2020), FDFL (L1 et al.l 2021b), and FreqNet (Tan et al., 2024).

A.3 EXISTING EVALUATION APPROACHES AND THEIR LIMITATIONS

Currently, several studies have been proposed to survey and evaluate the performance of detection
algorithms (Masood et al., [2023} Juefei-Xu et al., 2022; |Pei et al., 2024; [Seow et al., |2022} [Deng
et al., 2024 |Yan et al.| [2023b)

Studies (Masood et al.||2023; Juefei-Xu et al., 2022} |Pei et al.| 2024} [Seow et al.,[2022) are surveys
on deepfake. These studies organize deepfake generation and detection algorithms, categorize them
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according to their characteristics, and summarize the highlights and limitations of each algorithm.
However, the authors compare and analyze detection algorithms only from the performance results
recorded in the corresponding papers.

Research (Deng et all) [2024) finds that evaluation performance varies for the same detector and
database. This inconsistency may be due to the varying conditions between studies. Therefore,
they propose a fair benchmark to measure the performance of a range of detectors. The authors
also generate self-generated examples using two face-swapping algorithms to build a private dataset
containing 25,697 fake images as hard examples for detector evaluation.

DeepfakeBench (Yan et al.,|2023b) also proposes a unified pipeline for processing public datasets to
ensure fairness in evaluating detectors. In addition, the authors advocate for standardized evaluation
metrics and protocols to enhance transparency and reproducibility. In the Evaluation section, they
conduct practical tests on domain and manipulation generalization using processed data and assess
robustness against image augmentation.

Howeyver, none of these studies focus on attribute bias assessment, adversarial attack resilience eval-
uation, or forgery localization accuracy evaluation. The only study that constructs a private dataset
uses just two types of face-swapping on two databases for forgery, without generating other types of
fake data as hard examples, and without including fake data from large multimodal models for de-
tector evaluation. Therefore, an up-to-date detection evaluation platform that fully considers current
conditions and developments is essential.

B PROPOSED EVALUATION FRAMEWORK

To comprehensively evaluate deepfake detection algorithms, we propose a comprehensive Deepfake
Detector Assessment Platform (DAP), which covers 27 evaluation tasks related to six critical di-
mensions. The six dimensions are Benchmark Performance Evaluation, Forgery Algorithm Gen-
eralization Assessment, Image Distortion Robustness Assessment, Adversarial Attack Resilience
Evaluation, Forgery Localization Accuracy Evaluation, and Attribute Bias Assessment. The six
dimensions assess the basic performance, generalizability, robustness, security, localizability, and
fairness of deepfake detection algorithms. Each dimension consists of 2-8 evaluation tasks. The
platform prepares task-specific data for each task through the corresponding strategy.

B.1 BENCHMARK PERFORMANCE EVALUATION

In Benchmark Performance Evaluation, we evaluate a detection algorithm through public databases
related to four categories: Face Swapping, Facial Reenactment, Facial Attribute Manipulation, and
Entire Face Synthesis. We will introduce the evaluation of benchmark performance from the follow-
ing two aspects: (1) Public Databases and Pre-processing and (2) Standardized Evaluation Metrics.

B.1.1 PUBLIC DATABASES AND PREPROCESSING

To evaluate the detection algorithm, we first downloaded seven popular public databases from the In-
ternet, including FaceForensics++ (Rossler et al.,|2019), Celeb-DF-v1 (Li et al.,|2020b)), Celeb-DF-
v2 (L1 et al., 2020b), FakeAVCeleb(Khalid et al., |2021)), DeeperForensics-1.0 (Jiang et al., |2020),
DFFD (Dang et al., 2020), and DFDC (Dolhansky et al., |2020).

Public databases are various from each other. The original data may be videos or images. Some
of the images are full of faces, but others have large areas of background. For a piece of video,
it is common to divide it into a series of frames and save them as images. Then a face area is
cropped from a frame if the face area is far smaller than the area of the frame. Finally, the detection
algorithm judges whether the face area is generated. Although most people follow the above three
steps to perform detection, the experiment results are different seriously for the same detection and
public database. The main reason is the details of database pre-processing. When a video is divided
into frames, we can choose I-, P-, or B-frame as the target frame and decide the interval for video
frame extraction. When a face area is cropped from an image or a frame, many face detection and
location algorithms can be selected. The relative cropping area for a single face may not follow a
unified standard.
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B.1.2 PROPOSED PUBLIC DATABASE PRE-PROCESSING PIPELINE

For the sake of fairness, it is important to keep the same evaluation data for each detection algorithm.
We analyze different public databases and design a standard data pre-processing pipeline that covers
videos and images. Through this pipeline, we process seven selected databases and save all results
into images of faces.

Figure[3|shows the public database pre-processing pipeline, including 4 steps: (1) Frame Extraction;
(2) Face Detection and Face Area Localization; (3) Face Area Enlarging; and (4) Enlarged Face Area
Cropping.

The original data selected from a public database may be an original image or an original image.
Step 1: Frame Extraction For a video, the pipeline performs Frame Extraction, and gets a series
of frames. FFmpeg libraries are implemented during this step because FFmpeg is one of the most
popular tools for dealing with videos. Please note that the pipeline does not consider the class (I-
, P-, or B-frame) of extracted frames. Instead, the pipeline extracts a frame every n frames. As
a evaluation platform, it is important to avoid data bias. If the pipeline extracts frames all from
one class, such as I-frame. The deepfake detection algorithm may enhance the detection only for
I-frames but ignore the performance of P- and B-frames. The evaluation results may seem good. In
fact, when facing other manipulated videos with forgeried frames of B- or P-frames, the performance
of this detection algorithm will drop. The parameter n can be set for different databases according
to the practicality and kept secret.

Step 2: Face Detection and Face Area Localization The pipeline detects the face in an original
image from public databases or a frame extracted from a video. If a face is detected, the pipeline
will get its location. The pipeline locates faces through Retaniface algorithm which is one of the
most popular human face detection algorithms.

Step 3: Face Area Enlarging After getting the face location, the pipeline enlarges the scope of the
detected face area through Faceinsight. Otherwise, the original detected face area could not include
the outline of the face, such as ears. The red bounding box is the detected face area and the blue
bounding box is the enlarged face area.

Step 4: Enlarged Face Area Cropping The pipeline crops the enlarged face area from an image
or an extracted frame. Then the pipeline saves the cropped image in a lossless compression format,
such as PNG.

Through the proposed public database pre-processing pipeline, both videos and images can be pro-
cessed and saved in a unified format.

B.1.3 STANDARDIZED EVALUATION METRICS

We adopt a variety of standardized evaluation metrics to comprehensively measure the performance
of each detection algorithm, including Accuracy (Acc), Precision (Pre), Recall (Rec), F1-score (F1),
Area Under the ROC Curve (AUC), Equal Error Rate (EER), ROC curve, Precision-Recall Cure,
and confidence difference.

B.1.4 DATA PREPARATION AND EVALUATION

To evaluate the detection performance of the detection algorithm for different types of deepfake,
the evaluation platform categorizes various public databases into four types: Face Swapping, Facial
Reenactment, Facial Attribute Manipulation, and Entire Face Synthesis. Each type may contain
multiple public databases. For example, Face Swapping contains six public databases: FaceForen-
sics++, Celeb-DF-v1, Celeb-DF-v2, FakeAVCeleb, DeeperForensics-1.0, and DFDC. During the
evaluation, for each deepfake category, the platform feeds the pre-processed public database data
into the detection algorithm and obtains the corresponding evaluation results. By analyzing the
detection results, the platform calculates various standardized evaluation metrics for the detection
algorithm under different deepfake types, establishing a baseline for detection performance.
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B.2 FORGERY ALGORITHM GENERALIZATION ASSESSMENT

To evaluate the generalization performance of a deepfake detection algorithm, the evaluation plat-
form proposes Forgery Algorithm Generalization Assessment. Five deepfake types are included in
this evaluation. Except for four deepfake types in Benchmark Performance Evaluation, Large Multi-
modal Model is included as the fifth deepfake type. Similar to Benchmark Performance Evaluation,
each deepfake type corresponds to specific evaluation data. However, in this case, the fake data is
entirely generated by the evaluation platform itself.

B.2.1 FAKE TYPES AND FORGERY ALGORITHMS

To achieve this, we select 16 popular deepfake generation and manipulation algorithms, covering
the aforementioned five deepfake types. These algorithms were successfully deployed, and the
corresponding fake data were generated and saved. For Face Swapping, we choose FaceShifter,
FaceDancer, and MobileFaceSwap as the manipulation algorithm. The evaluation platform ran-
domly selects a pair of human face images and gets a face-swapped image through a Face Swapping
algorithm. For Face Reenactment, we choose HyperReenact and DGFR as the manipulation al-
gorithm. The evaluation platform randomly selectes a human face image (FA) and a human face
video (HV) as a source-target pair. Then the platform reenacts the facial movement of the human
face video (FV) for the human face image (FA). For Facial Attribute Manipulation, we choose
StarGAN-2 and STGAN as the manipulation algorithm. The evaluation platform randomly selects
a pair of human face images and transforms the style from image A to image B with StarGAN-2.
For STGAN, the evaluation platform randomly selects a human face image and the attribute needs
to be manipulated. Then an attribute-manipulated human face image is generated and saved. For
Entire Face Synthesis, we choose ProGAN, StyleGAN-2, StyleGAN-3, and StyleGAN-V as the
generation algorithm. The input of these deepfake generation algorithms is a random number. The
output of the first three algorithms is human face image. The output of StyleGAN-V is a video. For
Large Multimodal Model, we choose Stable Diffusion, DALLE mini, LDM, DALLE3 mini, and
Stable Video Diffusion as the generation algorithm. The first four algorithms can generate images
according to prompts. For example, the platform can input a prompt “photo of a smiling young
woman” into these algorithms. Then a photo of a young female with a smiling expression will be
obtained. Stable Video Diffusion can generate a video using an image.

B.2.2 FAKE DATA GENERATION PIPELINE

After deploying the deepfake generation and manipulation algorithms, the platform can use im-
ages and videos from public databases as sources for various types of forgeries. Figure [ shows
the pipeline of fake data generation and manipulation. To avoid redundant descriptions, we have
reclassified the various forgery methods based on the type of input sources into the following six
categories: (1) Double Images: Two images are inquired to perform a manipulation or generation,
such as part of algorithms of Face Swapping and Facial Attribute Manipulation. (2) Single Image
and Single Video: When performing a Manipulation or fake data generation, a human face image
and a video are needed as the input data. It is usually used for algorithms of Facial Reenactment.
(3) Single Image and Attribute Information: The input of manipulation requires not only an im-
age but also attribute information. The algorithm modifies the attribute of the human face in the
image according to the attribute information. For example, the platform can change the hair color
from brown to black and keep other attributes remain. (4) Only Single Image: No other inputs are
required except for a human face image. It is common for algorithms of image-to-video, which is
categorized into Large Multimodal Model in Section[B.1.3] (5) Only Prompt: No image or video is
needed as the input for fake data generation. Algorithms generate fake data only through the input
prompts. (6) Only Random Number: Similar to Only Prompt, there is no need to prepare images or
videos for fake data generation. A random number is the only input for image or video generation,
which is common for Entire Face Synthesis.

All image outputs are saved in lossless compression format. For generated videos, the platform
extracts frames through FFmpeg.
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B.2.3 EVALUATION DATA PREPARATION

For generalization Evaluation, the platform selects 10 public databases: FaceForensics++, Celeb-
DF-vl1, Celeb-DF-v2, FakeAVCeleb, DeeperForensics-1.0, DFFD, DFDC, VGGFace?2, CelebA, and
VidTIMIT. For each deepfake type, the Evaluation platform prepares real data original from public
databases and fake data generated itself. Please note that the original fake data of all public databases
are ignored in this evaluation.

Real data: For source image-specific manipulation (Double Images, Single Image and Single Video,
Single Image and Attribute Information, Only Single Image), the real data can be selected from the
database of the source image. Because the source images and the manipulated images are original
from the same data domain, the difference between the two groups of images is slight. As a result,
this is the most challenging setting.

For no source image-specific fake data generation (Only Prompt and Only Random Number), there
is no corresponding real data. The evaluation platform uniformly samples real data from 10 public
databases as representative real data in the wild.

Fake data: For source image-specific manipulation, the platform uses different deepfake algorithms
to generate fake data based on real data from public databases. Facial reenactment needs both images
and videos. Part of databases can not be manipulated, because they only contain images without
videos.

For no source image-specific fake data generation, the platform generates a large amount of fake
data through different random numbers and prompts.

B.2.4 GENERALIZATION ABILITY EVALUATION

Through the above generation pipeline, the platform obtains the prepared real and fake data for
each deepfake type. These data are sourced from different databases and cross-manipulated through
different algorithms. To a large extent, it simulates the complex forgery situation in the real world.
Therefore, this evaluation can test the detection algorithm’s performance on forgery techniques that
may have never been encountered before and obtain more objective generalization evaluation results.
The evaluation metrics are those mentioned in Section [B.1.3

B.3 IMAGE DISTORTION ROBUSTNESS ASSESSMENT

The robustness of a deepfake detection algorithm is very important, because the data to be detected
may undergo unexpected distortions which affects the detection results. The images and videos
spread on the internet, whether real or fake data, are likely to undergo a certain degree of com-
pression. The compressed data is different from the original data. Images and videos may undergo
certain optimizations before release, such as adjusting brightness, contrast, color, etc. Besides, some
people intentionally add some noise or perform blur processing to evade detection algorithms

B.3.1 COMMON IMAGE DISTORTIONS

We have analyzed and listed various possible image distortions in reality, and selected the following
9 types as common image disruptions: Compression, Brightness, Contrast, Flip, Rotation, Color,
Sharpness, Blur, and Noise. Figure [IT|shows the overview of common image distortion for a fake
image. Please note, image distortion affects not only fake images but also real images, such as
Compression on the Internet. Therefore, the platform performs image common distortion both for
real and fake images.

Compression: Compression is an important factor affecting the robustness of detection algorithms.
Because the compressed data and the original data are usually not within the same data domain,
learning-based detection algorithms may not have learned the difference between compressed real
and fake data. As a result, the detection algorithm will perform high false or missed detection rates.
To evaluate the robustness of the detection algorithm to compression, the platform compressed the
original images to JPG format in eight degrees: 0.99, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, and 0.50.
We can observe how the algorithm’s robustness changes with the compression rate according to the
series of results.
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Figure 11: Overview of Common Image Distortions

Brightness, Contrast, sharpness, and Color: These distortions belong to the basic photo color
adjustment and are often used to beautify photos and enhance their appearance. Manipulated and
generated images often require further modification to make it difficult for the human eye to detect.
There are many degrees of these four types of image distortions. For each type of distortion, we
take two degrees with greater change effects (-50% and +50%) to make it easier to see whether the
detection algorithm can resist the impact of these distortions.

Flip and Rotation: Most human faces in public databases are in a front direction, with little rota-
tion or flipping. However, in practice, many facial regions in the tested image are not in the front
direction. If the detection algorithm does not consider situations other than the front direction during
training, it may not be able to accurately perform detection. Flip adopts two methods: from left to
right and from top to bottom. The rotation uses four clockwise rotation degrees: 45°, 135°, 225°,
and 315°.

Blur and Noise: These distortions are not commonly used in image beautification, but are often
used to hide forgery defects and evade deepfake detection. Due to the poor adaptability of the
manipulation algorithm to the target facial image, some of the fake faces have some easily detectable
flaws. Therefore, in order to make the forged result look more like a natural face, the person who
created the fake image will blur the forged result and hide the manipulated details. The evaluation
platform uses Gaussian, Mean, and Medium filters to achieve blur effects. To prevent the fake
face from being detected by the detection algorithms, the person who manipulated the image will
add noise to the image to interfere with the deepfake detection algorithm and attempt to escape
the forgery detection. To simulate this situation, we added noise in the form of Gaussian, Salt and
Pepper, and even tokens.

B.3.2 EVALUATION DATA PREPARATION

To evaluate the robustness of the detection algorithm against the aforementioned common image dis-
tortions, the platform needs to generate nine types of distortion results for the existing real and fake
data. In this section, the platform uses the pre-processed public database data from Section [B.1.3]as
the source data for distortion.

B.3.3 ROBUSTNESS EVALUATION UNDER DISTORTIONS

The platform inputs data processed with common image distortions into the deepfake detection
algorithm under test. Then the evaluation results across 28 sub-items within 9 major categories are
obtained. Then, the evaluation metrics for each type of distortion are calculated using the method
described in Section [B:1.3] Finally, by comparing the evaluation results before and after common
image distortion, we can analyze the trends and degrees of change to draw evaluation conclusions.
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Through the image distortion robustness assessment, the platform can systematically evaluate the
detection performance of the algorithm under different types and degrees of distortions, facilitating
the analysis of its robustness. This assessment can also be used to evaluate the effectiveness of
strategies against image distortions, such as data augmentation and adversarial training, thereby
improving the algorithm’s stability in real-world applications.

B.4 ADVERSARIAL ATTACK RESILIENCE EVALUATION

This section is primarily used to evaluate whether the deepfake detection algorithm can resist ad-
versarial attacks designed to evade deepfake detection. We have discussed some methods, such as
blur, to hide forgery defects and fool deepfake detection algorithm in Section But those are
only based on common image distortions. In this section, the platform addresses more advanced
learning-based adversarial attacks, including image reconstruction and adversarial perturbation at-
tacks.

B.4.1 ADVERSARIAL ATTACK GENERATION

Figure [5| shows the pipeline of adversarial attack. When there are no adversarial attacks, a manipu-
lated or generated face image is easy to detect as a fake image. However, when adversarial attacks
are implemented, images that should be detected as fake may be incorrectly classified as real.

Both image reconstruction and adversarial perturbation attacks have two main objectives: (1) The
image after the attack should appear as similar as possible to the image before the attack. (2) The
detection algorithm should be highly likely to classify the fake image as a real image.

Image Reconstruction: The detection algorithm identifies fake images primarily by detecting
forgery traces within the image. If these traces are removed, the fake images can evade deepfake de-
tection. Autoencoder can be used to reconstruct an image with minimal visual differences between
the original and reconstructed images (Neves et al.| 2020).

Adversarial Perturbation: In contrast to image reconstruction, this method does not remove the
forgery traces but instead interferes with the detection algorithm by adding an adversarial perturba-
tion (L1 et al} |2021a)), leading to misclassification. The adversarial perturbation can be specifically
generated for a particular detection algorithm, or it can be a general adversarial perturbation with
strong generalization capabilities. Please note that the adversarial perturbation can be added not
only after the fake image is generated, but also within the latent space layer.

B.4.2 EVALUATION DATA PREPARATION

To facilitate comparison with performance metrics before the adversarial attack, the platform uses
the pre-processed public database data from Section [B.T.3] Unlike the image common distortion
in Section the platform does not need to perform adversarial attacks on all data, because the
real image is real and does not require additional processing. Therefore, only the forged data is
processed. The relevant data from the public databases is subjected to image reconstruction and the
addition of adversarial perturbation. These adversarial forged data are then combined with the real
data to form the evaluation database.

B.4.3 RESILIENCE EVALUATION AGAINST ATTACKS

The platform evaluates the detection algorithm using organized evaluation data and obtains its eval-
uation results for different types of adversarial attacks. Then, we can compare the evaluation results
with those without adversarial attacks and study the defense strategies, such as adversarial training,
input conversion, model integration, etc., to improve its robustness against adversarial attacks.

B.5 ATTRIBUTE BIAS ASSESSMENT

This section is mainly used to evaluate whether the detection algorithm has a bias toward a certain
attribute. The detection algorithm may not only have a bias in deepfake type of test data but may also
have a bias in certain attributes. For example, when a detection algorithm is trained on a database
consisting entirely of males, it may not be possible to accurately perform a detection when the test
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Figure 12: Overview of Attributes

data is a female. If the attribute bias of the detection algorithm is clear, proper improvements can
be made to address the existing drawbacks. At the same time, it is also a timely reminder that
inappropriate detection tasks with a basis should be avoided. Therefore, compared to evaluating the
implicit bias of the deepfake category, the evaluation of explicit attribute bias is more important for
practical implementation.

B.5.1 VARIOUS ATTRIBUTES

We selected five attributes for evaluation, including Camera Angle, Gender, Ethnic Group, Expres-
sion, and Lighting Condition. Each Attribute contains 2-8 different categories.

Camera angle: This refers to the camera angle relative to the target when taking photos. The camera
captures images from different angles. To evaluate whether the deepfake detection algorithm suffers
detection bias for certain camera angles, the platform organizes the relevant data into 7 categories
based on different camera angles, including Front, Up, Down, Left, Left front, Right front, and
Right.

Gender: The platform also divides the data from public databases into two categories: Female and
Male Then the platform can evaluate whether the detection algorithm has a bias in detecting gender.

Ethnic group: In this category, the platform divides data by ethnic group to evaluate whether de-
tection algorithms have detection bias for ethnic groups. For example, when training detection
algorithms, the database only has one race, such as white-skinned Caucasian Americans. During
detection, the target face in the image to be tested may be an African with dark skin. The detection
algorithm may not be able to perform accurate detection in this situation. Therefore, ethnic bias
assessment is important. In this section, the platform divides data into the following 5 categories:
Asian East, Asian South, African, Caucasian Europe, and Caucasian American.

Expression: Many facial data in public databases are dialogue scenes, so character expressions
are related to conversations, and there are few special expressions like contempt. However, if the
target face is manipulated into a special expression, it is difficult for the detection algorithm to
perform detection accurately. If this kind of fake image spreads on the Internet, social stability will
be seriously endangered. In this section, we divide data into the following 8 categories: Neutral,
Distust, Sad, Surprise, Contempt, Angry, Fear, and Happy.

Lighting Condition: Most facial images in databases are collected under sufficient lighting condi-
tions. but in reality, lighting conditions may be more complex. For example, in the "Right” image
of the lighting condition in Figure[T2] the left half of the face is almost in darkness. In this case,
detection algorithms that are not trained for multiple lighting conditions may misclassify the real
face as a fake face. In order to evaluate whether a detection algorithm suffers bias towards lighting
conditions, the platform divides the data into the following 9 subcategories: Left up, Up, Right up,
Left, Uniform, Right, Left down, Down, Right down
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B.5.2 EVALUATION DATA PREPARATION

In this section, the platform mainly extracts data from FakeAVCeleb and DeeperForensics-1.0
databases. Because these 2 databases have detailed data annotations for the 5 attributes mentioned
above, data preparation is more convenient than other databases. There are 3 attributes whose
data comes from DeeperForensics 1.0, namely Camera Angle, Expression, and Lighting Condition.
Please note that all the data corresponding to these 3 attributes are real faces and there is no original
fake face. The platform manipulates real faces through the manipulation algorithms in Section[B.2.2]
Then use the data before and after manipulation as real and fake face pairs for evaluation.

The data for the other 2 attributes comes from FakeAVCeleb, namely Gender and Ethnic Group.
These 2 attributes have original real and fake faces, which can be directly used for evaluation. In
order to enhance the generalization of this part, the platform also manipulates the real faces corre-
sponding to these 2 attributes through the fake data generation pipeline mentioned in Section[B.2.2]
Then, resulting in a fake face with richer forgery traces.

B.5.3 FAIRNESS AND EFFECTIVENESS EVALUATION

This evaluation helps identify biases and weaknesses of the detection algorithm concerning specific
attributes. Consequently, strategies to mitigate these biases, such as data balancing and attribute-
aware training, can be proposed and validated.

B.6 FORGERY LOCALIZATION ACCURACY EVALUATION

This section mainly evaluates the forgery localization ability of detection algorithms. In addition to
distinguishing between fake and real images, deepfake detection algorithms will increasingly need
to locate the manipulated regions in an image and the forged segments in a video in the future.

B.6.1 ANNOTATED DATA FOR LOCALIZATION

The platform uses data from the FaceForensics++ database to evaluate the manipulation region lo-
calization. The FaceForensics++ database includes annotation of the forged regions of faces. The
platform uses Lav-DF database to evaluate video manipulation segment localization. The Lav-DF
database contains detailed annotations of forged segments, with some videos even containing mul-
tiple forged segments, providing a robust test of the detection algorithm’s ability to locate forged
segments

B.6.2 LOCALIZATION ACCURACY METRICS

This evaluation uses specialized metrics to quantify the algorithm’s manipulation localization per-
formance, including IoU (Intersection over Union), pixel accuracy, AP@IoU threshold (Average
Precision at a specific IoU threshold), and AR@IoU threshold (Average Recall at a specific IoU
threshold). Through this evaluation, the platform can analyze the localization ability of detection
algorithms under different manipulation techniques, forgery region and shapes.

C EXPERIMENTS AND RESULTS

In this section, we introduce the experimental setup, evaluation results of each evaluation category,
and insights behind the results.

C.1 EXPERIMENTAL SETUP

Experimental setup includes three parts: 1.Detection Algorithms; 2.Databases and Preprocessing;
and 3.Evaluation Data Sampling.

Detection Algorithms: In this experiment, we evaluated 12 deepfake detection algorithms, includ-
ing Xception (Rossler et al.|, |2019), SRM (Luo et al.| |2021), SBI (Shiohara & Yamasakil, [2022),
DSP-FWA (Li & Lyu, 2018)), Multiple-Attention (Zhao et al., [2021), Efficientnetb4 (Tan & Lel
2019), Mesolnception (Afchar et al., 2018)), MesoNet (Afchar et al.,[2018)), UCF (Yan et al., 2023a)),
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CNN-Aug (Wang et al.| 2020), ClassNSeg (Nguyen et al.||2019a), and BA-TFD+ (Cai et al.| [2023).
Among them, the first 10 are common detection algorithms which just discriminate real and fake
images, while the last two are algorithms for detecting forgery regions and forgery segments, re-
spectively.

Databases and Preprocessing: The platform implements 11 popular public databases, including
FaceForensics++ (Rossler et al.| [2019), Celeb-DF-v1 (Li et al., 2020b), Celeb-DF-v2 (L1 et al.,
2020b), FakeAVCeleb(Khalid et al., |2021), DeeperForensics-1.0 (Jiang et al., [2020), DFFD (Dang
et al., 2020), DFDC (Dolhansky et al., |2020), CelebA (Liu et al., 2015), VGGface2 (Cao et al.,
2018)), VidTIMIT (Sanderson & Lovell, 2009), and Lav-DF (Cai et al., 2023). These databases
cover data with labels of all four deepfake categories. In addition, it contains special data with
labels of the forgery region, the forgery segment, and different attributes. The platform used the
deployed deepfake manipulation algorithms to generate fake data following the pipeline described in
Section [B.2.2] resulting in over 5 million fake images for detector evaluation. The platform applied
common image distortions to the data from the public database. Each real and fake image undergoes
nine types of distortions. The platform also used adversarial attack algorithms to reconstruct and add
perturbations to fake images. A detailed description of the data will be provided in each evaluation
category.

Evaluation Data Sampling: The platform includes six evaluation categories, 27 evaluation subcat-
egories, and over 40 sub-tasks. To ensure evaluation efficiency, we set 10,000 test samples for each
sub-task, with 5,000 being real samples and 5,000 being fake samples. Additionally, to avoid test
data bias caused by differences in the number of samples across databases, we sampled an equal
number of data from each database to form the evaluation set. If the quantity is not an integer, it will
be rounded up to the nearest integer. For example, in the Attribute Bias Assessment evaluation, the
Happy sub-task under the Expression category consists of 5,000 forged data provided by 7 forgery
algorithms, with 715 fake images randomly sampled from each algorithm.

C.2 BENCHMARK PERFORMANCE EVALUATION

This experiment is to evaluate the benchmark performance of detection algorithms on public
datasets.

C.2.1 DATABASES AND PREPROCESSING

This section utilizes seven databases, including Celeb-DF-V 1, Celeb-DF-V2, DeeperForensics-1.0,
FakeAVCeleb, FaceForensics++, DFFD and DFDC. These databases cover all four types of deepfake
and have been preprocessed according to the unified pipeline described in Section Consid-
ering evaluation efficiency and avoiding data imbalance, the platform samples data according to
the Evaluation Data Sampling method. All detection algorithms are evaluated through the same
evaluation dataset.

C.2.2 EVALUATED DEEPFAKE DETECTION ALGORITHMS

The platform assesses 10 detection algorithms, including Xception (Rossler et al.,2019), SRM (Luo
et al| 2021), SBI (Shiohara & Yamasaki, 2022), DSP-FWA (Li & Lyul [2018), Multiple-
Attention (Zhao et al.,[2021)), Efficientnetb4 (Tan & Le,|[2019), MesoInception (Afchar et al.,|2018)),
MesoNet (Afchar et al.l 2018), UCF (Yan et al. 2023a), and CNN-Aug (Wang et al., 2020). To
simulate the most realistic evaluation scenarios, we use the pre-trained models for each algorithm.

C.2.3 EVALUATION RESULTS

We use the evaluation metrics mentioned in Section We present the results for Accuracy,
AUC, Fl-score, and EER. Additional evaluation metrics such as Precision can be found in the Ap-

pendix [G.0.T]
Figure [6] shows the performance of 10 detectors. Overall, the accuracy of the detection algorithms
is generally low. The highest accuracy achieved was 83.43%, while the lowest was only 30.4%. In

Figure[6](d), the F1-score for MesoNet and the Multi-Attention algorithm are very low because their
recall values are particularly low, with maximum Recalls of only 0.16% and 1.08%, respectively.
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Table 4: The detailed list of generated fake images.

Index Category Sum Algorithm Number
1 FaceShifter 596,416
2 Face Swapping 1,874,051 MobileFaceSwap 670,682
3 FaceDancer 606,953
4 . HyperReenact 941,082
5 Facial Reenactment 1,517,224 DGFR 576,142
6 . . . . StarGAN2 420,000
7 Facial Attribute Manipulation 1,635,821 STGAN 1215.821
8 ProGAN 100,000
9 . . StyleGAN2 100,000
10 Entire Face Synthesis 540,000 StyleGAN3 100.000
11 StyleGANV 240,000
12 Stable Diffusion 120,552
13 Mini-DALLE 82,982
14 Text-to-Image 307,979 LDM 4.445
15 Mini-DALLE3 100,000
16 Image-to-Video 101,070  Stable Video Diffusion 101,070

Half of the detection algorithms have an accuracy around 50%, regardless of the deepfake type of
evaluation. The other half of the detectors show significant accuracy variations depending on the
deepfake type. For instance, UCF achieved the highest AUC, Accuracy, Fl-score, and the lowest
EER in the Facial Reenactment category compared to the other three deepfake types. This indicates
that UCF is most effective in detecting fake data in the Facial Reenactment category.

These experimental results reveal the basic detection performance of the algorithms and the specific
forgery categories each detector excels at distinguishing. For other evaluation metrics results, please
refer to Appendix [G.0.1]

C.3 FORGERY ALGORITHM GENERALIZATION ASSESSMENT RESULTS

This assessment is used to evaluate the generalization ability of detectors to unknown deepfake
algorithms and data domains.

C.3.1 DATABASES AND PREPROCESSING

The platform utilizes various deepfake algorithms to generate rich forged samples from real im-
ages/videos in multiple public databases. The platform configured 16 deepfake algorithms, covering
various deepfake categories. Among them, FaceShifter (Li et al., 2019)), FaceDancer (Rosberg et al.,
2023)), and MobileFaceSwap (Xu et al., 2022) belong to the Face Swapping , while DGFR (Hsu
et al.}2022) and HyperReenact (Bounareli et al., 2023) belong to the Facial Reenactment. Addition-
ally, STGAN (Liu et al., 2019) and StarGAN-V2 (Choi et al., 2020) belong to the Facial Attribute
Manipulation. StyleGAN2 (Karras et al., [2020), StyleGAN3 (Karras et al.| [2021]), ProGAN (Kar-
ras et al., [2017), and StyleGAN-V (Skorokhodov et al., 2022) belong to the Entire Face Synthesis.
LDM (Rombach et al.| 2022b), Stable Diffusion (Rombach et al., 2022a)), DALLE-mini(Dayma
et al.l 2021), and DALLE3-mini (Zeqiang et al., 2023)) belong to Text-to-Image. Stable-Video-
Diffusion (Blattmann et al., 2023) belongs to Image-to-Video.

Through the generation pipeline mentioned in Section[B.2.2]and FFmpeg, the platform processed the
data into a standard PNG image. This resulted in a total of 5,976,145 fake images. Table ] provides
detailed information on the fake images. Similarly, to ensure evaluation efficiency and fairness, the
platform sampled the data.

C.3.2 EVALUATION RESULTS

The detection algorithms evaluated in this section are consistent with those evaluated in Sec-
tion [C.2.2] Figure [7] shows the histogram results of the evaluation. Overall, the accuracy of the
detectors remains generally low, and most detectors achieve an accuracy around 50%. The highest
and lowest accuracies are 80.42% and 36.52%, respectively. Only EfficientNetB4 and UCF per-
formed relatively well compared to the other eight detectors. Additionally, the Large Multimodal
Model is the second most effectively detected category by them. The detection algorithms show
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Figure 13: Image Distortion Robustness Evaluation (Noise): comparison of Accuracy, AUC, EER,
and F1-Score among 10 deepfake detection algorithms.

different preferences for five deepfake categories. For instance, UCF achieved the highest accuracy,
AUC, Fl-score, and the lowest EER in the Facial Reenactment category. Its AUC was 0.2677 higher
than its performance in the least favorable category, Entire Face Synthesis.

These experimental results highlight the detection generalization capabilities of each detector for
different forgery categories. For other evaluation metrics results, please refer to Appendix[G.1]

C.4 IMAGE DISTORTION ROBUSTNESS ASSESSMENT RESULTS

This section is used to evaluate whether the detectors are susceptible to common image distortions.

C.4.1 DATABASES AND PREPROCESSING

To clearly reflect the impact of common image distortions, the platform uses the Benchmark Evalu-
ation Performance data as the original data for processing, with the corresponding detection results
serving as the baseline.

This part includes 9 types of distortions: Compression, Brightness, Contrast, Flip, Rotation, Color,
Sharpness, Blur, and Noise. Each distortion category includes 2-8 degrees. For example, Blur
includes Gaussian, Mean, and Median blurs. All distortion outputs for a single image can be referred

to Figure[TT]

The platform applies each of these distortions to the original data and saves the results as images.
Except for Compression, which is saved in JPG format, all other images are saved in PNG format.
Since the original data is obtained through uniform sampling, there is no concern about sample
imbalance.

C.4.2 EVALUATION RESULTS

We present the results for four types of distortions: Compression, Noise, Blur, and Rotation. For
better comparison, the results for the four deepfake categories are averaged in this section. For
example, the accuracy result of 0.85 in Compression corresponds to the average accuracy of the four
deepfake categories at a compression ratio of 0.85.

Compression: Figure [8] shows the trend of evaluation metrics for 10 detectors as the compression
ratio decreases. Overall, detectors with initially higher accuracy show a gradual decrease in accuracy
as the compression ratio decreases. However, for detectors with initially low accuracy, the trend is
not as apparent. EfficientNetB4 and UCF remain the strongest detectors, consistently achieving the
top two positions across the four metrics under various compression ratios.

Noise: Figure |13|shows the impact of noise on the 10 detectors. Overall, detectors with an initial
accuracy around 50% are less affected by noise, while those with higher initial accuracy are signif-
icantly impacted. For example, EfficientNetB4’s average accuracy was 75.795%, but it dropped by
26.14%, 20.43%, and 21.83% respectively under three types of noise, falling to around 50%.

Blur: Figure [T4] shows the impact of blur on the 10 detectors. Overall, for detectors with initially
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Figure 14: Image Distortion Robustness Evaluation (Blur): comparison of Accuracy, AUC, EER,
and F1-Score among 10 deepfake detection algorithms.
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Figure 15: Image Distortion Robustness Evaluation (Rotation): comparison of Accuracy, AUC,
EER, and F1-Score among 10 deepfake detection algorithms.

high accuracy, Gaussian and Mean blur methods significantly impact the results, whereas the Median
blur method has a smaller effect. The impact of blur on detectors is generally less than that of noise.

Rotation: Figure |15]shows the impact of rotation on the 10 detectors. Overall, for detectors with
initially high accuracy, rotation at 135 and 225 degrees causes a significant drop in accuracy, while
rotations at 45 and 315 degrees cause a smaller drop. This may be because the face is almost upside
down at 135 and 225 degrees, deviating significantly from the usual facial orientation.

These evaluation results highlight how common image distortions affect the performance of various
detection algorithms, providing insights into their robustness and potential areas for improvement.
For results of other distortions, please refer to Appendix [G.2]

C.5 ADVERSARIAL ATTACK RESILIENCE EVALUATION

This section evaluates whether the detectors are capable of resisting adversarial attacks.

C.5.1 DATABASES AND PREPROCESSING

To facilitate comparison of performance changes before and after adversarial attacks, this section
uses the data processed for the Benchmark Performance Evaluation as the original data, with the
corresponding detection results serving as the baseline.

For Images Reconstruction, the platform uses the GANprintR algorithm. This algorithm is pri-
marily used to remove GAN ”fingerprints” from synthetic fake images. Therefore, we focus on the
Entire Face Synthesis category for data processing and evaluation. Real images remain unchanged,
while synthetic fake images undergo image reconstruction. The reconstructed data, along with the
real images, form the evaluation dataset.

26



Under review as a conference paper at ICLR 2025

Adversarial Attack Resilience Evaluation (Adversarial Perturbation)

O O &P O E PP SO EYOE YO EYOELOE YOS E
FEOFFOFE @ eFEOEE e FE P

Xception SRM SBI DSP-FWA  Multi-Attention EfficientNet-B4 Mesolnception MesoNet UCF CNN-Aug
I Baseline I StyleAttack

Figure 16: Adversarial Attack Resilience Evaluation (Adversarial Perturbation): comparison of
AUC, F1-Score, and Acc among 10 deepfake detection algorithms.

For Adversarial Perturbation, the platform employs the StyleAttack algorithm. This algorithm
searches for adversarial points in the latent space of a generative model to generate anti-forensic
fake face images. Since this attack mainly targets GAN-related algorithms, the real images used are
the same as those in the Entire Face Synthesis category. The platform uses the StyleAttack algorithm
to generate a large number of fake synthetic images, forming the required evaluation dataset.

C.5.2 EVALUATION RESULTS

Since both attack algorithms target GANs, we use the detection results of the Entire Face Synthesis
category from the Benchmark Performance Evaluation as the baseline for comparison before and
after the attack.

GANprintR: Figure 0] shows the experimental results of GANprintR, including AUC, Fl1-score,
and accuracy. To bring all three evaluation metrics to the same value range, percentages are con-
verted to decimal form. Overall, GANprintR does not deceive all detection algorithms. Compared
to the baseline, the accuracy of Xception and UCF decreases when facing GANprintR-processed
data, indicating that these detectors failed to resist GANprintR. On the other hand, the accuracy
of EfficientNetB4 increases when facing GANprintR-processed data, indicating that EfficientNetB4
successfully resisted this attack.

StyleAttack: Figure[I6|shows the experimental results of StyleAttack. Overall, StyleAttack affects
different detectors to varying degrees. For detectors with initially high accuracy, StyleAttack reduces
their accuracy, indicating the effectiveness of the attack. For detectors with initially low accuracy,
StyleAttack actually increases their accuracy.

This evaluation verifies whether detectors have the capability to resist adversarial attacks. As re-
search on evading detection continues to mature, this will become an increasingly important eval-
uation in the future, despite the current limited research in this area. For other evaluation metrics
results, please refer to Appendix [G.3]

C.6 FORGERY LOCALIZATION ACCURACY EVALUATION

This section aims to fulfill specific evaluation requirements for forgery localization, focusing on
forgery regions and forgery segments.

C.6.1 DATABASES AND PREPROCESSING

For forgery region evaluation, the platform utilizes data from FaceForensics++ with forgery region
masks as the assessment dataset. The masks indicate the positions of forged pixels in a given image if
it contains a fake face; otherwise, there are no forged pixels marked. The platform randomly selects
5000 real images and 5000 fake images from the FaceForensics++ database to form the evaluation
dataset for this evaluation.

For forgery segment evaluation, the platform employs the Lav-DF database as the assessment
data. This database contains both unforged videos and multiple forged video segments. Each video
segment is accompanied by detailed label information, including the number of forged segments and
the start and end timestamps of each forgery. The platform randomly selects 5000 real videos and
5000 fake videos from the database to constitute the evaluation dataset for this category.
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Figure 17: Example of Forgery Region Localization.
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Figure 18: Example of Video Forgery Segment Localization.
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C.6.2 EVALUATION RESULTS

This section does not compare with previous baselines, but instead, evaluates the algorithms using
the prepared evaluation datasets.

For forgery region evaluation, the platform assesses the ClassNSeg algorithm.

Table 2] presents the evaluation metrics of the ClassNSeg algorithm. While the recall reaches
86.95%, the accuracy and precision are relatively low. To gain a deeper understanding of the algo-
rithm’s localization ability for forgery regions, the platform compares the top 5 highest-confidence
and the bottom 5 lowest-confidence predictions with the ground truth, and calculates the pixel accu-
racy accordingly. Figure[T7]shows the predicted forgery regions. Among the five highest-confidence
predictions, three are correctly identified, while two real images are falsely classified as fake. Only
one of the five lowest-confidence predictions is correctly predicted.

For forgery segment evaluation, the platform evaluates the BA-TFD+ algorithm. Table [3|shows the
average precision (AP) at different IoU thresholds and the average recall (AR) for different numbers
of proposals with IoU thresholds ranging from 0.5 to 0.95 with a step size of 0.05. At an IoU of 0.5,
the AP reaches 97.68%. When the number of proposals is 100, the AR exceeds 80%.

Figure [T8] clearly shows the localization capability of the proposed detection algorithm. The two
forged videos each contain two forged segments, marked as red regions in the videos. The figure
highlights the three segments with the highest confidence scores predicted as fake. Green, orange,
and blue lines represent the predicted forged segments, accompanied by their corresponding confi-
dence scores. It can be observed from the figure that all the forged segments in the first video have
been successfully localized, while only one forged segment in the second video has been localized.

This evaluation fulfills the specific requirements for assessing the forgery location capabilities of
detection algorithms.
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Figure 19: Attribute Bias Evaluation (Ethnic Group): comparison of F1-Score, AUC, EER and
Accuracy among 10 deepfake detection algorithms.

C.7 SCENE ATTRIBUTE BIAS ASSESSMENT

This section primarily focuses on assessing the existence of attribute bias in the detectors.

C.7.1 DATABASES AND PREPROCESSING

The platform has selected five attributes for evaluation, including Gender, Ethnic Group, Camera
Angle, Expression, and Lighting Condition. Among them, Gender is categorized into Male and
Female. Ethnic Group comprises Asian East, Asian South, African, Caucasian European, and Cau-
casian American. Camera Angle encompasses seven categories such as Front, Up, Down. Expres-
sion includes eight categories like Happy, Sad, Surprise. Lighting Condition covers nine types like
Left, Uniform, Right. Specific examples are provided in Figure[T2]

The platform gathered these data from public databases, and for those data lacking corresponding
fake images, we utilized the pipeline introduced in Section [B.2.2] to generate fake images. Ulti-
mately, a real-fake dataset was generated for the evaluation of each attribute.

C.7.2 EVALUATION RESULTS

This section presents the experimental results for the Ethnic Group and Camera Angle attributes.
For other results, please refer to Appendix To explore whether there exists a universal attribute
bias in the current detectors, we plotted boxplots of the results from 10 detectors under different
evaluation metrics.

Figure |19| displays the evaluation results for ethnic group. It can be observed from the figure that
the black median lines corresponding to different ethnic groups are relatively similar. The four
evaluation metrics reveal different biased categories. Therefore, overall, these detectors under test
do not exhibit bias towards ethnic groups.

Figure [I0] presents the evaluation results for Lighting Condition. It is evident from the figure that
the black median lines corresponding to different lighting conditions vary significantly, indicating
a clear bias. Analysis of the boxplot range reveals that the UP category has the highest F1-score,
AUC, accuracy, and the lowest EER.

This evaluation can determine whether a detector exhibits bias towards a specific attribute. It al-
lows for the timely identification of weaknesses and guides the optimization of detectors in a more
comprehensive direction. For results of other attributes, please refer to Appendix[G.4]

D LIMITATIONS

The proposed Deepfake Detector Assessment Platform (DAP) offers a comprehensive evaluation
framework for assessing the performance, generalization ability, robustness, security, localization
precision, and fairness of deepfake detection algorithms. However, there are a few limitations that
can be addressed in future work to further enhance the platform’s capabilities and real-world appli-
cability.

One limitation is that the platform currently focuses on image-based deepfake detection, while
video-based deepfakes are becoming increasingly prevalent and pose unique challenges. Extending
the platform to support video-based deepfake detection would require the incorporation of temporal
information and the development of suitable evaluation metrics that consider the consistency and
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coherence of detected forgeries across frames. This extension would enable the platform to provide
a more comprehensive assessment of deepfake detection algorithms’ performance in real-world sce-
narios.

Another limitation is related to the diversity and complexity of the datasets used for evaluation.
While the platform incorporates a wide range of public and self-generated datasets, it could benefit
from the inclusion of even more challenging datasets that cover extreme poses, occlusions, low-
resolution images, and other factors that are commonly encountered in real-world settings. Evaluat-
ing detection algorithms on these challenging datasets would provide a more accurate assessment of
their robustness and ability to handle diverse and complex cases.

Lastly, the computational efficiency of the platform could be improved to handle large-scale evalu-
ations more effectively. As the number of deepfake generation and detection algorithms continues
to grow, along with the size and complexity of datasets, optimizing the evaluation pipeline and
leveraging parallel processing techniques would enable faster and more efficient assessments. This
would facilitate the timely evaluation of new algorithms and the ability to keep pace with the rapidly
evolving landscape of deepfake technologies.

E FUTURE WORK

The development of the Deepfake Detector Assessment Platform opens up several exciting avenues
for future research and improvement. One key direction is to extend the platform to support video-
based deepfake detection, as mentioned in the limitations section. This would involve incorporating
temporal information, such as frame-level consistencies and inconsistencies, into the evaluation
process. Furthermore, developing suitable evaluation metrics that consider the temporal aspects of
video-based deepfakes would provide a more comprehensive assessment of detection algorithms’
performance in this domain.

Another important future direction is to establish collaborations with the research community to en-
sure that the platform remains up-to-date with the latest advancements in deepfake generation and
detection algorithms. By actively engaging with researchers and practitioners, the platform can in-
corporate state-of-the-art techniques and datasets, ensuring its continued relevance and effectiveness
in the rapidly evolving field of deepfake detection. This collaborative approach would also facilitate
the sharing of knowledge and best practices, fostering innovation and accelerating progress in this
critical area.

Investigating the potential of integrating explainable Al techniques into the platform is another
promising future direction. Explainable Al aims to provide insights into the decision-making pro-
cess of machine learning models, making them more interpretable and trustworthy. By incorporating
explainable Al techniques into the evaluation process, the platform could offer a deeper understand-
ing of how deepfake detection algorithms arrive at their decisions, identifying the key features and
patterns they rely on. This would not only enhance the interpretability of the detection algorithms
but also facilitate the development of more robust and reliable models.

Exploring the use of transfer learning and few-shot learning approaches is another area of future
work that could significantly improve the generalization ability of deepfake detection algorithms.
Transfer learning involves leveraging knowledge gained from one task or domain to improve per-
formance on another related task or domain, while few-shot learning aims to learn from a limited
number of examples. By incorporating these approaches into the evaluation process, the platform
could assess the ability of detection algorithms to adapt to new deepfake generation techniques and
datasets with minimal retraining, which is crucial in real-world scenarios where labeled data may be
scarce.

Finally, developing a user-friendly interface and visualization tools for the platform would greatly
enhance its accessibility and usability for researchers, practitioners, and policymakers. An intuitive
interface would allow users to easily configure and run evaluations, while interactive visualization
tools would enable them to explore and analyze the results in a meaningful way. This would pro-
mote wider adoption of the platform and facilitate collaboration among stakeholders, ultimately
contributing to the development of more effective and trustworthy deepfake detection solutions.
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F BROADER SOCIETAL IMPACT

The development of a comprehensive Deepfake Detector Assessment Platform has far-reaching so-
cietal implications, as it directly addresses the growing concern over the malicious use of deepfakes
and their potential to erode trust in digital media. By providing a standardized and rigorous eval-
uation framework, the platform enables the development of reliable and robust deepfake detection
algorithms, which is crucial for combating the spread of misinformation, fraud, and other forms of
manipulation.

In an era where deepfakes are becoming increasingly sophisticated and accessible, the ability to
accurately detect and flag manipulated content is essential for maintaining the integrity of digital
media. The platform’s comprehensive evaluation approach, covering performance, generalization,
robustness, security, localization, and fairness, ensures that detection algorithms are assessed under
a wide range of realistic conditions. This helps to identify strengths and weaknesses of existing algo-
rithms and guides the development of more effective and resilient detection methods. By facilitating
the creation of trustworthy deepfake detection solutions, the platform contributes to safeguarding in-
dividuals, organizations, and society as a whole from the potential harm caused by malicious actors
exploiting deepfake technologies.

Moreover, the platform’s emphasis on assessing attribute bias and fairness in deepfake detection
algorithms is a critical step towards promoting the development of more inclusive and unbiased sys-
tems. Algorithmic bias is a significant concern in many domains, as it can perpetuate and amplify
existing societal biases and lead to discriminatory outcomes. By explicitly evaluating the perfor-
mance of detection algorithms across different demographics, contexts, and attributes, the platform
helps to identify and mitigate potential biases. This is essential for ensuring that deepfake detection
technologies are deployed in a responsible and equitable manner, preventing the exacerbation of
existing inequalities and promoting fairness in the digital realm.

The open-source nature of the platform and the accompanying benchmark results also have sig-
nificant societal benefits. By making the platform and its findings publicly available, the research
community can collaborate more effectively, sharing knowledge, insights, and best practices. This
collaborative approach accelerates progress in deepfake detection research, enabling the develop-
ment of more advanced and robust countermeasures. Furthermore, the transparency provided by the
platform helps to build public trust in deepfake detection technologies, as the evaluation process and
results are open to scrutiny and validation by the wider community.

In conclusion, the Deepfake Detector Assessment Platform has the potential to make a significant
positive impact on society by promoting the development of reliable, fair, and trustworthy deep-
fake detection solutions. By providing a comprehensive and standardized evaluation framework,
the platform contributes to safeguarding the integrity of digital media, protecting individuals and
organizations from harm, and fostering a more resilient and equitable digital ecosystem.

G OTHER DETAILED EXPERIMENTAL RESULTS

In this section, we introduce detailed experimental results of various evaluations.

The analysis in the main text primarily used AUC, Fl-score, accuracy, and EER as the evaluation
metrics. Here, we present seven evaluation metrics, including Precision, Recall, and confidence
difference. To save space, we use three histograms: (1) Accuracy, Precision, and Recall; (2) AUC
and F1-score; (3) confidence difference and EER.

G.0.1 BENCHMARK PERFORMANCE EVALUATION

Figure [20| Figure 21} and Figure 22] show the histograms of benchmark performance evaluation
results for different evaluation metrics. The recall values are very low for Multi-Attention and
MesoNet. As a result, the F1-score values are very low for both detectors.

Figure 23] and Figure [24] show the Precision-Recall Curve and ROC Curve among 10 deepfake
detectors.
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Benchmark Performance Evaluation
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Figure 20: Benchmark Performance Evaluation: comparison of Accuracy, Precision, and Recall
among 10 deepfake detection algorithms.
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Figure 21: Benchmark Performance Evaluation: comparison of AUC and F1-Score among 10 deep-
fake detection algorithms.

G.1 FORGERY ALGORITHM GENERALIZATION ASSESSMENT

Figure 23] Figure 26] and Figure[27]show the histograms of forgery algorithm generalization assess-
ment results for different evaluation metrics.

Figure [28] and Figure [29] show the Precision-Recall Curve and ROC Curve among 10 deepfake
detectors.

G.2 IMAGE DISTORTION ROBUSTNESS ASSESSMENT

Figure 30] Figure [31] Figure [32] Figure [33] and Figure [34] show the histograms of Accuracy, AUC,
EER, and F1-score among 10 deepfake detectors.

G.3 ADVERSARIAL ATTACK RESILIENCE EVALUATION

Figure[35]and Figure [36]show the Adversarial Perturbation evaluation results of accuracy, precision,
recall, EER, and confidence difference among 10 deepfake detection algorithms.

Figure [37) and Figure 38| show the Image Reconstruction evaluation results of accuracy, precision,
recall, EER, and confidence difference among 10 deepfake detectors.

G.4 ATTRIBUTE BIAS ASSESSMENT

Figure 39] Figure d0] and Figure 1] display the evaluation results for camera angle, expression and
gender.
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5 Benchmark Performance Evaluation
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Figure 22: Benchmark Performance Evaluation: comparison of Confidence Difference and EER
among 10 deepfake detection algorithms.
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Figure 23: Benchmark Performance Evaluation: comparison of Precision-Recall Curve among 10
deepfake detection algorithms.
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Figure 24: Benchmark Performance Evaluation: comparison of ROC Curve among 10 deepfake
detection algorithms.

Forgery Algorithm Generalization Evaluation
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Figure 25: Forgery Algorithm Generalization Assessment: comparison of Accuracy, Precision, and
Recall among 10 deepfake detection algorithms.
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Forgery Algorithm Generalization Evaluation
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Figure 26: Forgery Algorithm Generalization Assessment: comparison of AUC and F1-Score among
10 deepfake detection algorithms.
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Figure 27: Forgery Algorithm Generalization Assessment: comparison of Confidence Difference
and EER among 10 deepfake detection algorithms.
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Figure 28: Forgery Algorithm Generalization Assessment: comparison of Precision-Recall Curve
among 10 deepfake detection algorithms.
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Figure 29: Forgery Algorithm Generalization Assessment: comparison of ROC Curve among 10

deepfake detection algorithms.
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Figure 30: Image Distortion Robustness Evaluation (Brightness): comparison of Accuracy, AUC,
EER, and F1-Score among 10 deepfake detection algorithms.
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Figure 31: Image Distortion Robustness Evaluation (Color): comparison of Accuracy, AUC, EER,
and F1-Score among 10 deepfake detection algorithms.

(a) Accuracy (b) AUC
100F T T T T T T T — 1T T T T T T T T —
@
i<
IS
< |- 4 | 4
: ) JI‘:JI‘: )
. JI‘:L
o
0 0
Xcept SRM SBI DSP Multi  EffB4 Mesol MesoN UCF CNN Xcept SRM SBI DSP Multi  EffB4 Mesol MesoN UCF CNN
(c) EER (d) F1-Score
T T 1F T T 3
2,601 b
8
§40’ 71 osh 4
$ 20 —
0 " 0 "
Xcept SRM SBI DSP Multi  EffB4 Mesol MesoN UCF CNN Xcept SRM SBI DSP Multi  EffB4 Mesol MesoN UCF CNN

I 5ascline [ -50% [C0+50%

Figure 32: Image Distortion Robustness Evaluation (Contrast): comparison of Accuracy, AUC,
EER, and F1-Score among 10 deepfake detection algorithms.
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Figure 33: Image Distortion Robustness Evaluation (Sharpness): comparison of Accuracy, AUC,
EER, and F1-Score among 10 deepfake detection algorithms.
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Figure 34: Image Distortion Robustness Evaluation (Flip): comparison of Accuracy, AUC, EER,

and F1-Score among 10 deepfake detection algorithms.
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Figure 35: Adversarial Attack Resilience Evaluation: comparison of Accuracy, Precision, and Recall
among 10 deepfake detection algorithms.
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Figure 36: Adversarial Attack Resilience Evaluation (Adversarial Perturbation): comparison of
Confidence Difference and EER among 10 deepfake detection algorithms.
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Adversarial Attack Resilience Evaluation (Image Reconstruction)
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Figure 37: Adversarial Attack Resilience Evaluation (Image Reconstruction): comparison of Accu-
racy, Precision, and Recall among 10 deepfake detection algorithms.
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Figure 38: Adversarial Attack Resilience Evaluation (Image Reconstruction): comparison of Confi-
dence Difference and EER among 10 deepfake detection algorithms.
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Figure 39: Attribute Bias Evaluation (Camera Angle): comparison of F1-Score, AUC, EER and
Accuracy.
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Figure 40: Attribute Bias Evaluation (Expression): comparison of F1-Score, AUC, EER and Accu-
racy.
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Figure 41: Attribute Bias Evaluation (Gender): comparison of F1-Score, AUC, EER and Accuracy.
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