
Appendices for “Moderate-fitting as a Natural
Backdoor Defender for Pre-trained Language Models”

Appendix

A Experimental Details

A.1 Main Experiments

For the word-level attack, we randomly choose one meaningless word to insert into a sentence to
generate the poisoned sample. The meaningless words we choose are “cf”, “mn”, “bb”, “tq”. For the
syntactic attack, we use SCPN (Iyyer et al., 2018) to generate the inverted sentence as the poisoned
sample. For the word-level attack, the poisoning ratio is 5% for SST-2, AG News and HSOL. For the
syntactic attack, the poisoning ratio is 10% for SST-2 and AG News, and the poisoning ratio is 5% for
HSOL. For AG News and SST-2, we calculate ACC on the clean test dataset. For HSOL, since there
is no official test dataset, we calculate ACC on the clean dev dataset. When preprocessing HSOL
samples, we replace the original line break with a space character. For AG News’ training data, we
sample 11106 training samples from the original AG News’ training dataset before poisoning. The
experiments are conducted using one A100 NVIDIA GPU.

Reparameterized LoRA. In the original LoRA (Hu et al., 2021), for a pre-trained weight matrix
W0 ∈ Rd×k in the multi-head attention, LoRA constrains its update with a low-rank decomposition
W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d,k). LoRA
scales ∆Wx by α

r . Since A and B have different initializations, we reparameterize them separately.
Specifically, we pass one uniformly initialized embedding through a reparameterization network to
derive A’s weights and the classifier’s weights. We use another tunable embedding that is initialized
with zeroes, and pass it through a different reparameterization network to derive B’s weights. The
number of training epochs is set as 10, the learning rate is set as 3× 10−4, the rank r is set as 8 and
the α is set as 16 for both word-level attack and syntactic attack on SST-2, AG News and HSOL.

Reparameterized Adapter. For reparameterized Adapter, we use one reparameterization network
to derive all tunable parameters. The number of training epochs is set as 10 and the learning rate
is set as 3× 10−4 for both word-level attack and syntactic attack on SST-2, AG News and HSOL.
Adapter is inserted into each Transformer layer, and it projects the original d-dimensional features
into a smaller projection dimension, applies a nonlinear function, then projects the smaller projection
dimension back to d (Houlsby et al., 2019). The projection dimension of the Adapter is set as 24
for both attacks on SST-2 and HSOL. For AG News, the projection dimension is set as 24 for the
word-level attack, and 1 for the syntactic attack.

Reparameterized Prefix-tuning. The original Prefix-Tuning (Li and Liang, 2021) already applies
a reparameterization network for all the prefix tokens. Different from the original setting, we also
reparameterize the parameters in the classifier. Specifically, we pass one tunable embedding through
another reparameterization network to derive the classifier’s weights. The bottleneck dimensions of
the two reparameterization networks are the same. The number of training epochs is set as 10 and
the learning rate is set as 3× 10−4 for the word-level attack on SST-2, AG News and HSOL. The
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number of training epochs is set as 10 and the learning rate is set as 5× 10−4 for the syntactic attack
on SST-2, AG News and HSOL. The number of prefix tokens is set as 24 for all experiments.

For reparameterized LoRA and Adapter, the dimension of the input tunable embedding and the
bottleneck dimension of the reparameterization network are the same for all experiments in this paper.
For reparameterized Prefix-Tuning, the input dimensions of two reparameterization networks are
both set as 512 for all experiments in this paper.

A.2 Analysis

Visualization of the Learning Dynamics. The poisoning ratio is 5% for the poisoned training data.
The number of training epochs is set as 10 and the learning rate is set as 3× 10−4. The LoRA rank r
is 8 and the LoRA α is 16.

Poisoning Ratio. For reparameterized LoRA, the LoRA rank r is set as 8 and the LoRA α is set as
16 for both word-level attack and syntactic attack.

Experiments on a Synthetic Dataset. For SST-2, we use all training samples (6920 samples) whose
labels are “negative” or “positive”. For AG News, we randomly sample 464 samples whose labels
are “World” or “Sports” from the AG News training dataset. We perform the binary classification
task on the synthetic dataset. Specifically, we label the sample as “0” if the original label is “negative”
or “World”, and “1” if the original label is “positive” or “Sports”. During the evaluation, we test the
performance of SST-2 on the original test dataset of SST-2. We test the performance of AG News
using testing samples whose labels are “World” or “Sports” taken from the original test dataset of AG
News.

For reparameterized LoRA, the number of training epochs is set as 10. The learning rate is set as
3× 10−4. The LoRA rank r is set as 8 and the LoRA α is set as 16.

When fine-tuning the RoBERTaBASE model with different training epochs, the learning rate is set as
2 × 10−5. When fine-tuning the RoBERTaBASE model with different learning rates, the number of
training epochs is set as 10.

A.3 Experiments on Other NLP Backdoor Attacks

For the add-sentence attack, we insert the sentence “I watched this movie last weekend” into a random
position in the original sentence to generate the poisoned sample and the poisoning ratio is 5%. For
the style transfer attack, we employ the bible style and the poisoning ratio is 10%.

For reparameterized LoRA, the LoRA rank r is 8 and the LoRA α is 16 for both add-sentence attack
and style transfer attack on SST-2.

A.4 Comparisons with Other Defense Methods

For the word-level attack and add-sentence attack, the poisoning ratio is 5%. For the syntactic attack
and style transfer attack, the poisoning ratio is 10%.

Since ONION, STRIP and RAP are inference-time defense methods, we adapt them to the training-
time defense for fair comparisons, following (Cui et al., 2022). After processing the training dataset
by the adapted ONION, adapted STRIP, adapted RAP and BKI, we fine-tune the RoBERTaBASE model
on the processed training dataset, respectively. The adapted ONION corrects the training samples.
For the adapted STRIP, adapted RAP and BKI, we first train a backdoored BERT model and use it to
help filter out the potential poisoned training samples, respectively.

About our moderate-fitting method: for the word-level attack, we fine-tune the RoBERTaBASE model
for 1 epoch; for the syntactic attack and add-sentence attack, we use reparameterized LoRA with a
small bottleneck dimension of 1; for the style transfer attack, we fine-tune the RoBERTaBASE model
with a small learning rate of 5× 10−7.
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Table 1: Results of constraining tunable parameters of PET in one layer.

LoRA Adapter

Layer All 12 9 7 5 1 All 12 9 7 5 1

Word-level Attack Word-level Attack
ACC (SST-2) 94.29 93.03 93.68 92.92 91.54 88.91 94.29 86.49 93.47 93.14 92.42 88.25
ASR (SST-2) 96.16 65.02 17.54 34.76 16.23 21.93 87.83 26.32 24.56 13.93 13.82 21.38

Syntactic Attack Syntactic Attack

ACC (SST-2) 93.85 91.93 92.75 92.09 90.77 88.85 93.74 84.79 92.53 92.15 91.93 88.69
ASR (SST-2) 90.90 78.40 86.07 76.21 70.72 62.72 86.40 66.12 64.80 68.64 63.71 56.69

Table 2: Results of training a non-pre-trained model with different learning rates.

Learning Rate 2 × 10−5 5 × 10−6 2 × 10−6 1 × 10−6

Word-level Attack
ACC (SST-2) 76.06 72.87 64.52 58.43
ASR (SST-2) 75.33 67.32 58.11 77.30

Syntactic Attack

ACC (SST-2) 77.65 71.88 64.91 57.61
ASR (SST-2) 83.11 88.27 89.69 96.27

A.5 Experiments on Backdoor Attacks for the Pre-trained CV Model

The poisoning ratio is 10% for both patch-trigger attack and blending-trigger attack. The transparency
of the blending trigger pattern is 0.2 for the blending-trigger attack.

B Additional Experiments and Analyses

B.1 Reducing the Model Capacity by Constraining Tunable Parameters in One Layer

In the main paper, we propose a reparameterization method to reduce the overall model capacity. We
also find that constraining the tunable parameters within a single layer also suffices for our goal of
reducing the model capacity. Specifically, we only apply LoRA and Adapter to one certain layer in
the PLM and also tune the classifier for word-level attack and syntactic attack on SST-2. The number
of training epochs is set as 10 and the learning rate is set as 3× 10−4. The projection dimension of
the Adapter is set as 1. From the experimental results in Table 1, we can see that applying both LoRA
and Adapter into all layers cannot well defend against the backdoor attack; instead, constraining the
PET algorithm in one layer could effectively defend against both the word-level attack and syntactic
attack to some extent. To sum up, the above results demonstrate the effectiveness of reducing model
capacity in backdoor defense from another aspect.

B.2 The Effects of Pre-training

To investigate the influence of pre-training when a model is trained on a poisoned dataset, we perform
experiments with a randomly initialized model whose architecture is the same as RoBERTaBASE on
SST-2. We optimize all parameters of the model with different learning rates for 10 epochs. From the
experimental results in Table 2, we can see that for a non-pre-trained model, with the learning rate
decreasing, the phenomenon observed on a pre-trained model does not exist. This demonstrates that
pre-training may be an important factor for the defense performance. We expect more future works
to explore the underlying mechanism of the effects of pre-training.

B.3 Reducing the Training Epochs / Learning Rate Using PET

Reducing the Training Epochs. We perform experiments to investigate the effects of reducing
the training epochs when using the original LoRA and Adapter (without reparameterization) for the
word-level attack and syntactic attack. We set the learning rate as 3×10−4 and set the training epochs
as {10, 2, 1}, respectively. The projection dimension of the Adapter is set as 24. The experimental
results are shown in Table 3. From the experimental results, we can see that when we reduce the
number of training epochs from 10 to 1 using the original LoRA or Adapter, the ASR decreases
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Table 3: Results of reducing the training epochs using PET.

LoRA Adapter

Epochs 10 2 1 10 2 1 10 2 1 10 2 1

Word-level Attack Syntactic Attack Word-level Attack Syntactic Attack

ACC (SST-2) 94.29 93.96 93.47 93.85 93.47 92.31 94.34 93.96 93.36 94.18 93.25 93.08
ASR (SST-2) 96.16 9.65 8.33 90.90 72.15 52.52 99.67 10.86 8.88 91.56 81.91 62.06

Table 4: Results of reducing the learning rate using PET.

Word-level Attack Syntactic Attack

Learning Rate 3 × 10−4 3 × 10−5 1 × 10−5 3 × 10−4 3 × 10−5 1 × 10−5

LoRA
ACC (SST-2) 94.29 94.07 92.09 93.85 92.75 91.65
ASR (SST-2) 96.16 8.66 10.31 90.90 65.57 39.04

Adapter

ACC (SST-2) 94.34 94.56 92.04 94.18 93.90 91.32
ASR (SST-2) 99.67 9.21 10.75 91.56 77.19 49.89

Table 5: Results of the original LoRA when using different rank r.

Word-level Attack Syntactic Attack

r 16 8 4 1 16 8 4 1
ACC (SST-2) 94.45 94.29 94.34 94.56 94.34 93.85 94.29 94.01
ASR (SST-2) 96.05 96.16 95.50 96.82 90.68 90.90 90.02 88.71

sharply while the ACC only declines a little. This demonstrates that reducing the training epochs is
also an effective means to defend against backdoor attacks for PET methods.

Reducing the Learning Rate. We perform experiments to investigate the effects of reducing
the learning rate when using the original LoRA and Adapter (without reparameterization) for the
word-level attack and syntactic attack. The number of training epochs is set as 10. The projection
dimension of the Adapter is set as 24. The experimental results are shown in Table 4. The learning
rate is chosen from {3× 10−4, 3× 10−5, 1× 10−5}. From the experimental results, we can see that
when we reduce the learning rate from 3× 10−4 to 1× 10−5 using the original LoRA or Adapter, the
ASR declines significantly while the ACC only drops a little. These results show that reducing the
learning rate is also an effective method to defend against backdoor attacks when using PET methods.

B.4 Performance of the Original LoRA When Using Different Rank r

As mentioned in the main paper, although LoRA (Hu et al., 2021) explicitly models the low-rank
updates of the parameters, its low-rank structures are individually distributed in different modules in
the Transformer layers (dubbed as local low-rank architecture). Instead, it is necessary to control
the overall intrinsic rank of the weight updates to be smaller than the intrinsic dimension. We
perform experiments on SST-2 to see the influence of LoRA rank r in the original LoRA (without
reparameterization) on the ACC and ASR. The LoRA α is set as 16 and the number of training
epochs is set as 10. The learning rate is set as 3 × 10−4. The experimental results are shown in
Table 5. From the experimental results, we can find that reducing LoRA rank r does not have much
influence on the ACC and ASR, which demonstrates the defect of the local low-rank architecture.
Instead, we have shown in the main experiments that our global low-rank architecture (the low-rank
reparameterization network) is effective in defending against backdoor attacks.

B.5 Performance of the Original Adapter When Using Different Projection Dimensions

We also performed experiments to see the influence of the projection dimension on the ACC and
ASR for the original Adapter (without reparameterization). The experiments are conducted on SST-2.
The number of training epochs is set as 10. The learning rate is set as 3× 10−4. The experimental
results are shown in Table 6, from which we can observe that ASR declines slightly (from 99.67% to
87.83% for word-level attack, and from 93.42% to 86.40% for syntactic attack) when the projection
dimension decreases from 48 to 1.
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Table 6: Results of the original Adapter when using different projection dimensions.

Word-level Attack Syntactic Attack

Projection Dimension 48 24 6 1 48 24 6 1
ACC (SST-2) 94.73 94.34 94.84 94.29 94.51 94.18 94.23 93.74
ASR (SST-2) 99.67 99.67 97.48 87.83 93.42 91.56 92.43 86.40

Table 7: Results of whether to reparameterize the classifier.

Reparameterize all tunable parameters Do not reparameterize the classifier
Bottleneck Dim 256 32 4 2 1 256 32 4 2 1

LoRA
ACC (SST-2) 93.14 94.34 93.85 92.09 91.98 93.36 93.85 93.41 92.26 90.83
ASR (SST-2) 91.12 91.89 75.44 53.84 42.11 92.00 89.58 78.73 59.76 56.25

Adapter
ACC (SST-2) 93.90 94.18 93.41 92.20 89.02 93.63 94.01 94.56 93.79 92.59
ASR (SST-2) 92.11 90.02 71.71 54.82 34.65 93.64 91.56 80.26 70.07 63.38

Prefix-Tuning
ACC (SST-2) 92.97 93.47 92.20 89.51 87.37 94.23 93.08 92.42 91.93 91.05
ASR (SST-2) 91.78 88.60 56.91 52.96 42.54 91.89 88.49 67.98 63.38 55.81

B.6 Whether to Reparameterize the Classifier

Our low-rank reparameterization network is applied to all of the tunable parameters defined by a
specific PET algorithm, including the classifier. We perform experiments using the syntactic attack.
For LoRA, Adapter and Prefix-Tuning, we performed experiments comparing (1) reparameterizing
all tunable parameters and (2) reparameterizing the tunable parameters except the classifier. The
number of training epochs is set as 10. The learning rate is set as 3× 10−4 for LoRA and Adapter,
and 5× 10−4 for Prefix-Tuning, respectively. The projection dimension of the Adapter is set as 24.
The prefix token number of Prefix-Tuning is set as 24.

The experimental results are shown in Table 7, from which we observe that not reparameterizing
the classifier can also defend against the backdoor attack to some extent; however, reparameterizing
all tunable parameters is more effective, as reflected in the lower ASR when using the bottleneck
dimension of 1 for three PET algorithms, though with the cost of a slight drop of ACC for Adapter
and Prefix-Tuning.

B.7 Additional Experiments on Another Synthetic Dataset

When creating the synthetic dataset in the main paper, we choose SST-2 as the primary task, and
choose AG News as the subsidiary task. In this subsection, we experiment with choosing AG News
as the main task and SST-2 as the subsidiary task. Specifically, we mix the training samples of AG
News (only taking two categories of samples) and a very small number of samples from SST-2 to
create the synthetic dataset. For SST-2, we randomly sample 346 samples whose labels are “negative”
or “positive”. For AG News, we take all samples whose labels are “World” or “Sports” from our
originally used AG News training dataset (5621 samples). We perform the binary classification task
on the synthetic dataset. Specifically, we label the sample as “0” if the original label is “negative”
or “World”, and “1” if the original label is “positive” or “Sports”. During the evaluation, we test the
performance of SST-2 on the original test dataset of SST-2. We test the performance of AG News
using testing samples whose labels are “World” or “Sports” taken from the original test dataset of AG
News.

For reducing the model capacity, we choose the reparameterized LoRA. The number of training
epochs is set as 10 and the learning rate is set as 3× 10−4. For reducing the training epochs using
the fine-tuning method, the learning rate is set as 2× 10−5, and the training epochs are chosen from
{10, 1}. For reducing the learning rate using the fine-tuning method, the number of training epochs is
set as 10, and the learning rate is chosen from {5× 10−6, 1× 10−6, 5× 10−7}. The experimental
results are shown in Table 8. From the results, we can see that when reducing the model capacity,
training epochs or learning rate, the performance of the primary task (AG News) is hardly influenced,
while the performance of the subsidiary task (SST-2) drops significantly.
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Table 8: Results on a synthetic dataset with samples from AG News (the primary task) and SST-2 (the subsidiary
task). We train RoBERTaBASE on the synthetic dataset, and evaluate the performance of both tasks under different
model capacity, training epochs and learning rates.

Tuning Method Reparameterized LoRA Fine-tuning

Setting
Bottleneck Dimension Training Epochs Learning Rate

32 6 1 10 1 5 × 10−6 1 × 10−6 5 × 10−7

SST-2 86.27 79.13 54.75 87.53 56.84 87.37 76.22 60.85
AG News 97.95 97.42 97.11 97.87 97.21 97.55 97.39 97.05

Table 9: Results when using a sufficiently large learning rate for low-rank reparameterized LoRA and Adapter.

Low-rank reparameterized LoRA Low-rank reparameterized Adapter

Learning Rate 4 × 10−3 2 × 10−3 1 × 10−3 3 × 10−4 4 × 10−3 2 × 10−3 1 × 10−3 3 × 10−4

Word-level Attack Word-level Attack
ACC (SST-2) 93.68 94.34 93.85 92.64 94.67 94.89 94.45 89.18
ASR (SST-2) 94.52 57.35 10.20 10.96 91.34 67.54 7.68 11.95

Syntactic Attack Syntactic Attack

ACC (SST-2) 93.63 93.79 92.75 91.98 94.29 94.12 93.36 89.02
ASR (SST-2) 89.04 82.89 68.53 42.11 93.20 85.31 77.41 34.65

Table 10: Results when using a sufficiently large learning rate for low-rank reparameterized Prefix-Tuning.

Word-level Attack Syntactic Attack

Learning Rate 4 × 10−3 2 × 10−3 1 × 10−3 3 × 10−4 4 × 10−3 2 × 10−3 1 × 10−3 5 × 10−4

ACC (SST-2) 92.31 91.87 89.73 85.67 92.64 91.32 89.40 87.37
ASR (SST-2) 11.73 13.27 14.80 20.72 56.47 52.52 45.72 42.54

B.8 The Defense Performance is Influenced by Multiple Factors

We have shown that there are several factors that can influence the defense effect, including the
learning rate, training epochs, and model capacity. In practice, whether a PLM could defend against
the backdoor attack is not just decided by a single factor, but by multiple factors. For example,
despite keeping the low model capacity, a PLM could still be attacked if the model is trained with a
sufficiently large learning rate or number of training epochs1.

However, we argue that the above issue is not a serious one in that, (1) as long as other factors are
kept in a reasonable range, only controlling one factor is enough for effective backdoor defense in
most cases; (2) the three proposed methods are orthogonal to each other, and could be combined to
achieve better defense performance. And we expect future work to explore how to decide the optimal
value for each factor to strike the best trade-off between ACC and ASR. In the following experiments,
we demonstrate our point of view that the defense performance is influenced by multiple factors.

Results when Using a Sufficiently Large Learning Rate. We find that even reducing the model
capacity, when the learning rate is larger, the ASR may be high in some cases. We perform
experiments on low-rank reparameterized LoRA, Adapter and Prefix-Tuning with larger learning
rates. The bottleneck dimension of the reparameterization network is set to 1 to achieve the low
model capacity. The number of training epochs is set as 10. The prefix token number is set as 24
for Prefix-Tuning. The projection dimension of the Adapter is set as 24. The experimental results
of low-rank reparameterized LoRA and Adapter are shown in Table 9. The experimental results of
low-rank reparameterized Prefix-Tuning are shown in Table 10. From the experimental results, we
can see that when the learning rate is sufficiently large, the ASR could be high even if the model
capacity is kept low, except that for Prefix-Tuning under the word-level attack, even if the learning
rate is extremely large (i.e., 2× 10−2), the ASR is still very low, with the ACC achieving 94.45%
and the ASR 10.31%.

Similar phenomenon is observed when fine-tuning RoBERTaBASE using fewer training epochs. We
find that when the learning rate is larger, even if we reduce the number of training epochs, the ASR

1In all of our experiments in the main paper, when analyzing the effect of one specific factor, we set other
factors to reasonable numerical values based on common practice.
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Table 11: Results when using a sufficiently large learning rate for fine-tuning under the add-sentence attack.

Learning Rate 2 × 10−5 5 × 10−6

Epochs 10 2 1 10 2 1
ACC (SST-2) 94.78 94.51 94.01 94.89 93.03 90.77
ASR (SST-2) 100.00 100.00 98.79 99.89 86.95 35.20

Table 12: Results when using sufficiently large training epochs for low-rank reparameterized PET.

LoRA Adapter Prefix-Tuning

Epochs 30 20 15 10 30 20 15 10 30 20 15 10

Word-level Attack Word-level Attack Word-level Attack
ACC (SST-2) 93.96 93.52 93.08 92.64 94.18 93.14 92.04 89.18 90.55 90.23 88.85 85.67
ASR (SST-2) 9.65 9.76 9.87 10.96 8.00 7.68 9.43 11.95 13.49 15.57 15.35 20.72

Syntactic Attack Syntactic Attack Syntactic Attack

ACC (SST-2) 93.68 92.92 92.59 91.98 93.52 92.97 91.71 89.02 91.65 89.79 87.64 87.37
ASR (SST-2) 67.32 57.79 50.55 42.11 76.86 69.08 52.63 34.65 51.64 46.16 44.08 42.54

could be high in some cases. Specifically, we experiment with reducing the training epochs when
fine-tuning RoBERTaBASE on SST-2 for the add-sentence attack. The poisoning ratio is 5%. The
experimental results are shown in Table 11. When the learning rate is larger, i.e., 2× 10−5, the ASR
is still high even when the number of training epochs is 1. However, when the learning rate is smaller,
i.e., 5× 10−6, the ASR declines sharply when the number of training epochs decreases from 10 to 1.

Increasing Training Epochs. Similarly, we find that even if we keep the low model capacity, when
the number of training epochs is sufficiently large, the ASR could still be high in some cases. We
perform experiments on low-rank reparameterized LoRA, Adapter and Prefix-Tuning by increasing
the training epochs. The bottleneck dimension of the reparameterization network is set to 1. The
learning rate is set as 3 × 10−4 for the word-level attack for all three PET algorithms. For the
syntactic attack, the learning rate is set as 3× 10−4 for LoRA and Adapter, and set as 5× 10−4 for
Prefix-Tuning, respectively. The prefix token number is set as 24 for Prefix-Tuning. The projection
dimension of the Adapter is set as 24. The experimental results are shown in Table 12. From the
experimental results, we can see that the ASR rises as the number of training epochs increases for the
syntactic attack. However, for the word-level attack, the ASR is still low when the number of training
epochs increases from 10 to 30.

C Limitations

Although our methods have achieved excellent performance in defending against backdoor attacks
for PLMs, there are still some limitations: (1) As shown in appendix B.8, the defense performance
is influenced by multiple factors. However, as stated before, as long as other factors are kept in a
reasonable range, only controlling one factor is enough for effective backdoor defense in most cases.
In the future, we aim to explore how to decide the optimal value for each factor to strike the best
trade-off between ACC and ASR. (2) Although our methods could significantly reduce ASR in most
cases, the performance of the original task is slightly influenced, too. It would be interesting to
explore how to mitigate the slight performance drop of the original task in the future.

D Broader Impact

Large-scale PLMs have been the foundation models for the entire NLP community and achieved great
success in various tasks. However, there are still some security concerns (e.g., the backdoor attack)
about their real-world applications. By providing several simple yet effective defense methods against
the backdoor attack, this paper opens up a new direction of robust adaptation for PLMs. Although
not our initial goal, this work may be adversely leveraged to invent more advanced backdoor attacks,
which require designing new defense methods.
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