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One-shot-but-not-degraded Federated Learning
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ABSTRACT
Transforming the multi-round vanilla Federated Learning (FL) into
one-shot FL (OFL) significantly reduces the communication burden
and makes a big leap toward practical deployment. However, we
note that existing OFL methods all build on model lossy reconstruc-
tion (i.e., aggregating while partially discarding local knowledge
in clients’ models), which attains one-shot at the cost of degraded
inference performance. By identifying the root cause of stressing
too much on finding a one-fit-all model, this work proposes a novel
one-shot FL framework by embodying each local model as an in-
dependent expert and leveraging a Mixture-of-Experts network to
maintain all local knowledge intact. A dedicated self-supervised
training process is designed to tune the network, where the sample
generation is guided by approximating underlying distributions of
local data and making distinct predictions among experts. Notably,
the framework also fuels FL with flexible, data-free aggregation and
heterogeneity tolerance. Experiments on 4 datasets show that the
proposed framework maintains the one-shot efficiency, facilitates
superior performance compared with 8 OFL baselines (+5.54% on
CIFAR-10), and even attains over ×4 performance gain compared
with 3 multi-round FL methods, while only requiring less than 85%
trainable parameters.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence; Cooperation and coordination; • Security and privacy;

KEYWORDS
One-shot Federated Learning, Mixture of Experts, Data-free, Het-
erogeneous Systems

1 INTRODUCTION
As a popular machine learning paradigm featured with privacy pro-
tection, Federated Learning (FL) enables multiple distributed clients
to fuse local knowledge collaboratively without disclosing their raw
data [27, 29, 46, 51]. Basically, FL lets clients independently train
local models, collects the local knowledge for global aggregation,
and distributes the aggregated model for iterative local training
and aggregation. However, such multi-round client-server interac-
tion would incur a heavy communication burden (e.g., more than
250 GB for simple VGG19 model [38]) and coordination costs (e.g.,
client selection for capability alignment [1]), criticized for being
prohibitive for real-world implementation [5, 7, 47].

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Parameter optimization-basedKnowledge distillation-based

Client 2Client 2Client 1Client 1 Client 3Client 3

Figure 1: Visualization of the correct-prediction domains
of clients’ local models and models learned with existing
OFL methods. Large sub-areas of the learned knowledge of
local models are discarded with knowledge distillation and
parameter optimization.

As a remedy, one-shot FL (OFL) has emerged recently by reducing
the interaction of vanilla FL to just one communication round [12].
In fact, OFL is believed to be well-suited for the popular model
market scenarios [47], where users are willing to sell local-trained
models but are reluctant to join in the redundant training process.
Technically, existing designs of OFL, now in its infant age, could
be categorized into knowledge distillation methods (KD) [16, 22,
40, 47, 49] and parameter optimization methods [8, 35], both works
in a way of aggregating all local models into one global model.
Wherein, KD methods transfer knowledge from local models to a
global model with assumed-to-be-available auxiliary data, while
the latter one focuses on designing dedicated averaging [29, 45],
clustering [8], and solving Pareto optimum [35] for one-shot.

Unfortunately, the one-shot gain of existing OFL methods comes
at the cost of degraded learning performance. The above proposals
all try to learn a one-fit-all global model given local models, which
is essentially a model reconstruction process, accompanied by
knowledge loss. The visualization in Figure 1 shows the differences
in correct-prediction domains (i.e., samples that are correctly pre-
dicted) between local models and existing OFL models. Notably,
both knowledge distillation and parameter optimization methods
reconstruct the knowledge space in the union of already-learned
local knowledge, while large sub-areas (i.e., those not covered after
OFL) are discarded during aggregation. As a result, samples falling
in the discarded sub-areas would experience wrong inference with
existing OFL models.

The FL paradigm would be more fantastic if the one-shot is at-
tained without performance degradation. For this purpose, this
work presents the novel design Intact One-shot Federated Learn-
ing (IntactOFL), with the key idea of synergizing the knowledge
of local models rather than reconstructing it. By regarding each
local model as an expert, IntactOFL employs the Mixture of Ex-
perts (MoE) [18] architecture to retain all the local knowledge,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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where a gating network is planted for flexible expert/local model as-
signment during inference (i.e., having which local models to make
prediction on a specific sample), thus relieving the one model-fit-all
pitfall. With the expert model frozen, the gating network, as the
core in our one-shot MoE network, is trained in a self-supervised
way based on auxiliary sample generation. Specifically, a generator
is designed to construct samples that, on one hand, mimic the local
data with the pseudo label approximating the prediction of local
experts, and on the other hand, are hard to predict by the MoE
network and thus fuel the optimization of it.

We elaborate on and highlight three advantages of IntactOFL:
First, in contrast to the previous OFL’s reconstruction-based design,
IntactOFL preserves all local models’ training efforts and utilizes
a lightweight gating network to essentially construct a dedicated
model for each sample (i.e., flexible aggregation). Second, it re-
quires no additional data or pre-trained models (i.e., data-free),
which well-suits the privacy-sensitive scenarios of FL, especially
compared to existing KD methods. Third, by focusing on the fusion
of knowledge rather than the aggregation of models, IntactOFL
could by nature handle heterogeneous clients with non-iid data
distribution and heterogeneous model architectures (i.e., hetero-
geneity tolerance).

Overall, our main contributions can be summarized as follows:

• We first identify the knowledge loss pitfall of existing OFL
methods, incurred by the reconstruction of the global model
from local models and appeal to synergizing knowledge
instead. We believe this could spur rethinking the default
way of performing aggregation in FL.
• We invent a novel one-shot learning framework, which at-
tains one-shot with NO performance degradation. Its techni-
cal novelty includes adapting the MoE architecture to inte-
grate all local models with no knowledge loss and the design
of self-supervised network training based on a distribution-
aware and informativeness-sensitive sample generator.
• The proposed IntactOFL is featured with no requirements
for additional auxiliary data, pre-trained models, data distri-
bution, and specific model architectures.
• Extensive experiments have evaluated the effectiveness, scal-
ability, and efficiency of IntactOFL, which consistently out-
performs 8 OFL baselines on 4 datasets with various hetero-
geneity settings.

2 RELATEDWORK
2.1 One-shot Federated Learning
One-shot FL is a variant of the FL that requires only one communica-
tion round between the server and clients. In OFL, the clients upload
well-trained local models to the server, and the server aggregates
these uploaded models to obtain a new global model [12]. Existing
methods in OFL can be categorized into knowledge distillation-
based and parameter optimization-based methods.

2.1.1 Knowledge Distillation-based. These methods are proposed
to use knowledge distillation (KD) to transfer the massive local
knowledge into one global model. They use the local models as

teachers, and use the auxiliary public dataset or model to train a stu-
dent model. [12] firstly proposed to use the KD and use the ensem-
ble prediction of local models as the teacher’s output. FedKT [22]
designs a two-tier PATE structure [30] relying on public data to
improve the ensemble of local models. To alleviate the label skews,
FedOV [9] adopts open-set voting in OFL to enhance the general-
ization ability of the ensemble. However, these methods require
the auxiliary public data or pre-trained models should be simi-
lar to the original task, which limits the application in real-world
scenarios, especially in privacy-sensitive scenarios such as biomed-
ical domains, since there might be no available data or models.
To this end, some methods try to utilize additional distilled data
or synthetic data instead of public data. [49] proposes transmit-
ting a distilled dataset to the server. DENSE [47] firstly proposes
a data-free OFL method through training a data generator to as-
sist the KD process. Co-Boosting [7] designs a mutually enhanced
process to synthesize high-quality samples and distillation models.
Furthermore, FedCAVE [16] modifies the local learning task into
training a conditional variation auto-encoder (CAVE) and uses KD
to compress the ensemble into a powerful decoder. The decoder
can be used to generate training samples for the global model. And
the FedCADO [40] adopts the popular diffusion models to get the
synthetic data. However, none of the aforementioned methods can
fully use the knowledge of local models, since the KD methods
have been criticized as inefficient [48], and existing an intractable
performance gap.

2.1.2 Parameter optimization-based. These methods aim to search
for an optimum across all local models by analyzing the local model
parameters. Clearly, the traditional statistic aggregation methods,
such as FedAvg, Median [42], and Krum [3] can still apply in OFL
but achieve low performance. k-FED [8] runs a variant of Lloyd’s
method for k-means clustering and obtains an aggregated model
through one round iteration of exchanging local cluster means.
MA-Echo [35] tries to get the Pareto optimum of the local clients
via exploring common harmonized optima. However, directly an-
alyzing the model parameters requires all local models should be
homogeneous, whose setting is not practical in real-world hetero-
geneous scenarios. And the optimum of the parameters can not
represent the optimum of the model performance, in most cases,
the performance degrades obviously [47]. Besides, none of these
methods support the model heterogeneity, i.e., different clients have
different model architectures [23]. It is challenging to get the opti-
mum from completely different architecture parameters.

2.2 Mixture of Experts
The MoE [6, 18] is an ensemble learning framework that combines
multiple expert networks to enhance the overall performance of
a model. Each expert in an MoE model is specialized in handling
specific types of data or tasks. A gating network, which is a cru-
cial component of MoE, dynamically routes input tokens to the
appropriate experts, ensuring that only relevant parts of the model
are activated for a given task. Based on this, several improvements
have been proposed to reduce the training cost [14, 32], or improve
performance on multi-tasks [6, 28].

Recently, MoE has become promising again due to the appear-
ance of Mixtral8×7B, which uses the MoE for model scaling and
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Figure 2: The workflow of IntactOFL. All clients perform local training and upload local models to the server only once. The
one-shot MoE network consists of a set of experts and a gating network. The server aggregates these local models into the
expert set and trains a gating network in a self-supervised manner. The key steps of each training epoch 𝑡 are: (1) Given a
random noise and pseudo label, the Generator 𝑔 aims to generate auxiliary data that is similar to the local training data guided
by the current MoE network with L𝑡

𝑔𝑒𝑛 ; (2) Using the auxiliary data after augmentation as the input of the MoE network and
updating the gating network by L𝑡

𝑡𝑟𝑎𝑖𝑛
to form a better MoE network.

achieves better performance than a larger one.Moreover, GShard [20]
uses MoE for scaling up large models and managing models effec-
tively. Switch Transformers [11] introduces a model scaling method
by utilizing the MoE to substitute the FNN in Transformer, achiev-
ing better training efficiency and model performance. MoE archi-
tecture can also be applied to solve the multi-task or multi-modal
problem. LLaMA-MoE [36] build a series of MoE models based on
LLaMA [37] with continual pre-training. MoE-LLaVA [25] adopt
this architecture to achieve high performance and fewer parameters
in Large Vision-Language Models (LVLM).

Existing methods also introduce the MoE into FL, and all these
methods focus on solving the heterogeneity problem in personal-
ized FL [39]. PFL-MoE [13] views the global model and personalized
local model as two experts and utilizes the MoE to achieve better
personalized performance and generalization. FedMoE [41] tries
to solve the model heterogeneity problem and uses the MoE to
weigh the representations of the global homogeneous model and
local personalized heterogeneous models. However, these methods
still adopt multi-round averaging, which suffers from performance
degradation as the parameter optimization-based OFL methods.
Contrarily, we adopt the MoE in OFL aggregation, focusing on
better leveraging the knowledge of local models.

3 FORMULATION AND DESIGN OF
INTACTOFL

3.1 Learning Problem and Goal
Suppose that we have a set of clients C, with totally𝑚 = |C| clients.
Each client 𝑐𝑘 ∈ C possesses a local private data D𝑘 = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑘

𝑖
,

where𝑚𝑘 = |𝐷𝑘 | represents the local data quantity, 𝑥𝑖 is the 𝑖𝑡ℎ
sample with the corresponding label 𝑦𝑖 . The original goal of OFL
is to train a single global model𝑤𝑔 over D = ∪𝑚

𝑘=1D𝑘 in only one

communication round, which can be described as follows,

min
𝑤𝑔

L(𝑤𝑔) =
1
|D|

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D

ℓ (𝑓 (𝑥𝑖 ;𝑤𝑔), 𝑦𝑖 ), (1)

where ℓ represents the loss function corresponding to the OFL task,
for example, ℓ can be the cross-entropy function in the classification
task. 𝑓 (𝑥𝑖 ;𝑤𝑔) is the prediction function that output the prediction
of 𝑥𝑖 when given the model parameter𝑤𝑔 . In OFL, the server can
not directly access the data D = ∪𝑚

𝑘=1D𝑘 , and only well-trained
local models𝑤𝑘 are accessed. To facilitate this, existing methods
mostly can be categorized into knowledge distillation-based and
parameter optimization-based methods.

For knowledge distillation-based methods, the well-trained local
models are integrated into an ensemble, and the ensemble model
acts as teacher to guide the global model (student). The ensemble
model can be defined as follows,

E(𝑥 ; {𝑤𝑘 }𝑚𝑘=1) =
𝑚∑︁
𝑘=1

𝛽𝑘 𝑓 (𝑥 ;𝑤𝑘 ), (2)

where 𝑓 (𝑥 ;𝑤𝑘 ) is the output of the input sample 𝑥 given the local
model 𝑤𝑘 , while 𝛽𝑘 is the weight of client 𝑐𝑘 . In most settings,
the 𝛽𝑘 is assigned to 𝛽𝑘 = 1

𝑚 or 𝛽𝑘 = 𝑚𝑘/
∑𝑚

𝑗=1𝑚 𝑗 . Relying on
the public auxiliary data or synthetic data, i.e., D𝐴 , the distillation
process can be defined as follows:

min
𝑤𝑔

L(𝑤𝑔) =
1
|D𝐴 |

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D𝐴

ℓ (𝑓 (𝑥𝑖 ;𝑤𝑔), E(𝑥𝑖 ; {𝑤𝑘 }𝑚𝑘=1)), (3)

where the ℓ can be the Kullback-Leibler (KL) divergence function
corresponding to the distillation task. Notably, existing literature
has reported that the performance gap of knowledge distillation [39,
50], the key part is the distillation distance between the ensemble
and global model.

For parameter optimization-based methods, the global model𝑤𝑔

is the optimum output across all local models with optimization
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mechanism A, that is 𝑤𝑔 = A({𝑤𝑘 }𝑚𝑘=1). The objective of these
methods can be written as:

min
𝑤𝑔

L({𝑤𝑘 }𝑚𝑘=1) = min
𝑤𝑔

A({𝑤𝑘 }𝑚𝑘=1,𝑤𝑔), (4)

where A({𝑤𝑘 }𝑚𝑘=1,𝑤𝑔) can be any distance functions or similar-
ity functions. When A({𝑤𝑘 }𝑚𝑘=1,𝑤𝑔) = ∥

∑𝑚
𝑘=1 𝜌𝑘𝑤𝑘 −𝑤𝑔 ∥2, the

global model is𝑤𝑔 =
∑𝑚
𝑘=1 𝜌𝑘𝑤𝑘 , which is the same as the vanilla

aggregation algorithms FedAvg in a one-shot manner. However,
these methods focus on processing the model parameter, which is
far away from the original OFL objective.

In IntactOFL, we aim to preserve all local models’ knowledge
through direct integration with MoE. We define the objective of
IntactOFL as:

min
M
L({𝑤𝑘 }𝑚𝑘=1) =

1
|D|

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D

ℓ (𝑓M (𝑥𝑖 ; {𝑤𝑘 }𝑚𝑘=1), 𝑦𝑖 ), (5)

where 𝑓M (𝑥𝑖 ; {𝑤𝑘 }𝑚𝑘=1) is the output of the MoE network. The
goal is to fully utilize all local models and form an MoE network
M which can achieve high performance on predefined tasks. For
the MoE networkM, it consists of gating network G and a set of
experts 𝐸 = {𝑤𝑘 }𝑚𝑘=1. The MoE architecture dynamically adapts
the weight of each expert 𝜌𝑘 through the gating network G and
maximizes the influence of all experts. The weight can be described
as:

𝜌 (𝑥 ;G) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥 · G) . (6)
For any input sample, the gating network G will dynamically adjust
the weights of the experts and distribute these samples to special-
ized experts for high performance. We use the weighted outputs of
the experts as the final output of the MoE network. To this end, the
𝑓M (·) can be formulated as:

𝑓M (𝑥 ; {𝑤𝑘 }𝑚𝑘=1;G) =
𝑚∑︁
𝑘=1

𝜌𝑘 (𝑥 ;G) 𝑓 (𝑥 ;𝑤𝑘 ). (7)

Therefore, the objective of IntactOFL can be rewritten as

min
G
LM ({𝑤𝑘 }𝑚𝑘=1) =

1
|D|

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D

ℓ (
𝑚∑︁
𝑘=1

𝜌𝑘 (𝑥 ;G) 𝑓 (𝑥 ;𝑤𝑘 ), 𝑦𝑖 ).

(8)

3.2 Framework Overview
The illustration of IntactOFL is shown in Figure 2. After the clients
upload their well-pre-trained models, the server aggregates these
local models with an MoE architecture. The one-shot MoE network
consists of the experts and a gating network. The server treats all
the local models as the experts and trains a gating network in a
self-supervised manner. Specifically, each training epoch consists
of two steps: (1) the current one-shot MoE network guides the data
generation process of the Generator 𝑔 with L𝑡

𝑔𝑒𝑛 , given random
noise, the 𝑔 can produce many auxiliary samples with similarity
and informativeness. (2) Then we add the noise on these samples
for data augmentation. These generated samples are treated as the
input of the one-shot MoE network. We adopt the L𝑡

𝑡𝑟𝑎𝑖𝑛
to update

the gating network for forming a better MoE network. Note that
the self-supervised MoE training consists of two major processes,
which are self-supervised data generation and one-shot MoE net-
work training. The self-supervised data generation is designed for

data-free training, and the latter one is for flexible aggregation.
We present the details of these two processes in § 3.3 and § 3.4,
respectively.

3.3 Self-supervised Data Generation
Data generation fuels the self-supervised process with optimization
basics. For each specific pseudo label, the generator is expected to
render noises as the samples with this label. Initially, the MoE’s
prediction on a generated sample would be very different from the
expected pseudo label, which would lead to the optimization of the
generator and, more importantly, the gating network before the
MoE, via back-propagation. This self-tuning process proceeds until
the generator learns how to generate and the gating network learns
how to assign weights.

SimilarityMeasure. Basically, the generated samples are settled
to mimic the raw local data by representing a similar distribution.
We consider the similarity between the generated auxiliary data and
the training data. Note that the similarity only focuses on the similar
data distribution for utility, rather than visual reconstruction. Fol-
lowing the existing data-free methods, we adopt the Cross-Entropy
loss function [7, 47]. Different from existing methods which adopt
statistic ensemble output to guide the data generator training, we
dynamically use the updated MoE network. The loss for similarity
in training epoch 𝑡 can be formulated as:

L𝑡
𝑠𝑖𝑚 (𝑥,𝑦, 𝑓

𝑡
M ) = ℓ𝐶𝐸 (𝑓

𝑡
M (𝑥), 𝑦), (9)

where 𝑥 is the auxiliary data with a corresponding label 𝑦.
Informativeness Measure. Optimized only with the CE loss,

the generated auxiliary data can be easily fitted, while may be less
representative and contains less information for fine-tuning the
backbone gating network. Inspired by [7, 10], the hard samples can
embed more representative information compared with easy-to-
fit samples. In our context, the samples resulting in more diverse
outputs across different experts are considered harder to fit (i.e.,
more informative in optimizing the gating network). Hence, we use
the variance of the experts’ output, i.e., 𝜎 (𝑓 𝑡M (𝑥)), as the informa-
tiveness of each sample. With this, we could explicitly increase the
preference for hard samples in data generation.

By jointly considering similarity and informativeness, the loss
function that guides data generator training is formulated as:

L𝑡
𝑔𝑒𝑛 (𝑥,𝑦, 𝑓 𝑡M ) = 𝜎 (𝑓

𝑡
M (𝑥))ℓ𝐶𝐸 (𝑓

𝑡
M (𝑥), 𝑦), (10)

where 𝜎 (·) is the variance function.
To further promote sample diversity, we introduce a data aug-

mentation module after data generation. Specifically, we further
add noise back to the originally generated sample following [7].
As such, we can get more diverse auxiliary samples D𝐴 of which
similarity and informativeness.

3.4 One-shot MoE Network
The goal of training the MoE network is to make the best of the
knowledge of local data. We use the generated auxiliary data as
the training data. To preserve the knowledge of local models with-
out disruption, we froze all experts, since the experts’ updating
would cause unavoidable forgetting [2]. Instead, we focus on train-
ing a high-performance gating network to make the best use of
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Algorithm 1 IntactOFL
Input: Clients’ local models {𝑤𝑘 }𝑚𝑘=1, auxiliary dataset D𝐴 = ∅,

generator 𝑔, gating network G, learning rate of generator and
gating network 𝜂𝑔 and 𝜂G , generation iterations 𝑇𝑔 , MoE train-
ing epochs 𝑇 , and batch size 𝑏.

Output: MoE network: gating network G and experts {𝑤𝑘 }𝑚𝑘=1.
1: for each epoch 𝑡 to 𝑇 do
2: // Generate auxiliary data;
3: Sample a batch of noises and labels {𝑧𝑖 , 𝑦𝑖 }𝑖=1𝑏

;
4: for each 𝑡𝑔 to 𝑇𝑔 do
5: Generate samples {𝑥𝑖 }𝑖=1𝑏

= 𝑔({𝑧𝑖 }𝑖=1𝑏
);

6: // Update the generator;
7: 𝑔← 𝑔 − 𝜂𝑔∇𝑔L𝑡

𝑔𝑒𝑛 , according to Eq.(10);
8: end for
9: D𝐴 ← D𝐴 ∪𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛({𝑥𝑖 }𝑖=1𝑏

);
10: // Update gating network;
11: for each sampling batch {𝑥𝑖 }𝑖=1𝑏

in D𝐴 do
12: G ← G − 𝜂G∇GL𝑡𝑟𝑎𝑖𝑛 (G), according to Eq.(13).
13: end for
14: end for

the knowledge of local models. To this end, we update the gating
network according to Eq.(11).

min
G
LM ({𝑤𝑘 }𝑚𝑘=1) =

1
|D𝐴 |

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D𝐴

ℓ (
𝑚∑︁
𝑘=1

𝜌𝑘 (𝑥 ;G) 𝑓 (𝑥 ;𝑤𝑘 ), 𝑦𝑖 ) .

(11)
Meanwhile, the ‘over-trust’ problem of the gating network has

been widely reported [20, 33], that is, the gating network always
produces large weights for the same few experts. Following [33], we
add a balance loss to mitigate the weight bias of the gating network.
Specifically, we compute the importance of each expert in every
batch in 𝑡 iteration, and the balance loss equals the square of the
coefficient of variation (CV) of the set of importance (see Eq.(12)).
𝜆 is the scaling factor for the balance loss, which is set as 1 in the
implementations.

V𝑡 (𝑋 ) =
∑︁
𝑥∈𝑋

𝜌𝑡 (𝑥 ;G),

L𝑡
𝑏𝑎𝑙𝑎𝑛𝑐𝑒

(𝑋 ) = 𝜆 · CV(V𝑡 (𝑋 ))2 .
(12)

In summary, the MoE training loss function consists of two
parts, the first part is for high performance which minimizes the
difference between model outputs and labels; the second part is for
preventing the “over-trust" phenomenon and achieving a balanced
gating network. We conclude the loss function as:

min
G
L𝑡
𝑡𝑟𝑎𝑖𝑛 ({𝑤𝑘 }𝑚𝑘=1) = L

𝑡
M ({𝑤𝑘 }𝑚𝑘=1;D𝐴) + L

𝑡
𝑏𝑎𝑙𝑎𝑛𝑐𝑒

(D𝐴).
(13)

The details of the training process are presented in Algorithm 1.

4 EVALUATION
4.1 Experiment Setup
We provide the important details of the datasets, data partition, and
baselines here, and present the rest details in the Appendix.

4.1.1 Datasets. We evaluate the proposed IntactOFL and baselines
on four widely used classification benchmarks: CIFAR-10, CIFAR-
100, SVHN, and Tiny-ImageNet. CIFAR-10 consists of 60,000 32 ×
32 RGB images in 10 categories. It has 50,000 training samples and
10,000 test samples. CIFAR-100 has the same format as CIFAR-10,
except it has 100 categories. SVHN is a real-world dataset compris-
ing over 600,000 digit images extracted from Google Street View
images. Tiny-ImageNet is the subset of the ImageNet dataset, con-
taining 200 categories and 100,000 images (500 images for each
category), each image is downsized to 64 × 64.

4.1.2 Data Partition. To simulate the real-world heterogeneous
environment, we adopt the Dirichlet distribution (𝛼) to control
the proportions of each category across clients [21, 44]. We use
the 𝛼 to control the degree of heterogeneity. A small 𝛼 represents
a biased data distribution. Following the settings in [47], we set
𝛼 = {0.05, 0.1, 0.3, 0.5}.

4.1.3 Baselines. We compare the performance of the proposed
IntactOFL against the existing two categories of methods. One is
the knowledge distillation-based method, another is the param-
eter optimization-based method. We compare with knowledge
distillation-based SoTA which are DENSE [47] and Co-Boosting [7].
Meanwhile, following the setting in [7, 47], we also compare with
the FedDF [26] which uses the real validation dataset for distillation,
and some baselines derived from prevailing data-free knowledge
distillation methods which are F-ADI [43] and F-DAFL [4]. For pa-
rameter optimization-based methods, we choose high-performance
MA-Echo [35] and vanilla FedAvg in a one-shot manner [12, 29].
To ensure fair comparisons, we omit the comparison with meth-
ods that require multi-round interactions, such as FedProx [23],
SCAFFOLD [19], and FedCav [45]. We also neglect some methods
that require additional public data or models, such as FedKT [22],
FedOV [9] and FedGen [50].

4.2 Main Results
4.2.1 Effectiveness. Table 1 shows the effectiveness of the pro-
posed IntactOFL, we conduct experiments under various data het-
erogeneity settings across different datasets and methods by vary
𝛼 = {0.05, 0.1, 0.3, 0.5}. From the table, we conclude that the pro-
posed IntactOFL is effective in data heterogeneity settings. Specifi-
cally, (a) In all data heterogeneity settings, the IntactOFL outper-
forms than baselines. The IntactOFL surpasses the best baseline by
substantial margins with 5.54%, 4.26%, 3.50%, and 2.82% on CIFAR-
10, CIFAR-100, SVHN, and Tiny-ImageNet, respectively. Even in a
more heterogeneous environment (𝛼 = 0.05), IntactOFL achieves
over a 5% accuracy improvement compared to the best baseline. (b)
Notably, the knowledge distillation-based baselines achieve better
performance than the parameter optimization-based methods. The
DENSE and Co-Boosting both achieve ∼3% test accuracy higher
than MA-Echo and FedAvg. The reason is that the parameter recon-
struction process of optimization-based methods does not preserve
the local models’ knowledge, and the knowledge distillation-based
methods can transfer this knowledge to a new model. Owing to the
MoE architecture which preserves the local models, the proposed
IntactOFL can achieve better performance among these baselines.
(c) Besides, the Ensemble which equally averages all local models’
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Table 1: Performance on four data heterogeneity (varying 𝛼 = {0.05, 0.1, 0.3, 0.5}, lower 𝛼 represents more heterogeneous) on four
benchmarks (CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet). Underline/bold fonts highlight the best baseline/the proposed
IntactOFL.

Method 𝛼 MA-Echo FedAvg FedDF F-ADI F-DAFL Ensemble DENSE Co-Boosting Ours

CIFAR-
10

0.05 36.77±0.91 12.13±2.11 35.53±0.67 35.93±1.56 38.32±1.40 41.36±0.67 38.37±1.08 39.20±0.81 48.22±0.43
0.1 51.23±0.28 17.43±0.51 41.58±0.80 48.35±1.23 46.34±1.12 45.43±0.32 50.26±0.24 58.49±1.24 61.13±0.63
0.3 60.14±0.21 28.07±0.89 44.78±0.60 52.66±1.44 54.03±1.71 62.18±0.34 59.76±0.45 67.21±1.76 70.21±0.60
0.5 64.21±0.23 35.42±0.67 54.58±0.73 58.78±1.67 59.09±2.23 61.61±0.23 62.19±0.12 70.24±2.34 79.93±0.23

CIFAR-
100

0.05 19.54±0.45 4.77±0.21 15.07±0.74 14.65±0.98 16.31±0.33 20.46±0.62 18.37±2.43 20.19±1.44 27.99±0.67
0.1 29.11±0.26 6.45±0.71 27.17±0.55 28.13±1.24 26.80±1.33 26.23±0.55 32.03±0.44 27.59±1.35 39.15±0.46
0.3 37.77±0.24 10.67±0.31 31.23±0.79 33.18±0.67 34.89±1.45 38.01±0.67 37.33±0.48 39.30±1.30 41.86±0.60
0.5 41.94±0.21 12.13±0.05 35.39±0.47 39.44±1.11 37.88±1.34 41.61±0.77 38.84±0.39 42.67±1.40 46.78±0.78

SVHN

0.05 44.18±0.34 19.43±2.44 48.35±0.52 47.12±1.34 48.75±1.88 52.34±171 47.28±1.11 53.45±1.46 59.88±0.89
0.1 56.33±0.25 36.77±0.71 49.34±0.57 52.67±1.22 52.46±1.24 57.44±0.35 55.28±0.56 62.36±1.65 63.23±0.12
0.3 79.94±0.41 49.25±0.24 63.90±0.39 66.50±1.67 64.32±1.88 79.86±0.21 79.43±0.58 79.99±2.03 83.22±0.06
0.5 80.23±0.24 57.61±0.75 72.11±0.47 77.62±2.01 74.55±1.80 81.22±0.17 80.03±0.24 81.34±1.03 84.81±0.12

Tiny-
ImageNet

0.05 15.46±0.66 5.67±0.45 11.45±0.40 13.92±1.99 15.12±1.34 13.28±0.67 18.77±0.67 19.00±1.45 20.45±0.34
0.1 22.23±0.56 8.31±0.21 16.32±0.33 19.00±1.78 19.01±1.11 15.38±0.23 22.25±0.33 21.90±1.20 28.43±0.17
0.3 23.46±0.19 13.61±0.10 17.79±0.57 26.01±1.44 23.78±1.23 17.53±0.31 28.14±0.34 29.24±1.32 30.15±0.12
0.5 28.21±0.42 13.71±0.16 27.55±0.66 29.98±1.34 27.98±1.10 28.50±0.46 32.34±0.32 30.78±2.01 35.09±0.14

output can achieve the second-best performance in some settings.
This is thanks to the benefits of preserving all information. How-
ever, the compromised results obtained by equally averaging limits
its performance in all settings. The proposed IntactOFL adopts the
gating network for effective utilization of local models’ knowledge
evidently improves the entire performance. In summary, the In-
tactOFL is effective in various data heterogeneity scenarios
and achieves competitive performance than baselines.

4.2.2 Scalability. We evaluate the scalability of IntactOFL in two
aspects: horizontal scalability, which evaluates the performance
in a larger distributed network with more clients; and vertical
scalability, which evaluates the performance in scenarios of model
heterogeneity among clients, where different clients can possess
entirely distinct model architectures.

For horizontal scalability, we evaluate the test accuracy of all
methods in diverse networks by varying the number of clients
𝑚 = {5, 10, 25, 50, 100} on CIFAR-10 and SVHN. Table 2 shows the
results of different methods across different clients𝑚 in CIFAR-10,
the results of SVHN are presented in the Appendix. As suggested
in [24], the server can become a major bottleneck while the number
of clients increases. We also reach a similar conclusion, with the
number of clients𝑚 increasing, the performance decreases, which
is consistent with [7, 24, 47]. Even though the negative impact on
the accuracy, our methods still achieve better performance than
other baselines, which also verifies that the knowledge-preserved
method brings a better aggregated global model. In summary, the
IntactOFL is scalable across diverse distributed networks of varying
sizes.

For vertical scalability, we note that our proposed methods can
support heterogeneous models, which are scalable to different
model architectures. We set five different model architectures from
simple to complex, that is, MLP, CNN, MobileNetV2 (Mob) [31],

ResNet (Res) [15], and VGG [34]. We evaluate the test accuracy of
all methods with the same setting in § 4.2.1 except 𝛼 = 0.5. Besides,
we consider a challenging setting in FL, in which both the data and
models are heterogeneous across all clients. Different clients can
train their own models on their local data with entirely different
model architectures. We remark that this practical setting is compli-
cated in existing methods [7, 17, 47]. Thus, we conduct two types of
evaluations to verify the ability to support heterogeneous models.
Since some baselines do not support the model heterogeneity, we
omit these methods and only report the Ensemble, DENSE, and
Co-Boosting.

For the first type, we evaluate the performance by varying the
model architectures of entire systems. All clients are homogeneous
and test on different model architectures. Results are demonstrated
on the left panel of Figure 3. We conclude that the model architec-
ture can impact the performance, a model with better representa-
tion ability can achieve better performance. The proposed method
achieves the best performance across all model architectures.

The second type concerns a scenario where the model architec-
tures among clients are completely heterogeneous. We set three
cases of these complete model heterogeneity, see the central panel
in Figure 3. For example, the Case #1 represents that Client 0 uses
MLP to train a local model with the test accuracy of 39.92%, after
the local training, the server would collect the MLP from Client
0, VGG from Client 1, ResNet from Client 2, CNN from Client 3,
and MobileNet from Client 4. We report the test accuracy of the
global model, which is aggregated by completely heterogeneous lo-
cal models. The results (see the right panel in Figure 3) demonstrate
that even in complete model heterogeneity settings, our methods
can achieve ∼10% accuracy improvement than existing baselines.
In summary, our proposed method is heterogeneity-tolerant and
significantly outperforms other baselines.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

One-shot-but-not-degraded Federated Learning ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Test accuracy of the server model on CIFAR-10 across different numbers of clients𝑚 = {5, 10, 25, 50, 100}.

𝑚 MA-Echo FedAvg FedDF F-ADI F-DAFL Ensemble DENSE Co-Boosting Ours
5 64.21 35.42 54.58 59.34 58.59 61.61 62.19 55.34 79.93
10 52.64 32.09 48.88 46.33 45.45 60.44 54.67 51.11 69.11
25 48.36 28.03 35.44 31.83 32.88 58.44 49.32 49.32 64.32
50 45.35 28.24 29.91 27.66 29.98 52.51 48.67 44.56 59.45
100 38.54 27.14 25.66 24.89 28.91 45.72 43.34 42.45 53.21

In summary, the proposed IntactOFL is scalable both in large
distributed network and model heterogeneity scenarios and
outperforms other baselines by a large margin.

4.2.3 Efficiency. Note that the proposed IntactOFL is efficient. We
evaluate the efficiency from two aspects: parameter efficiency and
computation efficiency. The parameter efficiency means the re-
quired parameters should be as small as possible. The computation
efficiency means the training iterations should be as few as possible.
We adopt the same setting as the § 4.2.1.

For parameter efficiency, we report the # trainable parameters
and the test accuracy of DENSE and Co-Boosting across different
global model architectures. The trainable parameters of DENSE and
Co-Boosting mainly include the data generator and student model
for distillation. In IntactOFL, there is no additional global model, the
trainable part only consists of the generator and lightweight gating
network. As shown in Figure 4, thanks to the lightweight gating
network, the proposed IntactOFL achieves the highest accu-
racy while requiring the smallest trainable parameters (85%
of DENSE(CNN)) on the server.

Notably, the IntactOFL is also computation-efficient. We consider
that the computation of the local training is essential to learn the
local knowledge. However, the aggregation process is inefficient,
so existing methods introduce additional computation overhead
to distill local models or require multi-rounds of local training. To
better evaluate the computation overhead, we design a new factor
named Performance Gain (PG), which can be formulated as:

𝑃𝐺 =
𝑃

𝐶𝑠𝑒𝑟𝑣𝑒𝑟 +𝐶𝑐𝑙𝑖𝑒𝑛𝑡𝑠
, (14)

where 𝑃 is the performance, and in the classification task, 𝑃 is
the test accuracy; 𝐶𝑠𝑒𝑟𝑣𝑒𝑟 is the computation cost on the server,
including training the generator, distilling, and so on.𝐶𝑐𝑙𝑖𝑒𝑛𝑡𝑠 is the
sum of local training iterations of all clients. Here, We use a coarse-
grained estimation of the number of iterations 𝑇 to approximate
the computational cost, which is 𝐶𝑠𝑒𝑟𝑣𝑒𝑟 ≈ 𝑇𝑠𝑒𝑟𝑣𝑒𝑟 and 𝐶𝑐𝑙𝑖𝑒𝑛𝑡𝑠 ≈
𝑇𝑚 ×

∑𝑚
𝑘=1 𝐸𝑖 , where 𝑇𝑚 is the interaction rounds between the

server and clients. For OFL, 𝑇𝑚 = 1, for multi-rounds FL, 𝑇𝑚 > 1.
We use the PG to evaluate how much the performance gain
is brought by each training iteration.

Furthermore, we introduce some representative multi-rounds
federated learningmethods for comparison, which are multi-rounds
FedAvg (M-FedAvg) [29], SCAFFOLD [19], and FedCav [45]. As
reported in Table 3, we achieve the highest 𝑃𝐺 across all baselines,
which means that our methods can obtain the highest global model
accuracy improvement for each training step. It is worth noting
that, even though the multi-rounds FL algorithms can achieve the

Table 3: The Performance Gain (PG) of all methods on CIFAR-
10 with data heterogeneity 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼 = 0.5). 𝑇𝑋 represents
the total iterations on the server corresponding to method 𝑋 .

Methods 𝐶𝑠𝑒𝑟𝑣𝑒𝑟 +𝐶𝑐𝑙𝑖𝑒𝑛𝑡𝑠 P 𝑃𝐺 (×10−2)
MA-Echo 𝑇𝑀𝐴−𝐸𝑐ℎ𝑜 +

∑𝑚
𝑘=1 𝐸𝑖 64.21 2.7917

FedAvg
∑𝑚
𝑘=1 𝐸𝑖 35.42 1.7710

FedDF 𝑇𝐷𝐹 +
∑𝑚
𝑘=1 𝐸𝑖 54.58 2.3730

F-ADI 𝑇𝐴𝐷𝐼 +
∑𝑚
𝑘=1 𝐸𝑖 59.34 2.5800

F-DAFL 𝑇𝐷𝐴𝐹𝐿 +
∑𝑚
𝑘=1 𝐸𝑖 58.59 2.5474

Ensemble
∑𝑚
𝑘=1 𝐸𝑖 61.61 3.0805

DENSE 𝑇𝐷𝐸𝑁𝑆𝐸 +
∑𝑚
𝑘=1 𝐸𝑖 62.19 2.7039

Co-Boosting 𝑇𝐶𝑜−𝐵𝑜𝑜𝑠𝑡𝑖𝑛𝑔 +
∑𝑚
𝑘=1 𝐸𝑖 55.34 2.4061

M-FedAvg 𝑇𝑚
∑𝑚
𝑘=1 𝐸𝑖 47.62 0.4762

SCAFFOLD 𝑇𝑚
∑𝑚
𝑘=1 𝐸𝑖 82.59 0.8259

FedCav 𝑇𝑚
∑𝑚
𝑘=1 𝐸𝑖 81.18 0.8118

Ours 𝑇𝑂𝑢𝑟𝑠 +
∑𝑚
𝑘=1 𝐸𝑖 79.93 3.4752

best performance, its 𝑃𝐺 is significantly less than that of the OFL,
which also verifies the inefficiency of the existing multi-rounds
aggregation methods [47].

In summary, the proposed IntactOFL is parameter-efficient
and computation-efficient compared with other baselines,
which requires less trainable parameters and fewer computation
iterations while achieving higher performance.

4.3 Analysis of the IntactOFL
4.3.1 Impact of MoE Architectures. In this part, we investigate the
impact of different MoE architectures. Since the clients determine
the local models’ (experts) architecture, we focus on the perfor-
mance by varying different gating networks. Softmax gating, noisy
Top-K gating [32], and MMoE [28] are three popular gating net-
works in MoE. The Softmax gating uses the softmax function to
normalize the weights across all experts. The noisy Top-K gating
adds noise N ∼ (0, 𝜎) to the original weights and only selects top
k experts. MMoE adopts multiple gating networks for multi-tasks
and here we derive this method by averaging the outputs of these
𝐾𝑔 gating networks as the final output. Here, we use the averaged
memory consumption of one batch of samples to represent the
computational cost. We test these methods on the CIFAR-10 with
CNN among five clients. We report the performance and memory
consumption of different gating networks in Figure 5. (a)We notice
that the test accuracy and memory consumption act as a trade-off,
utilizing more experts can achieve high performance meanwhile
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Figure 3: Left panel: Performance on different model architectures. Central panel: Visualization of the local model performance
with different architectures. Right panel: Performance on three completely model heterogeneity cases.
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Figure 5: Test accuracy andmemory consumption of different
gating network architectures on CIFAR-10, such as Softmax,
noisy Top-K, and MMoE. We vary the number of gating net-
works (𝐾𝑔) in MMoE and the topk experts (𝐾 = {1, 2, 3, 4}) with
the noise level 𝜎 = {0, 1}.

Table 4: Impact of the key components in data generation.

CIFAR-10 CIFAR-100 SVHN Tiny-ImageNet
Ours 79.93 46.78 84.81 35.09

w/o Aug 76.41 44.45 83.79 34.46
w/o Inf 72.68 43.69 80.66 31.91
w/ Sim 53.12 36.47 73.11 17.98

causing larger memory consumption. (b) The noise is designed to
make MoE training more balanced. However, too much noise can
harm the model’s performance. (c) Using more gating networks for
performance increment has shown limited improvement.

4.3.2 Impact of Generator. We provide the visualization of the
generated data on CIFAR-10 and SVHN in the Appendix. Note
that the auxiliary data are generated for utilization rather than
visual reconstruction. Besides, we investigate the impact of the key
components in data generation. We conduct leave-one-out testing
and report the results by removing data augmentation (w/o Aug),
removing informativeness (w/o Inf ), and removing both (w/ Sim).
As shown in Table 4, only considering the similarity leads to poor
performance, which is consistent with [7, 47]. The informativeness
module is essential for performance improvement compared with
the data augmentation. A combination of these components leads
to a high performance, which shows that all these components have
contributed to performance improvement.

5 CONCLUSION
In this paper, we aimed to bridge the knowledge loss of existing
one-shot federated learning methods, where the model reconstruc-
tion process results in significant performance degradation. We pro-
posed IntactOFL, a novel method that adopts theMixture of Experts’
architecture to preserve all local models’ knowledge, achieving high
performance through dynamic weighting by a gating network. We
designed a self-supervised MoE training framework by iteratively
generating samples and updating the gating network. Extensive ex-
periments have verified the effectiveness, scalability, and efficiency
of the proposed IntactOFL.
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