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A MORE EXPERIMENTAL RESULTS
A.1 Implementation details
We adopt the same local training setting as [2]. We use the SGD
optimizer with a learning rate of 0.01 and a fixed momentum of 0.9.
Each local model is trained on the client’s local data for 𝐸 = 400
rounds, and the client number is 5. Following the setting of [1, 2],
we train the generator 𝑔 with a DNN. We adopt the Adam optimizer
with a learning rate of 0.001 and training for 𝑇𝑔 = 20 iterations. For
the training of the MoE network, we use the SGD optimizer with a
learning rate 𝜂G = 0.01 and momentum of 0.9 and train the gating
network for 𝑇 = 40 iterations.

A.2 Metrics
We utilize the test accuracy as the prime metric over all baselines
and the proposed IntactOFL. For results with error bars, we run
five repeated experiments with different random seeds.

A.3 Horizontal scalability analysis
We provide more horizontal scalability analysis on SVHN (see Fig-
ure 1), which is the test accuracy across different numbers of clients.
The conclusion is the same with the test on CIFAR-10. With the
increasing number of clients, the local data become more sparser
and more fragmented. Consequently, the local models trained from
such data are highly prone to overfitting, resulting in inferior per-
formance. In summary, we also still conclude that the proposed
IntactOFL is scalable across diverse distributed networks of varying
sizes.

Table 1: Test accuracy of the server model on SVHN across
different numbers of clients𝑚 = {5, 10, 25, 50, 100}.

𝑚 5 10 25 50 100

MA-Echo 80.23 67.12 59.89 56.23 47.54
FedAvg 57.61 45.22 42.18 33.98 30.15
FedDF 72.11 61.09 58.89 52.32 44.18
F-ADI 77.62 64.39 60.98 59.63 48.39
F-DAFL 74.55 62.39 60.88 53.69 47.95
Ensemble 81.22 67.51 63.12 56.68 48.25
DENSE 80.03 68.98 62.39 59.99 53.76

Co-Boosting 81.34 69.71 63.85 60.01 55.15

Ours 84.81 72.95 68.44 65.64 59.19

A.4 Visualization of Generated Auxiliary Data
We provide the visualization of the generated data on CIFAR-10
and SVHN in Figure 1. It is worth noting that the goal of the data
generator is designed to generate the data which is similar in utiliza-
tion not in visualization. The generated data looks different from

the original data, which can mitigate the risk of leaking sensitive
information. Meanwhile, it plays an important role in training the
MoE network, which extracts the information from local models
and helps achieve higher performance than other baselines.
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Figure 1: Visualization of generated data on CIFAR-10 and
SVHN.

A.5 Impact of Gating Network Architecture
We investigate the impact of different gating network architectures
on performance. The gating network outputs the weights of each
expert according to the input, which can be viewed as a function.
We vary the different architectures of the gating network, including
MLP, CNN, and ResNet, with the primary difference lying in their
capabilities for information processing. The results are shown in
Table 2. We conclude that different gating network architecture has
a limited impact on the MoE network performance.

Table 2: Test accuracy of the MoE network on CIFAR-10
across different gating network architectures (MLP, CNN,
and ResNet).

gating network MLP CNN ResNet

CIFAR-10 79.93 79.23 80.04
CIFAR-100 46.78 46.55 46.88
SVHN 84.81 84.77 85.00
Tiny-ImageNet 35.09 34.69 35.11
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