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ABSTRACT

Neural network-based odometry using accelerometer and gyroscope readings from
a single IMU can achieve robust, and low-drift localization capabilities, through the
use of neural displacement priors (NDPs). These priors learn to produce denoised
displacement measurements but need to ignore data variations due to specific IMU
mount orientation and motion directions, hindering generalization. This work
introduces EqNIO, which addresses this challenge with canonical displacement
priors, i.e., priors that are invariant to the orientation of the gravity-aligned frame
in which the IMU data is expressed. We train such priors on IMU measurements,
that are mapped into a learnable canonical frame, which is uniquely defined via
three axes: the first is gravity, making the frame gravity aligned, while the second
and third are predicted from IMU data. The outputs (displacement and covariance)
are mapped back to the original gravity-aligned frame. To maximize generaliza-
tion, we find that these learnable frames must transform equivariantly with global
gravity-preserving roto-reflections from the subgroup Og(3) ⊂ O(3), acting on
the trajectory, rendering the NDP O(3)-subequivariant. We tailor specific linear,
convolutional, and non-linear layers that commute with the actions of the group.
Moreover, we introduce a bijective decomposition of angular rates into vectors that
transform similarly to accelerations, allowing us to leverage both measurement
types. Natively, angular rates would need to be inverted upon reflection, unlike
acceleration, which hinders their joint processing. We highlight EqNIO’s flexibility
and generalization capabilities by applying it to both filter-based (TLIO), and
end-to-end (RONIN) architectures, and outperforming existing methods that use
soft equivariance from auxiliary losses or data augmentation on various datasets.
We believe this work paves the way for low-drift and generalizable neural in-
ertial odometry on edge devices. The project details and code can be found at
https://github.com/RoyinaJayanth/EqNIO.
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Figure 1: Neural Displacement Priors (NDPs) that rely on data augmentation (TLIO, left) produce
a different trajectory for different reference frames while strictly equivariant approaches (EqNIO,
right) yield one trajectory independent of the reference frame. EqNIO achieves this by learning an
equivariant canonical frame aligned, per definition, with the predicted covariance (ellipsoids,right).
In test time, the gravity-aligned IMU orientation estimate of the Kalman filter is the reference frame.

∗denotes equal contribution, † denotes equal advising
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1 INTRODUCTION

Inertial Measurement Units (IMUs) are commodity sensors that measure the accelerations and angular
velocities of a body. Due to their low cost, they are widely used in diverse applications such as robot
navigation and Mixed Reality for precise and rapid tracking of body frames. However, since they
are differential sensors, relying only on IMUs invariably results in drift. Traditional Visual Inertial
Odometry (VIO) approaches can effectively mitigate this drift by combining IMU measurements with
features extracted from camera images. Still, these images are of limited use in high-speed scenarios
with challenging lighting conditions, since they can suffer from saturation, and blurring artifacts.

Recently, a novel class of methods has emerged that instead mitigates this drift with neural displace-
ment priors (NDPs), that are directly learned from IMU data alone (Liu et al., 2020; Herath et al.,
2020). These methods perform competitively with VIO methods despite using only a single IMU
sensor. However, learning generalizable priors proves challenging: while identifying specific motion
patterns, they must learn to ignore data differences due to particular IMU mount orientations, and
the direction of the motion patterns. However, they often fail to do so in practice (see Fig. 1, left
state-of-the-art method TLIO (Liu et al., 2020)), yielding large trajectory variations when observing
simply rotated input data. These variations persist, in spite of data augmentation strategies (TLIO Liu
et al. (2020), RONIN Herath et al. (2020)) that include random data rotations or the enforcement of
equivariance constraints via auxiliary consistency losses during training (RIO Cao et al. (2022)).

In this work, we simplify this task by introducing EqNIO, which leverages canonical displacement
priors (CDPs). CDPs are invariant to IMU orientation and, as a result, easier to learn, more robust, and
more generalizable than regular NDPs. EqNIO first maps the IMU data into a learnable, equivariant,
and gravity-aligned frame F , before passing them to the CDP, and mapping the outputs back to the
original frame. Our design can flexibly integrate arbitrary off-the-shelf methods such as TLIO (Liu
et al., 2020) and RONIN (Herath et al., 2020), provided that suitable change of basis maps are defined
for the network outputs (displacement and covariance of TLIO, and only linear velocity for RONIN).
The frame F is composed of two transformations: The first, gravity-alignment, aligns the z-axis with
the gravity direction, estimated from an off-the-shelf filter (Liu et al., 2020), and is traditionally used
in inertial odometry. The second is a learnable, gravity-preserving roto-reflection.

To be maximally generalizable, we show that this roto-reflection must generalize to arbitrary gravity-
preserving roto-reflections of the input data. We design a specific model that achieves this by
processing IMU data equivariantly, i.e., in a way that commutes with the action of gravity-preserving
roto-reflections on the input data. We identify these roto-reflections as elements of the group Og(3),
a subgroup of the orthogonal group O(3), which is isomorphic to O(2). Equivariance is ensured by a
preliminary, unique preprocessing step that maps accelerometer and gyroscope measurements into a
space that transforms consistently under the group action, and subsequent processing with equivariant
MLPs, convolutions, and non-linear layers. Due to the isomorphism with O(2) these layers are O(2)
equivariant, and, due to the subgroup property, also called O(3) subequivariant.

Contributions: (i) We apply a canonicalization scheme that maps IMU measurement, and NDP
outputs to and from a gravity-aligned, subequivariant, canonical frame. This procedure can be
flexibly applied to arbitrary off-the-shelf network architectures. NDPs trained on such canonical data
produce inherently more robust, and generalizable results than previous work. (ii) We formalize the
group actions of gravity-preserving roto-reflection from Og(3) on IMU measurements and derive
unique preprocessing steps that map both accelerometer and gyroscope measurements into a space
in which these actions are consistent. (iii) We tailor an O(2) equivariant network that regresses
canonical roto-reflections from 2D vector features, and 1D scalar derived from IMU data. It leverages
specialized O(2) equivariant MLPs and convolution, to process vector features, conventional layers
to process scalar features, and equivariant non-linearities to mix vector and scalar features.

We demonstrate the generality of our framework by applying it to two neural inertial odometry
methods, TLIO (Liu et al., 2020), and RONIN (Herath et al., 2020). Extensive qualitative and
quantitative results comparing EqNIO against previous works across diverse benchmarks establish a
new state-of-the-art in inertial-only odometry. EqNIO significantly enhances the accuracy, reliability,
and generalization of existing methods.

2 RELATED WORK

Neural inertial odometry is highly related to inertial navigation systems (INS) which can be broad
classified into estimation-based, multi-sensor data fusion-based (MSDF) techniques, and learning-
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based techniques. Recent works in inertial attitude estimation (Asgharpoor Golroudbari & Sabour,
2023; Ge et al., 2024), VIO (van Goor & Mahony, 2023), LIDAR odometry (Zheng et al., 2024) and
SLAM (Kim & Sukkarieh, 2003) are highly related and are hence discussed in App. A.1.

Model-based Inertial Odometry: Purely Inertial Odometry can be broadly classified into two
categories: kinematics-based and learning-based approaches. Kinematics-based approaches (Leish-
man et al., 2014; Titterton et al., 2004; Bortz, 1971) leverage analytical solutions based on double
integration that suffers from drift accumulation over time when applied to consumer-grade IMUs.
To mitigate this drift, loop closures (Solin et al., 2018), and other pseudo measurements derived
from IMU data that are drift-free have been explored (Groves, 2015; Hartley et al., 2020; Brajdic &
Harle, 2013). In the context of Pedestrian Dead Reckoning (Jimenez et al., 2009), these include step
counting (Ho et al., 2016; Brajdic & Harle, 2013), detection of the system being static (Foxlin, 2005;
Rajagopal, 2008) and gait estimation (Beaufils et al., 2019).

Learning-based Inertial Odometry: Recently, RIDI (Yan et al., 2018), PDRNet (Asraf et al., 2022)
and RONIN (Herath et al., 2020) proposed CNN, RNN, and TCN-based velocity regression. RIDI uses
these velocities to correct the IMU measurements, while RONIN directly integrates them while as-
suming given orientation information. Denoising networks either regress IMU biases (Brossard et al.,
2020b; Buchanan et al., 2023; Brossard et al., 2020a) denoised IMU measurements directly (Stein-
brener et al., 2022). While Buchanan et al. (2023) uses constant covariance, AI-IMU (Brossard
et al., 2020a) estimates the covariance for automotive applications. Displacement-based methods like
IONet (Chen et al., 2018a), TLIO (Liu et al., 2020), RNIN-VIO (Chen et al., 2021a), and IDOL (Sun
et al., 2021) directly estimate 2D/3D displacement. Unlike TLIO which regresses a diagonal covari-
ance matrix, Russell & Reale (2021) estimates the full covariance matrix parameterized via Pearson
correlations. RNIN-VIO extends TLIO to continuous human motion adding a loss function for
long-term accuracy. Unlike these methods, EqNIO learns canonical displacement priors and thus
generalizes better to arbitrary IMU orientation and motion directions.

Equivariant Inertial Odometry: The previous learning-based approaches (Liu et al., 2020; Chen
et al., 2021a) use SO(2) augmentation strategies to achieve approximate SO(2) equivariance. Mo-
tionTransformer (Chen et al., 2019) used GAN-based RNN encoder to transfer IMU data into
domain-invariant space by separating the domain-related constant. Recently, RIO (Cao et al., 2022)
demonstrated the benefits of approximate SO(2) equivariance with an auxiliary loss, introduced
Adaptive Test Time Training (TTT), and uncertainty estimation via ensemble of models (See Ap-
pendix A.4 for more details). We propose integrating strict equivariance by design directly into the
framework. Additionally, no prior work has addressed reflection equivariance, which requires specific
preprocessing of gyroscope data for it to adhere to the right-hand rule. Our novel O(2) equivariant
framework can be seamlessly integrated with existing learning-based inertial navigation systems.

Equivariant Networks: Group equivariant networks (Cohen & Welling, 2016) commute by design
with group actions on the input, and have been tailored to a variety of inputs and architecture designs.
These include point clouds (Thomas et al., 2018; Chen et al., 2021b; Deng et al., 2021), 2D (Worrall
et al., 2017; Weiler & Cesa, 2019), 3D (Weiler et al., 2018; Esteves et al., 2019), and spherical
images (Cohen et al., 2018; Esteves et al., 2018; 2020; 2023), graphs (Satorras et al., 2021) and
general manifolds (Cohen et al., 2019b;a; Weiler et al., 2021; Xu et al., 2024). Yet, equivariant
networks tailored to IMU data and their symmetries have not been studied, and are introduced in
the current work. Our method draws on general theories and methods developed for equivariance
to E(n) its subgroups. Cesa et al. (2021); Xu et al. (2022) use Fourier analysis to design steerable
CNN kernels on homogeneous space, while Finzi et al. (2021) proposed an algorithm for finding a
kernel by solving a linear equivariant map constraint. Villar et al. (2021) demonstrated that any O(n)
equivariant function can be represented using a set of scalars and vectors. However, applying these to
the neural integration of IMUs is not straightforward as gravity’s presence introduces subequivariance,
angular velocity in the input data follows the right-hand rule, and the input is a sequence with a
time dimension. Related approaches (Han et al., 2022; Chen et al., 2023) tackle subequivariance
using equivariant graph networks and calculating gram matrices achieving simple O(2) equivariance.
However, dealing with data that obey the right-hand rule (e.g. angular rates), has been underexplored,
and is addressed in the current work. Canonicalization is a prevalent approach to equivariance. Kaba
et al. (2023) first introduced learned canonicalization functions for equivariant networks, which we
adopt in our design. We discuss additional works on equivariant canonicalization in Appendix A.1.
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Figure 2: EqNIO (a) processes gravity-aligned IMU measurements, {(ai, ωi)}ni=1. An equivariant
network (blue) predicts a canonical equivariant frame F into which IMU measurements are mapped,
i.e. canonicalized, yielding invariant inputs {(a′i, ω′

i)}ni=1. A conventional neural network then
predicts invariant displacement (d′) and covariance (Σ′) which are mapped back yielding equivariant
displacement (d) and covariance (Σ). The equivariant network (b) takes as input n × Cs

0 scalars,
and n × Cv

0 vectors: Vectors are processed by equivariant layers (Eq-L, Eq-Conv, Eq-LN), while
scalars are separately processed with conventional layers. Eq-L (green) uses two weights W1,W2 for
SO(2) equivariance, and only W1 for O(2) equivariance. Eq-Conv (pink) uses Eq-L to perform 1-D
convolutions over time. The equivariant non-linear layer (orange) mixes vector and scalar features.

3 PROBLEM SETUP

This paper targets neural inertial odometry using data from a single IMU, comprised of an accelerom-
eter (giving linear accelerations ai ∈ R3) and gyroscope (giving angular velocity ωi ∈ R3). IMU’s
measure sequences of data {(ai, ωi)}ni=1, each expressed in the local IMU body frame, b, at time ti.
These are related to the true IMU acceleration āi and angular rates ω̄i via

ω̃i = ω̄i + bgi + ηg
i ãi = āi − w

bRi
T g + bai + ηa

i (1)

where g is gravity pointing downward in world frame w, wbRi is the transformation between b and w
at time ti, and bgi , b

a
i and ηgi , η

a
i are IMU biases and noises respectively. Naively integrating angular

rates and accelerations to get positions pi and orientations w
bRi leads to significant drift due to sensor

noise and unknown biases. We thus turn our attention to neural displacement priors Φ, which regress
accurate 2D linear velocities (Herath et al., 2020) or 3D displacement d ∈ R3 and covariances
Σ ∈ R3×3 (Liu et al., 2020) from sequences of bias-corrected and gravity aligned IMU measurements

ωi =
g
bRi(ω̃i − bg) ai =

g
bRi(ãi − ba) (2)

where g
bRi aligns the z-axis with gravity, and is defined as g

bRi = Rγ
w
bRi with some unobservable

yaw rotation Rγ . The neural displacement prior has the form

d,Σ = Φ({(ai, ωi)}ni=1) (3)

where d ∈ R3 denotes displacement on the time interval [t1, tn], and Σ ∈ R3×3 denotes associated
covariance prediction. For instance, Liu et al. (2020), uses these network predictions as measurements
and fuses them in an EKF estimating the IMU state in w, i.e. orientation, position, velocity, and IMU
biases. Preliminaries on terms used in inertial odometry are included in App. A.2.2 and details of
EKF and IMU measurement model are included in App. A.6.

We simplify the learning of informative priors by suitably canonicalizing the IMU measurements
in two steps: First, we gravity-align IMU measurements by rotating them into the frame g

bR, such
that the z-axis of the IMU frame and world frame coincide. We use the EKF orientation state
from (Liu et al., 2020) to find the gravity direction (see App. A.6). Later we empirically show
the robustness of our method to noise originating from this estimation. In what follows we thus
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Figure 3: Symmetries in neural inertial odometry. (a) An IMU undergoes three trajectories in xy-
plane, each related to a reference (blue) via rotation (purple) and/or reflection (orange) around gravity
(parallel to the z-axis). At a fixed time, IMU measurements on different trajectories, expressed in the
corresponding local gravity-aligned frame (red-green) differ only by an unknown yaw roto-reflection
R3×3. Mapping these measurements to a canonical frame (yellow-red) that transforms equivariantly
under roto-reflections of the trajectory eliminates this ambiguity enhancing the sample efficiency of
downstream neural networks. (b) Expressed in alternative roto-reflected frames, acceleration, and
angular rates transform as a′ = R3×3a and ω′ = det(R3×3)R3×3ω. Angular rate must follow the
right-hand-rule, and thus be also inverted when reflected. To ensure a similar transformation rule as
a, we decompose ω = v1 × v2 and process v1, v2 instead, which transform as v′1/2 = R3×3v1/2

assume accelerations and angular rates to be expressed in the gravity-aligned frame and illustrate
these frames in Fig. 3 (a) for three rotated trajectories. Gravity alignment reduces data variability
by two degrees of freedom. However, this frame is not unique, since simply rotating it around
z or reflecting it across planes parallel to z (applications of rotations or roto-reflections from the
groups SOg(3) = {R ∈ SO(3)|Rg = g} and Og(3) = {R ∈ O(3)|Rg = g}) result in new valid
gravity-aligned frames. Hence, secondly, we predict a canonical frame and map the IMU data into
this frame, which we later show to be subequivariant to roto-reflections. In what follows we will
restrict our discussion to the Og(3) case but note that, where not explicitly stated, this discussion
carries over to SOg(3) as well. Next, we will introduce our canonicalization procedure to ensure
better network generalization.

4 METHODOLOGY
Our goal is to predict a canonical yaw frame F = Ψ({(ai, ωi)}ni=1) ∈ Og(3) from data, which
generalizes across arbitrary yaw orientations. We use this frame to map IMU data into a canonical
frame before giving as input to the NN, and mapping the outputs back, (see Fig. 2 (a)),i.e.

d′,Σ′ = Φ({(a′
i, ω

′
i)}ni=1) with a′

i = ρa(F
−1)ai and ω′

i = ρω(F
−1)ωi, (4)

where a′, ω′ are expressed in the canonical frame. Finally, we map d′,Σ′ back to the original frame
via d = ρd(F )d′ and vec(Σ) = ρΣ(F )vec(Σ′). Here vec(.) stacks the columns of Σ into a single
vector, and ρ is a homomorphism that maps group elements F to corresponding matrices, called
matrix representations. These capture the transformation of a, ω, d and Σ under the action of F .

While ρa(F ) = ρd(F ) = F3×3, with F3×3 ∈ R3×3 being the rotation matrix corresponding to
element F , covariances transform as ρΣ(F ) = F3×3 ⊗ F3×3, where ⊗ is the Kronecker product.
Unfortunately, reflections (det(F3×3) = −1) induce a reflection and inversion of angular rates to
preserve the right-hand-rule (see Fig. 3 b), i.e. ρω(F ) = det(F3×3)F3×3, and for reflections. As
discussed later ρω(F ) ̸= ρa(F ) hinders joint processing of accelerations and angular rates. Next, we
will discuss the design of Ψ which ensures generalization across arbitrary yaw rotations.

4.1 EQUIVARIANT FRAME
Here we derive a property of the frame network Ψ such that it can generalize to arbitrary roto-
reflections of the IMU body frame. To generalize, canonical IMU measurement inputs a′i, ω

′
i to the

network must look identical under arbitrary roto-reflections R ∈ Og(3). Let ai, ωi, and a∗i , ω
∗
i denote

quantities before and after application of R. Then a∗i = ρa(R)ai and ω∗
i = ρω(R)ωi. Enforcing

identical inputs under both rotations, i.e. a∗′i = a′i we have

a∗′
i = ρa(F

∗−1
)a∗

i ω∗′
i = ρω(F

∗−1
)ω∗

i (5)

We see that choosing F ∗ = RF , i.e. that F transforms equivariantly leads to

a∗′
i = ρa(F

∗−1
)a∗

i = ρa(F
−1R−1)ρa(R)ai = ρa(F

−1R−1R)ai = a∗
i (6)
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where we have used the fact that ρa is a homomorphism. This shows the invariance of a′i and a
similar proof can be done for ω′

i. This equality puts a constraint on the NN that estimates F , namely

RF = Ψ({(ρa(R)ai, ρω(R)ωi)}ni=1) (7)

i.e. Ψ must be a function that is equivariant with respect to group actions by elements from Og(3).
Since this is a subgroup of O(3) we also say that Ψ must be subequivariant with respect to O(3).

In addition, this equivariance property of Ψ induces end-to-end equivariance to predicted displace-
ments d = ρd(F )d′ and covariances vec(Σ) = ρΣ(F )vec(Σ′). This is because

d∗ = ρd(F
∗)d∗

′
= ρd(RF )d′ = ρd(R)ρd(F )d′ = ρd(R)d (8)

vec(Σ∗) = ρΣ(F
∗)vec(Σ′∗) = ρΣ(RF )vec(Σ′) = ρΣ(R)ρΣ(F )vec(Σ′) = ρΣ(R)vec(Σ) (9)

using, again, the homomorphism of ρ and the fact that d′, vec(Σ′) are, by construction of equation 6,
invariant to rotations by R.

Diagonal Covariance: We show empirically in Sec. 6 that the diagonal parameterization of
Σ′ aids in stabilization and convergence of the network. Therefore, we assume the displacement
uncertainties Σd,xz = Σd,yz = 0 and without loss in generality choose Σ′ = diag(e2ux , e2uy , e2uz ),
where ux, uy, uz are learnable, as in TLIO (Liu et al., 2020). Since our network predicts vec(Σ) =
ρΣ(F )vec(Σ′), where both Σ′ and F are learned, the resulting covariance is Σ = FΣ′FT (in matrix
format). Via the transformation F we can learn arbitrarily rotated Σ in the xy-plane. We posit
that this forces the frame network Ψ to learn F that aligns with the principle axes of the statistical
uncertainty in displacement Σd. See App. A.2.3 for details on covariance parameterizations. Writing
the singular value decomposition (SVD) we see that Σd = Udiag(Σxx,Σyy,Σzz)U

T . By inspection,
this uncertainty is matched when F aligns with principle directions U and Σ′ aligns with the true
uncertainties in those directions.

In the next section, let us now discuss the specific issue that arises when designing an equivariant
frame network to process both ai and ωi, and the specific preprocessing step to remedy it.

4.2 DECOMPOSITION OF ANGULAR RATES
As previously discussed a and ω transform under different representations ρa ̸= ρω. This hinders
joint feature learning since this would entail forming linear combinations of a and ω, and these linear
combinations will not transform under ρa or ρω. We propose a preprocessing step that decomposes
ωi into perpendicular vectors v1,i, v2,i via a bijection F : R3 → R3 × R3:

F(ω) = (v1, v2) =

(√
∥ω∥ w1

∥w1∥
,
√

∥ω∥ w2

∥w2∥

)
F−1(v1, v2) = ω = v1 × v2 (10)

We define w1 = [−ωy ωx 0]
T and w2 = ω × w1. If ωx = ωy = 0, we use w1 = a× ω and if both

ωx = ωy = 0 and a× ω = 0, we use w1 = ω × [1 0 0]T .

Fig. 3 (b) shows that v1 and v2 transform with representation ρv1(F ) = ρv2(F ) = F3×3. Let variables
with ∗ denote transformed vectors according to rotation R. Their cross product has the desirable
property ω∗ = v∗1×v∗2 = (R3×3v1)×(R3×3v2) = det(R3×3)R3×3(v1×v2) = det(R3×3)R3×3ω =
ρω(R)ω, using the standard cross-product property (Ax)× (Ay) = det(A)A(x× y), and recalling
that R3×3 is the matrix representation of R. The group action on ω exactly coincides with what was
derived in Sec. 3. We only use this decomposition when with Og(3), where we process a, v1, v2 in a
unified way. For SOg(3), we process a, ω which transform similarly since det(R3×3) = 1.

4.3 TRANSITION TO O(2) EQUIVARIANCE AND BASIC NETWORK LAYERS

Expressed in the gravity-aligned frame, representations R3×3 of R ∈ Og leave the z-axis unchanged,
and can thus be decomposed into R3×3 = R2×2 ⊕ 1, where the direct sum ⊕ constructs a block-
diagonal matrix of its arguments. This decomposition motivates the decomposition ai = ai,xy ⊕ ai,z
and v1/2,i = v1/2,i,xy ⊕ v1/2,i,z , where ⊕ concatenates the xy-coordinates of each vector which
transform with representation R2×2 and its z component which transforms with representation 1, i.e.
z is invariant. This means that the xy-components transform according to representations of group
O(2) and implies that O(2) ∼= Og(3). Inspired by Villar et al. (2021), we design our frame network
to learn universally O(2) equivariant outputs from invariant features alongside 2D vector features.

We convert the sequence of n IMU measurements into n × Cs
0 rotation invariant scalar features

and n × 2 × Cv
0 vector features. As vector features we select the xy-components of each input
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vector (Cv
0 = 2 for SO(2) corresponding with ai,xy, ωi,xy and Cv

0 = 3 for O(2) corresponding with
ai,xy, v1,i,xy, v2,i,xy). Instead, as scalar features we select (i) the z-components of each vector, (ii) the
norm of the xy-components of each vector, and (iii) the pairwise dot-product of the xy-components
of each vector. For SO(2) we have Cs

0 = 2+2+1 = 5, while for O(2) we have Cs
0 = 3+3+3 = 9.

We process scalar features with MLPs and standard 1-D convolutions, vector features with specific
linear and convolution layers, and combine both with specialized non-linear layers.

Equivariant Linear Layer Following Villar et al. (2021), we design a 2D version of vector
neuron (Deng et al., 2021) to process the vector features, enhancing efficiency. Following Finzi et al.
(2021), we consider learnable linear mappings vout = Wvin, with input and output vector features
vin, vout ∈ R2 and seek a basis of weights W ∈ R2×2, which satisfy R2×2Wv = WR2×2v, i.e.,
equivariantly transform vector features v ∈ R2. This relation yields the constraint

(R2×2 ⊗R2×2)vec(W ) = vec(W ), (11)

Solving the above equation amounts to finding the eigenspace of the left-most matrix with eigenvalue
1. Such analysis for R2×2 ∈ SO(2) yields WSO(2) = w1I2×2 + w2R90, where R90 denotes a
90 degree counter-clockwise rotation in 2D, and w1, w2 ∈ R are learnable weights. Similarly, for
O(2) we find WO(2) = w1I2×2. Vectorizing this linear mapping to multiple input and output vector
features we have the following SO(2) and O(2) equivariant linear layers:

SO(2) : vout = vinW1 +R90v
inW2 O(2) : vout = vinW1 (12)

with vin ∈ R2×Cin , vout ∈ R2×Cout and W1,W2 ∈ RCin×Cout . Note that the SO(2) layer has twice as
many parameters as the O(2) layer. We stack the above linear components into a kernel to design
equivariant 1-D convolution layers. Since the IMU data forms a time sequence, we implement
convolutions across time. We visualize our Linear and Convolutional Layers in Fig. 2.

Nonlinear Layer Previous works (Weiler et al., 2018; Weiler & Cesa, 2019) propose various
nonlinearities such as norm-nonlinearity, tensor-product nonlinearity, and gated nonlinearity for
SO(3) and O(2) equivariance in an equivariant convolutional way; while Deng et al. (2021) applies
per-point nonlinearity for vector features only. Since we already apply convolutions over time we
simply apply a non-linearity pointwise. Unlike Deng et al. (2021), we need to mix scalar and
vector features and thus adapt the gated nonlinearity (Weiler et al., 2018) to pointwise nonlinearity.
Specifically, for n vector and scalar features vin ∈ Rn×2×C , sin ∈ Rn×C , we concatenate the norm
features ∥vin∥ ∈ Rn×C with sin. We run a single MLP with an output of size n × 2C, and split
it into new norm features γ ∈ Rn×C and new activations β ∈ Rn×C which we modulate with a
non-linearity sout = σ(β). Finally, we rescale the original vector features according to the new norm:

γ, β = mlp(∥vin∥ ⊕c s
in) vout = γvin sout = σ(β) (13)

where ⊕c concatenates along the feature dimension. See Fig. 2b for more details.

5 EXPERIMENTS

We apply our framework to two types of neural inertial navigation systems: (i) an end-to-end
deep learning approach (RONIN), and (ii) a filter-based approach with a learned prior (TLIO).
Both networks process IMU samples in a gravity-aligned frame without gravity compensation,
i.e., removing the gravity vector from the accelerometer reading. While RONIN regresses only a
2D velocity, TLIO estimates the orientation, position, velocity, and IMU biases using an EKF in
3D, which propagates states using raw IMU measurements and applies measurement updates with
predicted displacement and uncertainty from a NN. Sec. 6 presents extensive ablations.

Datasets: Our TLIO variant is trained on the TLIO Dataset (Liu et al., 2020) and tested on TLIO
and Aria Everyday Activities (Aria) Datasets (Lv et al., 2024). Our RONIN variant is trained on
RONIN Dataset (Herath et al., 2020). We train on the 50% open-sourced data. We test our RONIN
variant on three popular pedestrian datasets RONIN (Herath et al., 2020), RIDI (Yan et al., 2018) and
OxIOD (Chen et al., 2018b), which specifically target 2D trajectory tracking. RONIN-U (Unseen)
contains IMU measurements from people who did not participate in the training and validation data
collection. The people used to record RONIN-S (Seen) overlap with those from the training and
validation set, but their data is disjoint from these sets. See App.A.3 for more dataset details, and
App.A.5 and Fig. 2 for more details and visualizations of the equivariant network.

Baselines: We compare EqNIO with TLIO with yaw augmentation (Liu et al., 2020), on the 3D
benchmarks, and RONIN and RIO (Cao et al., 2022) on the 2D benchmarks. We also report the naive
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TLIO Dataset Aria Dataset

Model MSE* ATE ATE* RTE RTE* AYE MSE* ATE ATE* RTE RTE* AYE
(10−2m2) (m) (m) (m) (m) (deg) (10−2m2) (m) (m) (m) (m) (deg)

TLIO 3.333 1.722 3.079 0.521 0.542 2.366 15.248 1.969 4.560 0.834 0.977 2.309
+ rot. aug. 3.242 1.812 3.722 0.500 0.551 2.376 5.322 1.285 2.103 0.464 0.521 2.073
+ SO(2) Eq. Frame 3.194 1.480 2.401 0.490 0.501 2.428 2.457 1.178 1.864 0.449 0.484 2.084
+ O(2) Eq. Frame 2.982 1.433 2.382 0.458 0.479 2.389 2.304 1.118 1.850 0.416 0.465 2.059

Table 1: Trajectory errors, lower being better. + rot. aug. is trained with yaw augmentations. Lowest,
and second lowest values are marked in red and orange. * no EKF.
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Figure 4: Trajectory errors for EqNIO applied to TLIO compared to vanilla TLIO trained with and
without yaw augmentations on TLIO and Aria Datasets visualized with a box plot.
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Figure 5: Groundtruth (black), and predicted trajectories on the TLIO Dataset by TLIO (Blue), and
EqNIO (Red). Left and right have high, and the middle has medium difficulty.

IMU double integration (NDI) from Herath et al. (2020), and RONIN results trained on 100% of the
RONIN training dataset. All other methods use only the public 50% of this dataset. RIO extends
RONIN with two features: Joint optimization of an MSE loss on velocity predictions and cosine
similarities with an equivariance constraint modeled using an auxiliary loss (+J) and an Adaptive
Test-Time-Training strategy (+TTT ). Finally, +J + TTT combines both.

Metrics: The NN performance (indicated with ∗) is reported in terms of Mean Squared Error (MSE)
in 10−2m2, Absolute Translation Error (ATE) in m, and Relative Translation Error (RTE) in m, on
the cumulative sum of the displacements predicted by the network as done in prior work. For TLIO,
we also report the ATE in m, RTE in m, and Absolute Yaw Error (AYE) in degrees when running the
EKF. See App. A.7 for more metric details. In what follows, we abbreviate EqNIO with +Eq. Frame.

5.1 RESULTS USING THE TLIO ARCHITECTURE

Tab. 1 compares baseline TLIO, trained with yaw augmentations as in (Liu et al., 2020) (+ rot.aug.),
TLIO without augmentation (termed TLIO), and our two methods applied to TLIO without yaw
augmentations (termed +SO(2) and +O(2) Eq. Frame). As seen in Tab. 1, +O(2) Eq. Frame
outperforms TLIO on metrics that ignore the EKF (with *) by a large margin of 57%, 12%, and
11% on MSE*, ATE*, and RTE* respectively. The +SO(2) Eq. Frame model follows closely with
54%, 11%, and 7% respectively on the Aria Dataset. The performance of our methods is consistent
across TLIO and Aria Datasets illustrating our generalization ability. Tab. 1 and Fig. 4 show our
method surpasses the baseline on most metrics while remaining comparable in AYE. The superior
performance of our model as compared to baseline TLIO when the NN is combined with EKF
(i.e., performance on ATE, RTE, and AYE metrics) is attributed to its generalization ability when
the orientation estimate is not very accurate as well as the equivariant covariance predicted by the
network. See Fig. 5 and App. A.8 for trajectory plots from the TLIO test dataset.

5.2 RESULTS USING THE RONIN ARCHITECTURE

On the RONIN dataset, we compare against RONIN and RIO† (indicated with +J, +TTT, and
+J+TTT). RIO does not provide results for the RONIN Seen Dataset (RONIN-S) or RIDI Cross
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RONIN-U RONIN-S RIDI-T RIDI-C OxIOD

Model ATE* RTE* ATE* RTE* ATE* RTE* ATE* RTE* ATE* RTE*
(RONIN) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

+ 100% data 5.14 4.37 3.54 2.67 1.63 1.91 1.67 1.62 3.46 4.39
+ 50% data † 5.57 4.38 - - 1.19 1.75 - - 3.52 4.42
+ 50% data + J † 5.02 4.23 - - 1.13 1.65 - - 3.59 4.43
+ 50% data + TTT † 5.05 4.14 - - 1.04 1.53 - - 2.92 3.67
+ 50% data + J +TTT † 5.07 4.17 - - 1.03 1.51 - - 2.96 3.74
+ 50% data + SO(2) Eq. Frame 5.18 4.35 3.67 2.72 0.86 1.59 0.63 1.39 1.22 2.39
+ 50% data + O(2) Eq. Frame 4.42 3.95 3.32 2.66 0.82 1.52 0.70 1.41 1.28 2.10
Naive Double Integration (NDI) 458.06 117.06 675.21 1.6948 31.06 37.53 32.01 38.04 1941.41 848.55

Table 2: Trajectory errors with the RONIN architecture (lower is better), on the RONIN Unseen (-U),
Seen (-S) (people used to record the test dataset are the same as train and validation), RIDI Test
(-T), Cross Subject (-C), and the Oxford Inertial Odometry Datasets (OxIOD). Red (lowest), orange
(second lowest). † results from Cao et al. (2022). * indicates no-EKF.

TLIO Dataset Aria Dataset

Model MSE* ATE ATE* RTE RTE* AYE MSE* ATE ATE* RTE RTE* AYE
(10−2m2) (m) (m) (m) (m) (deg) (10−2m2) (m) (m) (m) (m) (deg)

TLIO 3.333 1.722 3.079 0.521 0.542 2.366 15.248 1.969 4.560 0.834 0.977 2.309
+ rot. aug. 3.242 1.812 3.722 0.500 0.551 2.376 5.322 1.285 2.102 0.464 0.521 2.073
+ rot. aug. + more layers 3.047 1.613 2.766 0.524 0.519 2.397 2.403 1.189 2.541 0.472 0.540 2.081
+ rot. aug. + Non Eq. Frame 3.008 1.429 2.443 0.495 0.496 2.411 2.437 1.213 2.071 0.458 0.508 2.096
+ rot. aug. + PCA Frame 3.473 1.506 2.709 0.523 0.535 2.459 6.558 1.717 4.635 0.771 0.976 2.232
+ SO(2) Eq. Frame + S 3.331 1.626 2.796 0.524 0.536 2.440 2.591 1.146 2.067 0.466 0.517 2.089
+ SO(2) Eq. Frame + P 3.298 1.842 2.652 0.588 0.523 2.537 2.635 1.592 2.303 0.585 0.539 2.232
+ SO(2) Eq. Frame 3.194 1.480 2.401 0.490 0.501 2.428 2.457 1.178 1.864 0.449 0.484 2.084
+ O(2) Eq. Frame + S 3.061 1.484 2.474 0.462 0.481 2.390 2.421 1.175 1.804 0.421 0.458 2.043
+ O(2) Eq. Frame + P 2.990 1.827 2.316 0.578 0.478 2.534 2.373 1.755 1.859 0.564 0.468 2.223
+ O(2) Eq. Frame 2.982 1.433 2.382 0.458 0.479 2.389 2.304 1.118 1.849 0.416 0.465 2.059
Eq CNN 3.194 1.580 3.385 0.564 0.610 2.394 8.946 3.223 6.916 1.091 1.251 2.299

Table 3: Ablations with the TLIO architecture, lower is better. We test non-equivariant (+Non Eq.
Frame), PCA-based (+PCA Frame), SO(2) equivariant (+SO(2) Eq. Frame), and O(2) equivariant
(+O(2) Eq. Frame) frames, and yaw augmentation (+ rot. aug.). We also test xy-isotropic (+S) and
Pearson-based (+P) covariance parameterizations. Eq CNN is a fully equivariant CNN. Red (lowest),
orange (second lowest), and yellow (third lowest). * indicates no-EKF.

Subject Dataset (RIDI-C). As the RONIN base model does not use an EKF, we only report metrics
with ∗. As Seen in Tab. 2, our methods significantly outperform the original RONIN by a large
margin of 14% and 9% on ATE* and RTE* respectively even on the RONIN-U dataset. Our methods
have better generalization as seen on RIDI-T and OxIOD, outperforming even +J+TTT† by a margin
of 56% and 43% on ATE* and RTE* respectively on OxIOD Dataset. The +O(2) Eq. Frame model
converges at 38 epochs compared to over 100 in RONIN implying faster network convergence with
our framework as compared to data augmentation. This demonstrates superior generalization of our
strictly equivariant architecture. RIO’s approach, involving multiple data rotations, test optimization,
and deep ensemble at test time, would result in higher computational and memory costs as compared
to our method. Finally, the comparison with NDI highlights the need for a neural displacement prior.

6 ABLATION STUDY

Here, we show the necessity of incorporating equivariance in inertial odometry, the choice of
equivariant architecture, and covariance parameterization. We present all the ablations using the
TLIO base model in Tab. 3, both with and without integrating the EKF. App. A.9 further contains
the performance of all models above on a test dataset which is augmented with rotations and/or
reflections. App. A.12, A.13, A.15, A.14 present sensitivity studies on the input sequence length,
estimated gravity direction, IMU biases and IMU sampling rate.

Baseline Ablation: Is yaw augmentation needed when the input is in a local gravity-aligned
frame? We trained TLIO both with and without yaw augmentation using identical hyperparameters
and the results in Tab. 3 (rows 1 and 2) reveal that augmentation enhances the network’s generalization,
improving all metrics for the Aria dataset with the lowest margin of 10% on AYE and highest margin
of 65% for MSE*. This underscores the importance of equivariance for network generalization.
Does a Deeper TLIO with a comparable number of parameters match the performance of
equivariant methods? We enhanced the residual depth of the original TLIO architecture from 4
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Figure 6: Trajectories and frame basis vectors (red/blue) on the Aria Dataset.

residual blocks of depth 2 each to depth 3 each (row 3) to match the number of parameters with
our +SO(2) Eq. Frame model (row 8). Despite having fewer parameters due to the removal of the
orthogonal basis in SO(2) vector neuron-based architecture, +O(2) Eq. Frame model (row 11) still
outperformed the deeper TLIO. The data from Tab. 3 show that merely increasing the network’s size,
without integrating true equivariance, is insufficient for achieving precise inertial odometry.

Frame Ablation: Can a non-equivariant MLP predict meaningful frames? We trained TLIO
with yaw augmentation and identical hyperparameters alongside an additional MLP mirroring the
architecture of our method to predict a frame and term this baseline +Non Eq. Frame (row 4). We
observed that +Non Eq. Frame tends to overfit to the TLIO dataset, and thus produce worse results
on the Aria dataset. The predicted frames also poorly correlate with the underlying trajectory, as
illustrated in Fig. 6. Can frames predicted using PCA (handcrafted equivariant frame) achieve
the same performance? Using PCA to generate frames leads to underperformance on the Aria
dataset, and worse results than the original TLIO which is likely due to PCA’s noise sensitivity as
shown in Fig. 6. Additionally, PCA cannot distinguish between SO(2) and O(2) transformations.
Fig. 6 also shows that O(2) does not have frames as smooth as SO(2) as the reflected bends have
reflected frames. See App. A.16 for an additional ablation using frame-averaging for canonicalization.

Architecture Ablation: Are fully equivariant architectures better ? We trained a fully equivariant
1-D CNN using the layers in Sec. 4.3. Tab. 3 (row 12) shows our frame-based methods outperforming
the equivariant CNNs, likely by leveraging the power of scalars and conventional backbones. We
believe the fully equivariant architecture is overly restrictive, while also requiring a full network
redesign. By contrast, our method can flexibly integrate existing state-of-the-art displacement priors.

Covariance Ablation: Do we need equivariant covariance? We investigated the importance of
equivariant covariance for both SO(2) and O(2) groups, as described in Sec. 4.1(See App. A.2.3 for
covariance parameterizations). In Tab. 3, the models +S (rows 6 and 9) are trained with invariant
covariance parameterized as Σ = diag(e2ux , e2uy , e2uz ), that is unaffected by application of F . The
results show that the equivariant covariance yields better performance, especially when combined
with EKF, as it provides a more accurate estimate of the prediction covariance. Can a full covariance
matrix with Pearson parameterization improve performance? In Tab. 3, our model outperforms
+P (rows 7 and 10) in most cases indicating that by aligning the principal covariance axis into the basis
of the equivariant frame, we intrinsically force covariance in the equivariant frame to be diagonal,
which reduces ambiguity while training. Diagonal covariances improve convergence stability during
optimization as stated in Liu et al. (2020). App. A.11 visualizes the covariance consistency of EqNIO
and we conduct an analysis on the covariance parameterization in App. A.17.

7 CONCLUSION

We introduce a robust and generalizable neural displacement prior that combats drift in IMU-only
neural inertial odometry via equivariant canonicalization. Our canonicalization scheme is generally
applicable and eliminates the underlying yaw ambiguity in gravity-aligned frames which arise from
roto-reflections in the plane around gravity. We fully characterize actions from this group on all
relevant inputs and outputs of the prior and leverage this insight to design a network that produces
learned frames that are Og(3) equivariant to these actions. By reducing the data variability seen
by neural networks these frames boost the generalization of existing networks and enforce exact
equivariance, unlike existing strategies that use data augmentation or equivariant consistency losses to
enforce approximate equivariance. We demonstrate the generality of our framework through extensive
validation on various datasets and applications to two base architectures (TLIO and RONIN). We
believe this work paves the way for robust, and low-drift odometry running on edge devices.
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A APPENDIX

A.1 MORE RELATED WORKS

Inertial Navigation Systems (INS): The research in INS can be put into three broad categories:
estimation-based techniques, multi-sensor data fusion (MSDF) techniques, and learning-based al-
gorithms. The Kalman Filter (Kalman & Others, 1960) and it’s variants, EKF, UKF and MEKF,
have been implemented for inertial attitude estimation (Jing et al., 2017; Chiella et al., 2019; Hall
et al., 2008), purely inertial odomety (Leishman et al., 2014; Titterton et al., 2004; Bortz, 1971),
Visual-Inertial odometry (VIO) (Mourikis & Roumeliotis, 2007), LIDAR Odometry (Zhang & Singh,
2014; Zheng et al., 2024) and SLAM (Newman, 1999; Williams et al., 2000; Kim & Sukkarieh,
2003), but suffer from drift when using IMU data alone. Learning-based algorithms can reduce this
drift, and have been designed for inertial attitude estimation (Weber et al., 2021; Brotchie et al.,
2022; Asgharpoor Golroudbari & Sabour, 2023), inertial odometry (Chen et al., 2018a; Liu et al.,
2020; Buchanan et al., 2023; Tang et al., 2024; Qiu et al., 2024), LIDAR odometry (Dong et al.,
2024; Javanmard-Gh. et al., 2021; Okawara et al., 2024), VIO (Chen et al., 2021a; Pan et al., 2024)
and SLAM (Wang et al., 2024; Peng et al., 2024). The consistency of VINS and EKF-SLAM has
been studied in Hesch et al. (2014); Huang et al. (2008; 2009). Recent works have also explored
equivariant observer design (Ng et al., 2023; Mahony et al., 2022; Bouazza et al., 2024), equivariant
IMU Preintegration (Delama et al., 2024), the design of equivariant filters (van Goor et al., 2023; van
Goor & Mahony, 2023; Fornasier et al., 2024) and geometric data fusion (Ge et al., 2024) for attitude
estimation that do not include any learning-based components. They work on equivariant dynamics
and use the lift function to map the state and the extended velocity to the Lie algebra associated with
the system’s symmetry group, enabling the construction of a lifted system on the Lie group. The error
dynamics are linearized around a fixed origin, which makes it independent of the current state. To the
best of our knowledge, we are the first to bake the equivariance into the NN for the inertial odometry
problem. Integrating our equivariant network into these models would be potential future work.

Canonicalization: Both hand-crafted and learned canonicalization (Lowe, 2004; Yüceer & Oflazer,
1993; Jaderberg et al., 2015) has been widely studied and practiced. Recently, canonicalization
has gained popularity in equivariant models, improving training efficiency and enabling seamless
integration with standard model architectures. Kaba et al. (2023) first generally and theoretically
proposed using Learned Canonicalization Functions to achieve equivariance. Puny et al. (2021)
established standardizing the input by calculating the smallest set of frame set. Further, Ma et al.
shows the connection between the frame-averaging method and canonical forms. In practical
applications, Li et al. (2021); Baker et al. (2024); Luo et al. (2022); Du et al. (2022) canonicalize 3D
point clouds by constructing global and local frames. Deng et al. (2021) introduces an equivariant
canonicalization method in PointNet and Xu et al. (2024) integrates canonicalization into the Perceiver
IO architecture. Additionally, with the rise of large pre-trained models, recent work (Mondal et al.,
2023) applies canonicalization as a preprocessing step before inputting to such models.

A.2 PRELIMINARY

A.2.1 EQUIVARIANCE

In this section, we introduce more preliminaries of group and representation theory which form the
mathematical tools for equivariance.

Group The group G is a set equipped with an associative binary operation · which maps two
arbitrary two elements in G to an element in G. It includes an identity element, and every element in
the set has an inverse element.

In this paper, we focus on the group SO(2) and O(2). SO(2) is the set of all 2D planar rotations,
represented by orthogonal matrices R2×2 ∈ R2×2 with det(R2×2) = 1. This group operation is
matrix multiplication, and each rotation matrix has an inverse, which is its transpose. The identity
element is the matrix representing no rotation.
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O(2) consists of all distance-preserving transformations in Euclidean 2D space, including both
rotations and reflections. Elements of O(2) are orthogonal matrices R2×2 ∈ R2×2 with det(R2×2) =
±1, with the group operation being matrix multiplication. Each transformation matrix has an inverse,
and the identity element is the matrix representing no transformation.

Group Representation and Irreducible Representation The group representation is a homomor-
phism from the group G to the general linear map of a vector space V of a field K, denoted GL(V ).
In this work, we use V = Rn and K = R

An irreducible representation (irrep) of a group G is a representation in which the only invariant
subspaces under the action of G are the trivial subspace {0} and the entire space V . In other words,
an irreducible representation cannot be broken down into smaller, nontrivial representations,i.e., it
cannot be the direct sum of several nontrivial representations.

For SO(2), we can use θ ∈ (0, 2π] to represent SO(2), for any θ, the irreducible representation of
the frequency n ∈ N is:

ρn(θ) =

(
cosnθ − sinnθ
sinnθ cosnθ

)
.

In this work, we use n = 1. For O(2), we can use r ∈ {−1, 1} to denote reflection and θ ∈ (0, 2π] to
denote rotation. The trivial representation ρ0(r, θ) = 1. For the nontrivial representation of frequency
n ∈ N+

ρn(r, θ) =

(
cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)(
1 0
0 r

)
There is another one-dimensional irrep for O(2), ρ(r, θ) = r which corresponds to the trivial
representation of rotation.

The introduction to group representations has been covered extensively in previous work on equiv-
ariance (Cohen & Welling, 2016; Weiler et al., 2018; Xu et al., 2024). Specifically, for SO(2) and
O(2), Weiler & Cesa (2019) provide a detailed introduction.

Invariance and Equivariance Given a network Φ : X → Y , if for any x ∈ X ,

Φ(ρXx) = Φ(x),

implies the group representation ρY of the output space is trivial, i.e. identity, and the input does not
transform (i.e. the input is invariant) under the action of the group. Note that in our paper X and
Y can be seen as the direct sum (concatenation) of all input and output vectors respectively. In our
paper, the coordinates/ projections of 3D vector to the gravity axis z-axis are invariant, therefore we
call them invariant scalars.

A network Φ : X → Y is equivariant if it satisfies the constraint

Φ(ρXx) = ρYΦ(x).

In this paper, the input is the sequence of accelerations and angular velocities, and the output is
composed of displacement and covariance. For displacement, the z-component is invariant while
xy-components are acted under the representation of ρ1 defined in the above section. Hence, for
displacement, ρY = ρ1 ⊕ 1 and for covariance 3D covariance, ρY = (ρ1 ⊕ 1)⊗ (ρ1 ⊕ 1)

Subequivariance As mentioned in prior works (Chen et al., 2023; Han et al., 2022), the existence of
gravity breaks the symmetry in the vertical direction, reducing O(3) to its subgroup O(2). We formally
characterize this phenomenon of equivariance relaxation as subequivariance. We have mathematically
defined the subequivariance in Section 3 of the paper. In simpler terms, the gravity axis is decoupled
and treated as an invariant scalar while the other two axes are handled as a separate 2D vector. Upon
rotation, the invariant scalar remains constant while the other two axes are transformed under rotation.
So we are limited now to SO(2) rotations and roto-reflections. In the general case of equivariance,
the 3D vector would be considered three-dimensional and an SO(3) rotation would act on it. The
transformation would be along all three axes.
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A.2.2 INERTIAL ODOMETRY

In this section, we introduce more preliminaries on the terms used in inertial odometry.

Inertial Measurement Unit Inertial Measurement Unit (IMU) is an electronic device that measures
and reports linear acceleration, angular velocity, orientation, and other gravitational forces. An
IMU typically consists of a 3-axis accelerometer, a 3-axis gyroscope, and depending on the heading
requirement a 3-axis magnetometer.

An accelerometer measures instantaneous linear acceleration (ai). It can be thought of as a mass on a
spring, however in micro-electro-mechanical systems (MEMS) it is beams that flex instead of spring.

A gyroscope measures instantaneous angular velocity (ωi). It measures the angular velocity of its
frame, not any external forces. Traditionally, this can be measured by the fictitious forces that act
on a moving object brought about by the Coriolis effect, when the frame of reference is rotating. In
MEMs, however, we use high-frequency oscillations of a mass to capture angular velocity readings
by the capacitance sense cones that pick up the torque that gets generated.

World Frame A world frame, also known as a cartesian coordinate frame, is a fixed frame with a
known location and does not change over time. In this paper, we denote the fixed frame with z-axis
perfectly aligned with the gravity vector as the world frame, denoted as w.

Local-gravity-aligned Frame A local-gravity-aligned frame has one of its axes aligned with the
gravity vector at all times but it is not fixed to a known location.

Body Frame A body frame comprises the origin and orientation of the object described by the
navigation solution. In this paper, the body frame is the IMU’s frame. This is denoted as b for the
IMU data.

Gravity-compensation Gravity compensation refers to the removal of the gravity vector from the
accelerometer reading.

Gravity-alignment Gravity-alignment of IMU data refers to expressing the data in the gravity-
aligned frame. This is done by aligning the z-axis of the IMU inertial frame with the gravity vector
pointing downwards and is usually achieved by fixing the roll and pitch (rotations around the x and y
axes) or by applying a transformation estimated by the relative orientation between the gravity vector
and a fixed z-axis pointing downwards. This is usually achieved with a simple rotation.

A.2.3 UNCERTAINTY QUANTIFICATION IN INERTIAL ODOMETRY

In this section, we provide more context on uncertainty quantification in odometry and detail the
different parameterizations used for regressing the covariance matrix in the paper.

Homoscedastic Uncertainty Homoscedastic uncertainty refers to uncertainty that does not vary
for different samples, i.e., it is constant.

Heteroscedastic Uncertainty Heteroscedastic uncertainty is uncertainty that is dependent on the
sample, i.e., it varies from sample to sample.

Epistemic Uncertainty Epistemic uncertainty is uncertainty in model parameters. This can be
reduced by training the model for longer and/or increasing the training dataset to include more diverse
samples.

Aleatoric Uncertainty Aleatoric uncertainty is the inherent noise of the samples. This cannot be
reduced by tuning the network or increasing the diversity of the data.

Why do we need to estimate uncertainty in inertial odometry? Inertial odometry Kalman filters
need measurement and plant covariances that are traditionally manually tuned and are considered
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constant cross-measurement (homoscedastic). Neural networks offer us a way to provide an uncer-
tainty estimate for each measurement. In the case of TLIO, the measurement of the Kalman Filter is
a displacement and the neural network predicts both the measurement and its covariance.

What is the uncertainty we are estimating in inertial odometry? We are regressing the aleatoric
uncertainty using the neural network.

How is the uncertainty estimated in this paper? We regress aleatoric uncertainty as a covariance
matrix jointly while regressing 3D displacement following the architecture of TLIO (Liu et al., 2020).
Since there is no ground truth for the covariance, we use the negative log-likelihood loss of the
prediction using the regressed Gaussian distribution. As this loss captures the Mahalanobis distance,
the network gets jointly trained to tune the covariance prediction.

Diagonal covariance matrix TLIO (Liu et al., 2020) regresses only the three diagonal elements of
the covariance matrix as log

√
Σxx, log

√
Σyy and log

√
Σzz and the off-diagonal elements are zero.

This formulation constrains the uncertainty ellipsoid to be along the local gravity-aligned frame.

Full covariance matrix using Pearson correlation Russell & Reale (2021) define a parameteriza-
tion to regress the full covariance matrix. They regress six values of which three are the diagonal
elements log

√
Σxx, log

√
Σyy and log

√
Σzz and the remaining three are Pearson correlation coef-

ficients ρxy, ρyz , and ρxz . The diagonal elements are obtained by exponential activation while the
off-diagonal elements are computed as follows

Σij = ρij
√

ΣiiΣjj

where ρij passes through tanh activation.

Diagonal covariance matrix in canonical frame In our approach, we regress the three diagonal
elements as log

√
Σxx, log

√
Σyy and log

√
Σzz in the invariant canonical frame. Since the z-axis

is decoupled from the xy-axis, only Σxx and Σyy are mapped back using the equivariant frame to
obtain a full 2D covariance matrix from the diagonal entries. The resulting matrix is as follows[

Σxx Σxy 0
Σxy Σyy 0
0 0 Σzz

]

A.3 DATASET DETAILS

In this section, we provide a detailed description of the 4 datasets used in this work - TLIO and Aria
for TLIO architecture, and RONIN, RIDI and OxIOD for RONIN architecture.

TLIO Dataset- The TLIO Dataset (Liu et al., 2020) is a headset dataset that consists of IMU raw
data at 1kHz and ground truth obtained from MSCKF at 200 Hz for 400 sequences totaling 60 hours.
The ground truth consists of position, orientation, velocity, IMU biases and noises in R3. The dataset
was collected using a custom rig where an IMU (Bosch BMI055) is mounted on a headset rigidly
attached to the cameras. This dataset captures a variety of activities including walking, organizing
the kitchen, going up and down stairs, on multiple different physical devices and more than 5 people
for a wide range of individual motion patterns, and IMU systematic errors. We use their data splits
for training (80%), validation (10%), and testing(10%).

Aria Everyday Dataset- Aria Everyday Dataset (Lv et al., 2024) is an open-sourced egocentric
dataset that is collected using Project Aria Glasses. This dataset consists of 143 recordings accumu-
lating to 7.3 hrs capturing diversity in wearers and everyday activities like reading, morning exercise,
and relaxing. There are two IMUs on the left and right side of the headset of frequencies 800 and
1kHz respectively. They have two sources of ground truth- open and closed loop trajectory at 1kHz.
Open loop trajectory is strictly causal while closed loop jointly processes multiple recordings to place
them in a common coordinate system. The ground truth contains position and orientation in R3. We
use it as a test dataset. The raw right IMU data is used to compare closed-loop trajectory with EKF
results. The data was downsampled to 200Hz and preprocessed using the closed-loop trajectory to
test the NN trained on TLIO.
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RONIN Dataset- RONIN Dataset (Herath et al., 2020) consists of pedestrian data with IMU
frequency and ground truth at 200Hz. RONIN data features diverse sensor placements, like the device
placed in a bag, held in hand, and placed deep inside the pocket, and multiple Android devices from
three vendors Asus Zenfone AR, Samsung Galaxy S9, and Google Pixel 2 XL. Hence, this dataset
has different IMUs depending on the vendor. We use RONIN data splits to train and test their model
with and without our framework. RONIN-U (Unseen) is a test set that contains IMU measurements
from people who did not participate in the training and validation data collection. The people used to
record the RONIN-S (Seen) overlap with those from the training and validation set, but their data is
disjoint from the training and validation set. The RONIN-U dataset, thus, tests the generalization
capabilities of a method.

RIDI Dataset- RIDI Dataset (Yan et al., 2018) is another pedestrian dataset with IMU frequency
and ground truth at 200 Hz. This dataset features specific human motion patterns like walking
forward/backward, walking sidewards, and acceleration/deceleration. They also record data with
four different sensor placements. We report test results of RONIN models on both the RIDI test and
cross-subject datasets. RIDI results are presented after post-processing the predicted trajectory with
the Umeyama algorithm (Umeyama, 1991) for fair comparison against other methods.

OxIOD Dataset- OxIOD Dataset (Chen et al., 2018b) stands for Oxford Inertial Odometry Dataset
consists of various device placements/attachments, motion modes, devices, and users capturing
everyday usage of mobile devices. The dataset contains 158 sequences totaling 42.5 km and 14.72
hours captured in a motion capture system. We use their unseen multi-attachments test dataset for
evaluating our framework applied to RONIN architecture.

A.4 COMPARISON WITH PREVIOUS WORK

We start off by describing the different types of equivariance used in neural inertial odometry, followed
by an in-detail description of each of the related works our method is compared.

A.4.1 COMPARISON OF TYPES OF EQUIVARIANCE

In the current literature on learning-based purely inertial odometry, there are primarily three ways
of achieving equivariance: (1) data augmentation, (2) the imposition of equivariant constraints in
the form of auxiliary losses, and (3) the tailoring of NN to respect exact equivariance by design.
The latter is the strategy used in this work. These different types of equivariance used in inertial

Transformation
Group

Training
Loss

Training Input
Augmentation

Training GT
Augmentation

Test Input
Augmentation

Strict/Approximate
Equivariance

TLIO Liu et al. (2020) SO(2) MLE Yes Yes No Approximate
RONIN Herath et al. (2020) SO(2) MSE Yes Yes No Approximate

RIO Cao et al. (2022) C4
MSE + Auxiliary
Equivariance Loss Yes No Yes Approximate

Ours O(2) MLE No No No Stricts

Table 4: Comparison of our method with previous methods from the perspective of equivariance

odometry are illustrated in Figure 7. Importantly, while data-augmentation and auxiliary losses
enforce approximate equivariance, leading to residual equivariance errors even after training, the use
of equivariant NNs enforces strict equivariance, and thus equivariance error.

A.4.2 TLIO

TLIO, described in (Liu et al., 2020), consists of two components: an Extended Kalman Filter
(EKF), to estimate the current orientation, position, velocity, and IMU biases, and a NN to predict a
displacement prior, which is defined via its mean displacement and associated uncertainty.

We treat the displacement prior as a virtual measurement (with associated realization and measurement
noise given by the mean displacement and covariance) and fuse it with the EKF state at 20 Hz. The
EKF details can be found in Appendix A.6. At the IMU sampling rate (1kHz for the TLIO and
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𝑅𝛾 ∘ Ψ = Ψ ∘ 𝑅𝛾  by 
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Figure 7: Overview of different equivariance types in neural inertial odometry. Works can be split
into those using SO(2) Data augmentation, such as Liu et al. (2020); Herath et al. (2020); Cao et al.
(2022), those using SO(2) Equivariant losses Cao et al. (2022), and our work, which tackles this
challenge with an O(2) equivariant network. Data augmentation methods apply random yaw (Rγ) on
acceleration a, angular velocity ω, and displacements d for each loaded sample, and thus achieve
approximate equivariance to yaw rotations (ρ(Rγ) ◦Ψ ≈ Ψ ◦ ρ(Rγ)). By contrast, methods that use
SO(2) equivariant losses pass multiple randomly rotated samples through the network and enforce
consistency between respective outputs using a self-supervised equivariant loss (CL). Finally, our
method employs an equivariant canonicalization scheme which employs specialized equivariant layers
that render our network inherently exactly equivariant (ρ(Rγ) ◦Ψ = Ψ ◦ ρ(Rγ)) to roto-reflection
elements Rγ ∈ O(2) (a more general group than SO(2)). Our network thus does not require data
augmentation, or expensive equivariant losses and still achieves better results.
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Aria Dataset), the EKF state and covariance are propagated using the IMU measurements. Since the
measurement equation depends on current and past states, we initiate EKF state augmentation and
cloning at each measurement. To avoid yaw observability issues, we use a strategy similar to Chen
et al. (2022) to linearize at the beginning of the 1-second window of past update/clone states. The
EKF current states at the update frequency are stored as clone states before the EKF measurement
update step. This is referred to as state augmentation, and the augmented past states are referred to as
clone states.

The neural displacement prior d̂ and the associated prediction covariance Σ̂ are predicted from a NN.
The NN takes as input IMU samples linearly interpolated from 1kHz to 200Hz. This implies that
within a time window of 1 second, the network takes as input 200 IMU samples of 6 dimensions of
which 3 dimensions correspond to accelerometer readings and 3 correspond to gyroscope readings.
The input samples are first expressed in the gravity-aligned world frame by estimating the IMU
orientation using the noisy gyroscope measurements. Finally, they are expressed in the local gravity-
aligned frame using the yaw-estimate from the EKF at the clone state i corresponding to the beginning
of the 1-second window. The NN input is bias compensated using factory calibration values of IMU
accelerometer and gyroscope biases and does not use the EKF bias estimates, to avoid instabilities.
The predicted covariance is parametrized as a diagonal covariance matrix and claimed in TLIO to
lead to better convergence and stability during training. The NN is trained with VIO estimates of bias
and orientation and uses displacement calculated from VIO position estimates as supervision data.

During deployment with the EKF, (i) bias estimates may not be accurate as they are set to factory
calibration values, and (ii) gravity orientation may be noisy due to noise in orientation estimation.
These noise sources lead to drift. To mitigate this drift, during training TLIO uses three data
augmentation strategies: (i) IMU bias augmentation using na ∼ U [0.2, 0.2]m/s2 additive noise
for the accelerometer bias and nω ∼ U [0.05, 0.05]rad/s additive noise for the gyroscope bias. (ii)
Gravity direction perturbation rotates the samples around a random horizontal rotation axis by an
angle α ∼ U [0, 5]deg. (iii) Yaw (SO(2)) augmentation rotates the network inputs and ground truth
by a random yaw angle γ ∼ U [−π, π].
The network is trained with a batch size of 1024 samples for 50 epochs, with 1770 iterations per
epoch. The NN architecture as presented in Liu et al. (2020) consists of a 1D convolutional ResNet
consisting of dilated causal convolutions followed by two disjointed 3-layer MLPs after flattening
the ResNet output. One head corresponds to the 3D displacement prediction and the other head
corresponds to 3 diagonal covariance values. The NN is trained for 10 epochs with a Mean Squared
Error loss and the remaining 40 epochs with a Mean Log Likelihood Error loss (MLE) as we want
the displacement prediction to converge before indirect supervision of the predicted covariance.

A.4.3 RONIN

RONIN is the predecessor of TLIO and is an end-to-end architecture regressing 2D velocity from
IMU samples over 1-second windows. The RONIN training dataset consists of pedestrian data which
has 2D position as ground-truth (GT). The GT displacement is divided by the time interval to obtain
ground truth velocity for training. The regressed 2D velocities are directly integrated to obtain 2D
position estimates.

During evaluation the predicted and ground truth trajectories are aligned using the
Umeyama Umeyama (1991) (scaled Procrustes) algorithm, since RONIN does not estimate ori-
entation. The NN architecture of RONIN is the same as TLIO where the network takes 200 IMU
inputs of dimension 6 and consists of 1D convolutional ResNet architecture followed by a single
3-layer MLP head to regress 2 values corresponding to the x-axis and y-axis of the predicted velocity.
As there is no EKF, they do not estimate covariance. The only augmentation done is yaw augmenta-
tion similar to TLIO. The random yaw angles sampled from U [0, 2π] are used to rotate a single batch
of input samples and corresponding GT velocities. The batch size is 1024, and the network is trained
for 100 epochs. The NN is trained only on the MSE loss.
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A.4.4 RIO

RIO proposes a framework that can be easily integrated with existing learning-based inertial odometry
architectures. During training, RIO computes an auxiliary equivariant loss in the following way.
It passes the network input and a randomly yaw-rotated copy (yaw rotation from SO(2) sampled
from U [0, 2π]) through the neural network, and computes two losses. The first compares the output
from the original sample to ground truth (via an MSE loss), and the second measures the negative
cosine similarity between the original prediction and the prediction obtained from rotated input. This
training procedure is termed the joint-training strategy. When the magnitude of ground truth velocity
is less than 0.5 m/s (termed as nearly stationary), the auxiliary loss is ignored. During inference, RIO
uses a prediction model, and a model ensemble to employ an adaptive test-time-training strategy.
The model ensemble is used to estimate the uncertainty in prediction and trigger retraining of
the prediction model. This ensemble consists of NNs that were trained from different random
initializations. The variance of the predictions from the models is considered as the uncertainty of
the predictions. Retraining occurs with a history of 128 samples, by minimizing the auxiliary loss
and using the prediction model for initialization. Each of the samples is rotated by the four angles
β ∈ [72, 144, 216, 288] degrees. When the model predicts velocities below 0.5 m/s the prediction
model is reset. So at any instance of time, there is one copy of the model that is continuously tuned
during inference, one copy of the original trained network, and a set of randomly initialized networks
to get an ensemble-based uncertainty estimate.

While our work and RIO both aim to address the equivariance of the neural inertial odometry by
modeling rigid transformations of trajectory and IMU data, there are several distinct differences.
Most significantly, RIO addresses approximate equivariance, while our method enforces strict
equivariance. Approximate equivariance enforces equivariance via an equivariance loss which
penalizes inconsistencies in predictions on data from four rotated trajectories. By contrast, strict
equivariance enforces inherent consistency by tailoring specific NN components to be exactly
equivariant. This work proposes several specialized linear and non-linear layers to guarantee the
strict equivariance of the predicted canonical frame, while RIO uses traditional layers.

RIO adopts a test-time training strategy, which adds an additional computational overhead and thus
increases the inference time as they are required to store multiple versions of the prediction model
and augmented trajectories. Since our method is strictly equivariant, we do not require a Test-Time
Training strategy. Moreover, despite not using such a strategy our method outperforms RIO.

Finally, RIO only handles 2D displacement outputs and equivariance to rotations in SO(2), i.e. 2D
planar rotations. By contrast, our method can handle both 2D and 3D outputs and thus addresses
equivariance in 2D and subequivariance in 3D. Moreover, we also extend the modeling to roto-
reflections, i.e., the group O(2), which comprises rotations and reflections in the plane perpendicular
to gravity and requires a novel bijection for angular rate preprocessing.

A.5 EQUIVARIANT NETWORK IMPLEMENTATION DETAILS

In this section, we first provide an overview of the canonical displacement prior and then describe in
detail the equivariant network implementation and how it is combined with TLIO and RONIN.

A.5.1 OVERVIEW OF CANONICAL DISPLACEMENT PRIOR

(1) Following Figure 2 we first gravity align the IMU data, i.e. rotate it such that the z-axis is aligned
with gravity (estimated online by an EKF).

(2) We then process this IMU data by an “equivariant frame model” that outputs two vectors. This
network takes in vector and scalar features derived from the IMU data. The equivariant network
is strictly O(2) or SO(2) equivariant by design. The predicted vectors are then converted into an
orthogonal set of unit vectors using Gram-Schmidt orthogonalization.

(3) Then, we transform the input IMU data using the equivariant frame from (2) (“canon.” block in
Figure 2) to produce invariant (consistent) inputs within the canonical frame, ensuring robustness to
any roto-reflection group transformations applied to the original data.
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(4) The invariant input is fed into a standard neural network architecture (“off-the-shelf model”),
such as TLIO’s ResNet, to generate a displacement and covariance, termed canonical displacement
prior expressed with respect to the learned canonical frame. These outputs remain consistent under
transformations from the roto-reflection group applied to the original input.

(5) Lastly, we project back the predicted displacement and covariance using the canonical frame to
obtain an equivariant displacement and covariances using the equivariant frame of (2).

Finally, depending on the backbone architecture on which our framework is applied (in our case for
TLIO), the predicted displacement and covariances are fed into a filtering algorithm, like an EKF as a
measurement to update the estimate of the IMU state (orientation, position, velocity and biases).

A.5.2 IMPLEMENTATION DETAILS

The input to the framework is IMU samples from the accelerometer and gyroscope for a window of 1
second with IMU frequency 200Hz resulting in n = 200 samples. All IMU samples within a window
are gravity-aligned with the first sample at the beginning of the window, previously referred to as the
clone state. The network design, as seen in Figure 2 b, differs in architecture for SO(2) and O(2)
and hence is described separately below.

SO(2)- We decouple the z-axis from the other two axes and treat linear acceleration and angular
velocity along the z-axis as scalars (2). We also take the norm of the 2D accelerometer and gyroscope
measurements (2), their inner product (1) resulting in invariant scalars Rn×5. The x and y components
of IMU measurements are passed as vector inputs Rn×2×2. The vectors and scalars are then separately
passed to the linear layer described in Section 4.3. The equivariant network predicting the equivariant
frame consists of 1 linear layer, 1 nonlinearity, 1 convolutional block with convolution applied over
time, non-linearity, and layer norm. The hidden dimension is 128 and the convolutional kernel is 16
x 1. Finally, the fully connected block of hidden dimension 128 consisting of linear, nonlinearity,
layer norm, and output linear layer follows a pooling over the time dimension. The output of the
final linear layer is 2 vectors representing the two bases of the equivariant frame. The input vectors
of dimension Rn×2×2 are projected into the invariant space via the equivariant frame resulting in
invariant features in Rn×4. These features are combined with the input scalars and passed as input
(Rn×6) to TLIO or RONIN base architecture. The output of TLIO is invariant 3D displacement and
diagonal covariance along the principal axis. The output of RONIN is 2D velocity. The x and y
components are back-projected using the equivariant frame to obtain displacement vector d in R2 and
the covariance in the original frame. The covariance is parameterized and processed as mentioned in
Section 4.1.

O(2)- The preprocessing is as described in Section 4.1 where ω is decomposed to two vectors v1
and v2 that each have magnitude

√
∥ω∥. The preprocessed input therefore consists of 3 vectors a, v1,

and v2. This is then passed to the equivariant network by decoupling the z-axis resulting in vector
input Rn×3×2 which represents 3 vectors in 2D. The scalars passed to the linear layer described
in Section 4.3 consist of the accelerometer z-axis measurement (1), the z component of the two
vectors v1 and v2 (2), the norm of the vectors (3) and the inner product of the vectors(3) resulting in
Rn×9. The network architecture is the same as SO(2) with hidden dimension 64 and 2 convolutional
blocks in order to make it comparable in the number of parameters to SO(2) architecture. The
invariant features obtained by projecting the three vectors using the equivariant frame are processed
as mentioned in Section 4.1 to obtain 2 vectors in 3D that are fed as input to TLIO and RONIN. The
postprocessing is the same as SO(2).

The framework is implemented in Pytorch and all hyperparameters of the base architectures are
used to train TLIO and RONIN respectively. The SO(2) architecture has 8,884,870 while O(2) has
6,020,230 parameters and the base TLIO architecture has 5,424,646. The baseline TLIO and our
methods applied to TLIO were trained on NVIDIA a40 GPU occupying 7-8 GB memory per epoch.
The training took 5 mins per epoch over the whole training dataset. We train for 10 epochs with MSE
Loss and the remaining 40 epochs with MLE Loss similar to TLIO (Liu et al., 2020). RONIN was
trained on NVIDIA 2080ti for 38 epochs taking 2 mins per epoch. The loss function used was MSE
as mentioned in Herath et al. (2020). The EKF described in TLIO was run on NVIDIA 2080ti with
the same initialization and scaling of predicted measurement covariance as in TLIO (Liu et al., 2020).
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We compare the resource requirements of the SO(2), and O(2) variant of our method coupled with
TLIO, with base TLIO without an equivariant frame. We report the floating point operations (FLOPs),
the inference time (in milliseconds), and Maximum GPU memory (in GB) during inference, on
an NVIDIA 2080 Ti GPU for the NN averaged over multiple runs to get accurate results. While
base TLIO uses 35.5 MFLOPs, 2.79 ms, and 0.383 GB per inference, our SO(2) equivariant method
instead uses 531.9 MFLOPs, 5.43 ms, and 0.383 GB per inference. Finally, our O(2) equivariant
method uses 638.5 MFLOPs, 5.70 ms, and 0.385 GB per inference. We further evaluate the Maximum
GPU memory for the equivariant networks separately and report 0.255 GB per inference for SO(2)
equivariant frame prediction and 0.257 GB per inference for O(2) equivariant frame prediction.
The Maximum GPU memory is unaffected because the equivariant frame computation utilizes less
memory than TLIO.

Finally, we also evaluate our method with a downstream EKF on an NVIDIA 2080 Ti GPU. The EKF
incorporates raw IMU measurements for propagation, and displacement measurements from the NN
as measurement updates. For every 20 imu samples, we send the last 200 IMU measurements to the
NN to provide this measurement update. The original TLIO requires 0.492 seconds and 1.113 GB of
memory. For the SO(2) variant of our method, we require 0.554 seconds and 1.109 GB of memory
to process 1 second of real-world data. For the O(2) variant, we use 0.554 seconds and 1.115 GB
of memory, showing that our method is faster than real-time. The increase in memory for the O(2)
variant is due to the additional preprocessing step.

With comparable computing resources, our equivariant model outperforms TLIO since we leverage
symmetry, which is an intrinsic property in inertial odometry.

A.6 EKF DETAILS

The EKF continuously estimates the orientation, linear velocity, position, acceleration, and gyroscope
biases. In TLIO architecture, the EKF propagates the IMU samples at a higher frequency of 1 kHz
while the NN takes clone states at 200Hz to predict the displacement over 1 second time window
and its associated uncertainty. Throughout the paper, we denote the clone state indices with i and
the EKF propagation indices with k. We further outline the EKF state definition, propagation model,
state augmentation, measurement, and update model below for completeness of the manuscript. It
must be noted that we follow TLIO (Liu et al., 2020) and do not make any modifications to this part
of the architecture.

A.6.1 EKF STATE DEFINITION

The state of the EKF is defined as X = (ξ1, ...., ξn, s) where ξi, i = 1, ..., n represents the n clone
states whose corresponding IMU measurements are passed to the NN as input and s has the current
propagation state.

ξi = (wbRi,
wpi) s = (wbR,wv,wp, bg, ba)

where w
bRi represents the orientation estimate of EKF from IMU body frame to gravity-aligned world

frame, p and v represent the position and linear velocity estimates, and bg and ba denote the bias
estimates of the gyroscope and accelerometer respectively. The error state of the EKF is propagated
as a linearized error and so the error state is defined as

ξ̃i = (θ̃i, δp̃i) s̃ = (θ̃, δṽ, δp̃, δb̃g, δb̃a)

where the tilde indicates errors in every state. The errors for all states, except orientation, are
approximated to simple subtraction even though the SE(3) parameterization we use in the EKF
process model is T (3)× SO(3). For orientation, we use the logarithm map of rotation to find the
error as θ̃ = logSO(3)(RR̂−1) ∈ so(3). The EKF and error state is of dimension (6n + 15) and the
corresponding state covariance matrix P has dimension (6n + 15, 6n + 15).

A.6.2 PROCESS MODEL

IMU’s measure sequences of data {(ak, ωk)}mi=k, each expressed in the local IMU frame at time tk.
These are related to the true IMU acceleration āk and angular rates ω̄k via

ωk = ω̄k + bgk + ηgk ak = āk − w
bRk

T g⃗ + bak + ηak (14)
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where g⃗ is gravity vector pointing downward in world frame, and ηgk and ηak are IMU noises respec-
tively. The EKF propagation uses raw IMU samples in the local IMU frame b, following strap-down
inertial kinematics equations:

w

bR̂k+1 =
w

bR̂k expSO(3)((ωk − b̂gk)∆t)

wv̂k+1 = wv̂k + wg∆t+
w

bR̂k(ak − b̂ak)∆t

wp̂k+1 = wp̂k + wv̂k∆t+
1

2
∆t2(wg +

w

bR̂k(ak − b̂ak))

b̂g(k+1) = b̂gk

b̂a(k+1) = âgk

where at timestep k, ∆t is the time interval, wg is the constant gravity vector, ηgdk and ηadk are the
IMU noises that are assumed to be normally distributed, and expSO(3) is the SO(3) exponential map.

The linearized error propagation is written as:

˜sk+1 = As
k(15,15)s̃k +Bs

k(15,12)nk

where nk = [nωk, nak, ηgdk, ηadk] and the subscript brackets (.,.) indicate matrix dimensions. The
corresponding linearized propagation of the state covariance P is as follows:

Pk+1 = AkPkA
T
k +BkWBT

k

Ak =

[
I6n 0
0 As

k

]
Bk =

[
0
Bs

k

]
where I stands for identity matrix amd W(12,12) is the covariance matrix of sensor noise and bias
random walk.

A.6.3 STATE AUGMENTATION

As the NN inputs are used to correct the EKF estimates at a frequency of 20Hz while the propagation
of the EKF is at 1kHz as mentioned in TLIO, at the measurement update frequency a new state is
augmented with a copy operation incrementing the dimension as seen below:

Pk+1 = ĀkPkĀT
k + B̄kWB̄T

k

Āk =

I6n 0

0 Aξ
k

0 As
k

 B̄k =

 0

Bξ
k

Bs
k


where Aξ

k and Bξ
k are the partial propagation matrices for rotation and position only with dimensions

(6, 15) and (6, 12) respectively.

A.6.4 MEASUREMENT MODEL

The measurement model in the EKF uses the displacement estimates provided by the NN, aligning
them in a local gravity-aligned frame to ensure the measurements are decoupled from global yaw
information:

ĥ(X) = RT
γ (pj − pi) = d̂ij + ηij

where Rγ is the yaw rotation matrix, pi and pj are positions of the first and last clone state for
the 1-second displacement prediction window, d̂ij indicates the predicted displacement which is the
output of the NN and ηij represents the measurement noise modeled by the network’s uncertainty
output as ηij = N (0, Σ̂ij). The orientation estimate of the EKF at clone state i is decomposed using
extrinsic "XYZ" Euler angle convention as Ri = RγRβRα.
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A.6.5 UPDATE MODEL

The Kalman gain is computed based on the measurement and covariance matrices, and the state and
covariance are updated accordingly. The key update equations involve the computation of the Kalman
gain (K), updating the state (X), and updating the covariance matrix (P):

K = PHT (HPHT + Σ̂ij)
−1

X←− X⊕K(h(X)− d̂ij)

P←− (I−KH)P(I−KH)T +KΣ̂ijK
T

where ⊕ denotes addition operation except for rotation where the update operation writes R ←−
exp(θ̃)R and the linearized measurement matrix H(3,6n+15) which has zeros other than

Hθ̃i
=

∂h(X)

∂θ̃i
= R̂T

γ ⌊
wp̂j − wp̂i⌋×Hz

Hδp̃i
=

∂h(X)

∂δp̃i
= −R̂T

γ

Hδp̃j =
∂h(X)

∂δp̃j
= R̂T

γ

where

Hz =

[
0 0 0
0 0 0

cos γ tanβ sin γ tanβ 1

]
and ⌊x⌋× is a skew-symmetric matrix built from a vector x.

A.7 EVALUATION METRICS DEFINITION

We follow most metrics in TLIO (Liu et al., 2020) and RONIN (Herath et al., 2020), besides the
MSE loss we reported in the paper. Here we provide the mathematical details of these metrics.

• MSE (m2): Translation error per sample between the predicted and ground truth displace-
ment averaged over the trajectory. It is computed as 1

n

∑n
i ∥

wdi −
w
d̂i∥2. However, it

should be noted that MSE mentioned in TLIO (Liu et al., 2020) is the same as MSE Loss
calculated as the squared error averaged separately for each axis 1

n

∑n
i ∥

wdi,r −
w
d̂i,r∥2

where r is an axis.

• ATE (m): Translation Error assesses the discrepancy between predicted and ground truth

(GT) positions across the entire trajectory. It is computed as
√

1
n

∑n
i ∥wpi −

wp̂i∥2

• RTE (m): Relative Translation Error measures the local differences between pre-
dicted and GT positions over a specified time window of duration δt (1 minute).√

1
n

∑n
i ∥wpi+δt − wpi − (wp̂i+δt − wp̂i)∥2.

• AYE Absolute Yaw Error is calculated as
√

1
n

∑n
i ∥γi − γ̂i∥2.

A.8 VISUALIZATION OF TLIO RESULTS

Figure 8 and Figure 9 show only the NN results compared to ground truth displacements. The ATE
and RTE are calculated on the cumulative trajectory obtained from the predicted displacements.
Figure 9 is with whisker extended to include the outlier which is commonly calculated as 1.5 * IQR
(inter-quartile range). Figure 10 shows the results of EKF without excluding the outliers. We provide
more trajectory visualizations of TLIO test data in Figure 11.
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Figure 8: The superior performance of our framework applied to TLIO architecture when compared
to baseline TLIO trained with and without augmentations on TLIO and Aria Datasets visualized with
a box plot. Blue, Orange, Green, and Red indicate +rot. aug., TLIO, +SO(2) Eq. Frame and +O(2)
Eq. Frame. ATE, RTE, and MSE indicate ATE*, RTE*, and MSE* corresponding to only the NN
results.
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Figure 9: The superior performance of our framework applied to TLIO architecture when compared
to baseline TLIO trained with and without augmentations on TLIO and Aria Datasets visualized with
a box plot. Blue, Orange, Green, and Red indicate +rot. aug., TLIO, +SO(2) Eq. Frame and +O(2)
Eq. Frame. ATE, RTE, and MSE indicate ATE*, RTE*, and MSE* corresponding to only the NN
results. The whisker is extended to 1.5 * IQR (inter-quartile range).

A.9 AUGMENTED TLIO TEST DATASET RESULTS AND ANALYSIS

We also perform an ablation study on test data augmentation for our model. For NN results, we apply
four random yaw rotations per trajectory and random rotations plus reflection per trajectory. The
results are detailed in Table 5. Except for our equivariant model, all other methods show decreased
performance compared to their results on non-augmented test data, whereas our model maintains
consistent performance and outperforms the other methods.

For the Extended Kalman Filter (EKF) results, we augment the test data using random SO(3)
rotations. Notably, we do not include reflections due to the structural constraints of the Kalman filter.
As shown in Table 6, despite the +Non Eq. Frame model outperforming ours in non-augmented tests
on ATE metrics. Our model exceeds +Non Eq. Frame on the augmented dataset. Our approach not
only sets a new benchmark but also maintains consistent performance across random rotations.
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Figure 10: The superior performance of our framework applied to TLIO architecture when compared
to baseline TLIO trained with and without augmentations on TLIO and Aria Datasets visualized with
a box plot. Blue, Orange, Green, and Red indicate +rot. aug., TLIO, +SO(2) Eq. Frame and +O(2)
Eq. Frame. The whisker is extended to 1.5 * IQR (inter-quartile range).

Figure 11: More Visualizations of final estimated trajectories on TLIO Dataset by baseline TLIO
(Blue), our best method applied to TLIO (+O(2) Eq. Frame)(Red), and the Ground-Truth trajectory
(Black).

A.10 VISUALIZATION OF RONIN

The visualization of trajectories in RONIN is displayed in Figure 12.

A.11 COVARIANCE CONSISTENCY

Similar to TLIO (Liu et al., 2020), we plot the prediction error against the standard deviation
(σ) predicted by the network in the invariant space. As seen in Figure 14 and Figure 13 the

14



Published as a conference paper at ICLR 2025

Rotations Rotations + Reflections

Model MSE* ATE* RTE* MSE* ATE* RTE*
(10−2m2) (m) (m) (10−2m2) (m) (m)

TLIO 0.2828 27.7797 3.1390 0.2989 23.4839 3.1313
+ rot. aug. 0.0327 3.3180 0.5417 0.0347 2.9110 0.5654
+ rot. aug. + more layers 0.0306 3.0264 0.5300 0.0332 2.3028 0.5592
+ rot. aug. + Non Eq. Frame 0.0302 2.6379 0.5025 0.0331 2.3212 0.5446
+ rot. aug. + PCA Frame 0.2286 21.3795 2.5288 0.2467 10.1660 2.2283
+ SO(2) Eq. Frame 0.0319 2.3218 0.4957 0.0339 1.8664 0.5178
+ O(2) Eq. Frame 0.0298 2.3305 0.4719 0.0298 1.6418 0.4361

Table 5: Ablation Study For Neural Network with Random Rotation and Reflection Transformation
(4 per trajectory) on TLIO test dataset. A lower error indicates a better model. The lowest values are
annotated with Red. Our proposed methods are in bold.

Model ATE RTE Drift AYE
(m) (m) (deg)

TLIO 10.3005 3.6263 2.9501 3.3684
+ rot. aug. 1.6744 0.4944 1.5526 2.7290
+ rot. aug. + more layers 1.6447 0.5466 1.2767 2.7279
+ rot. aug. + Non Eq. Frame 1.4924 0.5119 1.2721 2.7109
+ rot. aug. + PCA Frame 8.5787 2.9962 2.0872 3.0183
+ SO(2) Eq. Frame 1.4850 0.4901 1.3029 2.7615
+ O(2) Eq. Frame 1.4316 0.4592 1.3096 2.7250

Table 6: Results of evaluation of EKF with Random Rotation Transformations (4 per trajectory) on
TLIO test dataset (i.e., results on augmentated test dataset). A lower error indicates a better model.
The lowest values are annotated with Red. Our proposed methods are in bold.

covariance prediction of our method is consistently within the 3-σ depicted by the red lines.
These results show that our diagonal covariance prediction in the invariant space is consistent.
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Figure 15: Sensitivity to
gravity axis perturbation, and
effectiveness of perturbation
augmentation during training.

A.12 ABLATION ON IMU SEQUENCE LENGTH

We aligned the sequence length with baseline models for fair com-
parison. However, in this Section, we ablate on the sequence length
as shown in Table 7 and Table 8. Table 7 varies sequence lengths
and displacement prediction windows (e.g., 0.5s displacement with
0.5s of 200Hz IMU data results in a sequence length of 100). Ta-
ble 8 fixes the prediction window at 1 second and varies the context
window (e.g., a 2s context window with 200Hz IMU data results
in a sequence length of 400). Our results confirm TLIO (Liu et al.,
2020) Sec. VII A.1: increasing the context window reduces MSE
but not ATE. A lower MSE loss over the same displacement window
does not translate to a lower ATE. Thus, the addition of the equiv-
ariant framework does not change the characteristics of the base
(off-the-shelf) model used.

A.13 SENSITIVITY ANALYSIS TO GRAVITY DIRECTION PERTURBATION

As Wang et al. (2023) we study the robustness of SO(3) subequivariance to slight gravity axis
perturbations in Fig. 15. We perturb the gravity axis in the test set by uniformly sampled angles
α ∼ U(−θ, θ), where θ = 2◦, 4◦, 6◦, 8◦. As Liu et al. (2020) we observe that ATE*(m) can be
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Figure 12: Visualization of RONIN Unseen Test Dataset Trajectories for our best method applied to
RONIN, +O(2) Eq. Frame.

stabilized by training with θ = 5 gravity perturbation augmentation. The error of EqNIO trained
without this augmentation increases with increasing degree of perturbation.

Table 9 presents the sensitivity analysis to gravity direction perturbation, applied for 5 different
ranges, i.e., for 2°, the gravity direction perturbation of (-2°, 2°) is applied to the test dataset. We
also present results for + O(2) Eq. Frame model trained without the gravity direction perturbation of
(-5°,5°) during training. We observe the same trend of stability in MSE* as reported in TLIO (Liu
et al., 2020) when trained with gravity direction perturbation.

A.14 SENSITIVITY TO IMU SAMPLING RATE

To study the IMU sampling rate sensitivity, we deploy our pre-trained model on IMU data that
is resampled from a rate of r ∈ {50, 100, 200, 250, 500, 1000} to 200 Hz, since TLIO requires a
fixed input size of 200 IMU measurements for 1 second. This means that for r < 200 IMU data is
interpolated. We report the results without the EKF on the Aria Dataset in Table 10.
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Figure 13: Consistency of Covariance Prediction in the Invariant Space for TLIO test dataset

Figure 14: Consistency of Covariance Prediction in the Invariant Space for Aria dataset

The results show the relative stability of our method for rates equal to and above 200 Hz, with a
maximal ATE increase of 0.2%. By contrast, going below 200 Hz leads to a higher increase of 15.8%
(for 50 Hz). However, such low sampling rates are unlikely in real-world scenarios, since most
commodity IMUs provide kilohertz-level sampling rates.

A.15 SENSITIVITY TO IMU BIAS ESTIMATE

We study the sensitivity of our network to inaccurate bias estimation. For this, we monitor the MSE
after perturbation of the biases used to de-bias the input IMU data to our network, as done in Liu
et al. (2020). We sample uniform noise from the range n ∼ U [−r, r] where r is defined in Table 11.
Our results seen in Table 11 and Table 12 are in accordance with the sensitivity study conducted in
TLIO ( Liu et al. (2020)).

A.16 CANONICALIZATION VIA FRAME-AVERAGING

In this section, we conduct one more ablation for our frame ablation section with the frame-averaging
technique in Puny et al. (2021). We first perform PCA on the IMU data, which results in a set of four
frames, corresponding to the four solutions of PCA. We then use the equivariant format in Eqn.5
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TLIO Dataset Aria Dataset

Model Context MSE* ATE* RTE* MSE* ATE* RTE*
TLIO Window (s) (10−2m2) (m) (m) (10−2m2) (m) (m)

+ rot. aug. 0.5 1.132 2.029 0.340 1.038 1.489 0.332
+ rot. aug. 1 3.242 3.722 0.551 5.322 2.103 0.521
+ rot. aug. 2 9.862 5.102 0.944 6.717 3.452 0.970
+ SO(2) Eq. Frame 0.5 1.124 0.711 0.175 1.040 0.673 0.190
+ SO(2) Eq. Frame 1 3.194 2.401 0.501 2.457 1.864 0.484
+ SO(2) Eq. Frame 2 10.019 3.862 0.797 6.569 2.745 0.774
+ O(2) Eq. Frame 0.5 1.040 0.595 0.136 1.002 0.589 0.148
+ O(2) Eq. Frame 1 2.982 2.382 0.479 2.304 1.849 0.465
+ O(2) Eq. Frame 2 9.804 4.268 0.762 6.112 2.556 0.709

Table 7: Results for ablation on changing prediction displacement window on TLIO architecture.

TLIO Dataset Aria Dataset

Model Context MSE* ATE* RTE* MSE* ATE* RTE*
TLIO Window (s) (10−2m2) (m) (m) (10−2m2) (m) (m)

+ rot. aug. 1 3.242 3.722 0.551 5.322 2.103 0.521
+ rot. aug. 2 3.199 2.555 0.511 3.790 2.895 0.713
+ rot. aug. 3 3.284 4.463 0.617 3.511 3.014 0.738
+ SO(2) Eq. Frame 1 3.194 2.401 0.501 2.457 1.864 0.484
+ SO(2) Eq. Frame 2 2.886 1.837 0.429 2.187 1.533 0.444
+SO(2) Eq. Frame 3 2.790 3.090 0.492 1.986 1.684 0.447
+ O(2) Eq. Frame 1 2.982 2.382 0.479 2.304 1.849 0.465
+ O(2) Eq. Frame 2 2.382 1.895 0.367 1.307 1.382 0.338
+ O(2) Eq. Frame 3 2.161 2.083 0.366 0.974 1.672 0.366

Table 8: Results for ablation on changing context window with fixed displacement window of 1-
second on TLIO architecture.

of Puny et al. (2021) which canonicalizes the input with respect to the four frames, runs a separate
prediction on each input, and then averages the outputs. Note that this scales the inference time by a
factor of 4. We show the results in Table 13. We see that while TLIO + frame averaging achieves a
low error on the TLIO dataset it fails to generalize to the Aria Dataset. Furthermore, our equivariant
method (TLIO + O(2) Eq. Frame) outperforms it on both datasets and across metrics. We believe that
the subpar performance of TLIO + frame averaging stems from the noise sensitivity of PCA. Due to
this sensitivity, it likely overfits to the specific noise level present in the TLIO dataset, which does not
match the one in the Aria dataset.

A.17 ANALYSIS OF THE COVARIANCE PARAMETERIZATIONS

In addition to supporting our design choice, of a diagonal covariance parameterization in the canonical
frame empirically by running our NN (see Table 3), we add additional statistical analyses below,
using two more techniques: (i) we report the percentage of displacement predictions by our network
that have an error outside of the 3-sigma bound, in x,y, and z direction (denoted δx, δy, δz in percent),
where sigma is given by our network, and (ii) we compute the median negative log-likelihood (median
NLL) of the ground truth samples given the mean and covariance provided by our method. All results
were calculated in the canonical frame and pertain to the Aria Dataset. In addition, we highlight
the importance of learning the covariance, by introducing two additional baselines: First, similar to
Liu et al. (2020), we use our pre-trained method to generate displacement measurements but use a
constant isotropic covariance (σ = 0.01) instead of the learned one (indicated with +constant cov),
and secondly we train our model only on MSE for 20 epochs (indicated with (mse)+constant cov)
and deploy it with the same constant covariance. We see in Table 14 that TLIO + O(2) Eq. Frame,
TLIO + O(2) Eq. Frame + P and TLIO + O(2) Eq. Frame (mse) + constant cov, all show low outlier
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TLIO Dataset

Model g⃗ direction perturbation MSE* ATE* RTE*
(TLIO) (deg) (10−2m2) (m) (m)

+ SO(2) Eq. Frame 0 3.194 2.401 0.501
+ SO(2) Eq. Frame 2 3.201 2.409 0.500
+ SO(2) Eq. Frame 4 3.206 2.404 0.498
+ SO(2) Eq. Frame 6 3.241 2.442 0.501
+ SO(2) Eq. Frame 8 3.298 2.502 0.506
+ O(2) Eq. Frame ‡ 0 2.982 2.406 0.478
+ O(2) Eq. Frame ‡ 2 3.198 2.663 0.498
+ O(2) Eq. Frame ‡ 4 3.742 3.292 0.559
+ O(2) Eq. Frame ‡ 6 4.505 4.228 0.659
+ O(2) Eq. Frame ‡ 8 5.433 5.218 0.768
+ O(2) Eq. Frame 0 2.981 2.382 0.479
+ O(2) Eq. Frame 2 2.988 2.390 0.480
+ O(2) Eq. Frame 4 3.010 2.415 0.486
+ O(2) Eq. Frame 6 3.060 2.471 0.486
+ O(2) Eq. Frame 8 3.095 2.506 0.489

Table 9: Results for ablation on changing prediction displacement window on TLIO +O(2) Eq.
Frame. ‡ implies the network was trained without gravity direction perturbation.

Model Sampling rate MSE* ATE* RTE*
(TLIO) (Hz) (10−2m2) (m) (m)

+ O(2) Eq. Frame 1000 2.324 1.876 0.470
+ O(2) Eq. Frame 500 2.316 1.878 0.469
+ O(2) Eq. Frame 250 2.291 1.882 0.468
+ O(2) Eq. Frame 200 2.276 1.881 0.468
+ O(2) Eq. Frame 100 2.191 1.932 0.470
+ O(2) Eq. Frame 50 2.256 2.174 0.501

Table 10: Results for ablation on changing IMU sampling rate on TLIO + O(2) Eq. Frame. on Aria
Dataset

counts. However, low outlier counts can also be achieved by predicting high covariances. However,
this strategy increases the median NLL, as seen in TLIO + O(2) Eq. Frame + P and TLIO + O(2)
Eq. Frame (mse) + constant cov, showing that they overestimate covariances. Our method (TLIO
+ O(2) Eq. Frame) shows the highest median NLL overall methods, with low outlier counts. For
completeness, we also report the tracking performance of the new methods in Table 15. We see that,
first, O(2) Eq. Frame + constant cov performs worse than our method, indicating that our learned
covariance adapts to the specific learned displacements. Second, we see that (mse)+constant cov
performs even worse. This is likely due to the network being overconfident in its displacement
prediction before MLE finetuning, which results in significant outlier prediction.
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Model Accel Bias Range MSE*
(TLIO) (m/s2) (10−2m2)

+ O(2) Eq. Frame 0.0 2.981
+ O(2) Eq. Frame 0.1 2.984
+ O(2) Eq. Frame 0.2 3.001
+ O(2) Eq. Frame 0.3 3.031
+ O(2) Eq. Frame 0.4 3.066
+ O(2) Eq. Frame 0.5 3.110

Table 11: Results for ablation on accelerometer bias sensitivity on TLIO + O(2) Eq. Frame. on TLIO
test Dataset

Model Gyro Bias Range MSE*
(TLIO) (rad/s) (10−2m2)

+ O(2) Eq. Frame 0.000 2.981
+ O(2) Eq. Frame 0.025 2.981
+ O(2) Eq. Frame 0.050 2.981
+ O(2) Eq. Frame 0.075 2.981
+ O(2) Eq. Frame 0.100 2.981

Table 12: Results for ablation on gyroscope bias sensitivity on TLIO + O(2) Eq. Frame. on TLIO
test Dataset

TLIO Dataset Aria Dataset

Model MSE* ATE* RTE* MSE* ATE* RTE*
(10−2m2) (m) (m) (10−2m2) (m) (m)

TLIO
+ rot. aug. 3.242 3.722 0.551 5.322 2.103 0.521
+ SO(2) Eq. Frame 3.194 2.401 0.501 2.457 1.864 0.484
+ O(2) Eq. Frame 2.982 2.382 0.479 2.304 1.849 0.465
+ frame averaging 3.208 3.057 0.536 5.821 4.554 0.992

Table 13: Results for the frame-averaging technique evaluating only the neural network performance
on the TLIO and Aria Datasets.

Model δx δy δz Median NLL
(TLIO) (%) (%) (%)

+ O(2) Eq. Frame +S 3.49 3.35 7.75 -7.0551
+ O(2) Eq. Frame 0.59 0.71 0.51 -7.3191
+ O(2) Eq. Frame +P 0.00 0.96 0.76 -4.1156
+ O(2) Eq. Frame + constant cov 2.18 2.20 0.46 -4.1111
+ O(2) Eq. Frame (mse) + constant cov 0.72 0.72 0.04 -3.9189

Table 14: Analysis of covariance parameterizations by measuring the number of outliers outside of
the 3-σ bound, and the negative log-likelihood (NLL) of ground truth samples on the Aria Dataset.

TLIO Dataset Aria Dataset

Model ATE RTE AYE ATE RTE AYE
(TLIO) (m) (m) (deg) (m) (m) (deg)

+ O(2) Eq. Frame +S 1.484 0.462 2.390 1.175 0.421 2.043
+ O(2) Eq. Frame 1.433 0.458 2.389 1.118 0.416 2.059
+ O(2) Eq. Frame +P 1.827 0.578 2.534 1.755 0.564 2.223
+ O(2) Eq. Frame + constant cov 1.669 0.506 2.481 1.680 0.534 2.197
+ O(2) Eq. Frame (mse) + constant cov 2.883 0.799 2.477 2.032 0.652 2.224

Table 15: EKF Results for the different covariance parameterizations
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