
A Proof

Proof of Proposition 4.2

Proposition 4.2 The performance gap of evaluating policy profile (π, µ) and (π, πB) at state s is
ε(s) = V π,πB (s)− V π,µ(s), which can be decomposed in a Bellman-like recursion:

ε(s) = V π,πB (s)− V π,µ(s)

=
∑

a1,a2,s′

π(a1|s)PM (s′|s,a) (πB(a2|s)− µ(a2|s)) (r(s,a, s′) + γV π,µ(s′))

+
∑

a1,a2,s′

π(a1|s)πB(a2|s)PM (s′|s,a)γε(s′)

(7)

Proof.

ε(s) = V π,πB (s)− V π,µ(s)

=
∑
a1

π(a1|s)
∑
a2

πB(a2|s)
∑
s′

PM (s′|s,a) [r(s,a, s′) + γV π,µ(s′) + γε(s′)]

−
∑
a1

π(a1|s)
∑
a2

µ(a2|s)
∑
s′

PM (s′|s,a) [r(s,a, s′) + γV π,µ(s′)]

=
∑
a1

π(a1|s)
∑
a2

[(πB(a2|s)− µ(a2|s))A+B] ,

(8)

where
A =

∑
s′

PM (s′|s,a)r(s,a, s′), (9)

and

B = πB(a2|s)
∑
s′

PM (s′|s,a)γ (V π,µ(s′) + ε(s′))− µ(a2|s)
∑
s′

PM (s′|s,a)γV π,µ(s′)

=
∑
s′

PM (s′|s,a) [πB(a2|s)γ (V π,µ(s′) + ε(s′))− µ(a2|s)γV π,µ(s′)]

=
∑
s′

PM (s′|s,a) [γV π,µ(s′)(πB(a2|s)− µ(a2|s)) + γπB(a2|s)ε(s′)] .

(10)

Putting equation 9 and 10 back, we have

ε(s) = V π,πB (s)− V π,µ(s)

=
∑
a1

π(a1|s)
∑
a2

[
(πB(a2|s)− µ(a2|s))

∑
s′

PM (s′|s,a)r(s,a, s′)+

∑
s′

PM (s′|s,a) [γV π,µ(s′)(πB(a2|s)− µ(a2|s)) + γπB(a2|s)ε(s′)]

]
=

∑
a1,a2,s′

π(a1|s)PM (s′|s,a) (πB(a2|s)− µ(a2|s)) (r(s,a, s′) + γV π,µ(s′))

+
∑

a1,a2,s′

π(a1|s)πB(a2|s)PM (s′|s,a)γε(s′).

(11)

Proof of Theorem 4.3

Theorem 4.3 We use ε =
∑

s0
p0(s0)ε(s0) to denote the overall performance gap between policy

profile (π, µ) and (π, πB). In any 2-player fully observable game, for all reward functions, ε = 0 if
and only if πB(a|s) = µ(a|s),∀s, s.t. dπ,πB

(s) > 0.

14

Proof. Sufficiency. Whenever πB(a|s) = µ(a|s) holds, the first term in equation 1 is 0. If
∀s s.t. dπ,πB

(s) > 0, πB(a|s) = µ(a|s), according to Proposition 4.2, by expanding the expression
for ε(s) recursively, we have for ∀s s.t. dπ,πB

(s) > 0, ε(s) = 0. Therefore, ε =
∑

s0
p(s0)|ε(s0)| =

0.

Necessity. We first show by contradiction that ε =
∑

s0
p(s0)ε(s0) requires ∀s s.t. p0(s) > 0,

πB(a|s) = µ(a|s). If πB(a|s) ̸= µ(a|s), according to Proposition 4.2, we can change the
reward function r(s,a, s′) to change the value of ε(s), because the reward function is arbi-
trary. So ε =

∑
s0
p(s0)ε(s0) does not hold anymore, and this is a contradiction. Therefore,

ε(s) =
∑

s0,s1
p(s0)π(a1|s0)πB(a2|s0)PM (s1|s,a)ε(s1) = Es1∼(π,πB)[ε(s1)]. Using the same ar-

guments, it can be shown that ∀s, s.t. Pr(s1 = s) > 0, πB(a|s) = µ(a|s). By expanding recursively,
the statement is proved.

Proof of Theorem 4.7

We first prove a Lemma.

Lemma A.1. In a two-player game, suppose that π is player 1’s policy, α and µ are player 2’s
policies. We use πjoint

(π,α) and πjoint
(π,µ) to denote the joint policy profiles (π, α) and (π, µ). Then we have

DKL

(
πjoint
(π,α)(·|s)∥π

joint
(π,µ)(·|s)

)
= DKL (α(·|s)∥µ(·|s)), where DKL denotes KL divergence.

Proof. According to definition,

DKL

(
πjoint
(π,α)(·|s)∥π

joint
(π,µ)(·|s)

)
=

∑
a1,a2

π(a1|s)α(a2|s) log
π(a1|s)α(a2|s)
π(a1|s)µ(a2|s)

=
∑
a1

π(a1|s)
∑
a2

α(a2|s) log
α(a2|s)
µ(a2|s)

=
∑
a1

π(a1|s)DKL (α(·|s)∥µ(·|s))

= DKL (α(·|s)∥µ(·|s)) .

(12)

Additionally, we use the Theorem 1 in [36] and we provide a restatement. The original paper [36]
minimizes accumulated discounted cost. In contrast, an agent maximizes its return in our paper.

Theorem A.2. (Theorem 1 in [36]) Let ϵ = maxs |Ea∼π2(a|s)[A
π1(s, a)]|, then

J(π2)− J(π1) ≥ Es∼dπ1
(s) Ea∼π2(a|s) [A

π1(s, a)]− 2ϵγ

(1− γ)2
max

s
DKL (π1(·|s)∥π2(·|s)) . (13)

Finally, we prove Theorem 4.7.

Theorem 4.7 In a two-player game, suppose that π is player 1’s policy, α and µ are player 2’s
policies. Assume that maxs DKL (α(·|s)∥µ(·|s)) ≤ δ. Let RM be the maximum magnitude of return
obtainable for player 1 in this game, and let γ be the discount factor. We use J(π, µ) and J(π, α) to
denote the return for player 1 when playing policy profiles (π, µ) and (π, µ) respectively. Then,

J(π, µ)− J(π, α) ≥ −RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (14)

Proof. According to Theorem A.2, we have

J(π, µ)− J(π, α) ≥ Es∼d(π,α)
Ea1∼π,a2∼µ[A

(π,α)(s,a)]

− 2ϵγ

(1− γ)2
max

s
DKL

(
πjoint
(π,α)(·|s)∥π

joint
(π,µ)(·|s)

)
,

(15)

15

where ϵ = maxs |Ea1∼π,a2∼µ[A
(π,α)(s,a)]| ≥ 0. Use Lemma A.1, we have

J(π, µ)− J(π, α) ≥ Es∼d(π,α)
Ea1∼π,a2∼µ[A

(π,α)(s,a)]− 2ϵγ

(1− γ)2
max

s
DKL (α(·|s)∥µ(·|s))

≥ −ϵ− 2ϵγ

(1− γ)2
max

s
DKL (α(·|s)∥µ(·|s))

= −ϵ
(
1 +

2γ

(1− γ)2
max

s
DKL (α(·|s)∥µ(·|s))

)
≥ −ϵ

(
1 +

2γδ

(1− γ)2

)
.

(16)
Next, we use KL divergence to bound ϵ. According to definition,

∣∣Q(π,α)(s,a)
∣∣ ≤ RM . So we have,

ϵ = max
s
|Ea1∼π,a2∼µ[A

(π,α)(s,a)]|

= max
s

∣∣∣∑
a1

π(a1|s)
∑
a2

µ(a2|s)
(
Q(π,α)(s,a)− V (π,α)(s)

) ∣∣∣
= max

s

∣∣∣∑
a1

π(a1|s)
∑
a2

(µ(a2|s)− α(a2|s))Q(π,α)(s,a)
∣∣∣

≤ max
s

∑
a1

π(a1|s)
∑
a2

∣∣µ(a2|s)− α(a2|s)
∣∣∣∣Q(π,α)(s,a)

∣∣
≤ max

s

∑
a1

π(a1|s)
∑
a2

∣∣µ(a2|s)− α(a2|s)
∣∣RM

(17)

With Pinsker’s inequality [4], the total variation distance is bounded by KL divergence:

δ(α(·|s), µ(·|s)) = 1

2
∥α(·|s)− µ(·|s)∥1 ≤

√
1

2
DKL (α(·|s)∥µ(·|s)). (18)

Therefore,
ϵ ≤ max

s

∑
a1

π(a1|s) · 2RMδ(α(·|s), µ(·|s))

≤
√
2RM ·max

s

√
DKL (α(·|s)∥µ(·|s))

≤ RM

√
2δ.

(19)

Put inequality 19 back into 16, and we get

J(π, µ)− J(π, α) ≥ −RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (20)

Proof of Theorem 4.8

Theorem 4.8 Let π∗ be the optimal risk-free offline adaptation policy at the convergence of the
optimization of objective 2, and let π̃ be the policy at the convergence of objective 5. Then the
worst-case adaptation performance of π̃ is near-optimal:

min
µ∈CD

J(π∗, µ) ≥ min
µ∈CD

J(π̃, µ) ≥ min
µ∈CD

J(π∗, µ)−RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (21)

Proof. According to definition, π∗ is the solution to the optimization objective 2, so
minµ∈CD

J(π∗, µ) ≥ minµ∈CD
J(π̃, µ).

Suppose that (π∗, µ∗) and (π̃, α̃) are the solutions to objectives 2 and 5 respectively. For
∀µ ∈ CD, let F(µ) = {α|∀s /∈ D,α(·|s) = µ(·|s);maxs∈D DKL(πB(·|s)∥α(·|s)) ≤ δ}
be the set of corresponding α policies which are identical to µ on OOD states. Observe that
maxs DKL(πB(·|s)∥α(·|s)) ≤ δ also holds. Therefore, according to Theorem 4.7, ∀π,∀µ ∈

16

CD,∀α ∈ F(µ), J(π, α) ≥ J(π, µ) − RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
. Taking the minimization over µ

and α, we get ∀π,minµ minα∈F(µ) J(π, α) ≥ minµ J(π, µ) − RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
. Observe

that the left part is equivalent to minα:maxs∈D DKL(α(·|s)∥πB(·|s))≤δ J(π, α). Taking the maximization

over π for both sides, we get J(π̃, α̃) ≥ J(π∗, µ∗)−RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
.

Let J(π̃, µ′) = minµ∈CD
J(π̃, µ). Observe that µ′ also satisfies the KL divergence constraint:

maxs∈D DKL(πB(·|s)∥µ′(·|s)) ≤ δ, and (π̃, α̃) is the optimal solution to objective 5, so J(π̃, µ′) ≥
J(π̃, α̃). So we get minµ∈CD

J(π̃, µ) ≥ J(π̃, α̃) ≥ J(π∗, µ∗)−RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
.

B Related Work

RL in multi-agent games. Multi-agent reinforcement learning (MARL) under the centralized
training decentralized execution (CTDE) paradigm have shown promising performances in learning
coordination behavior for cooperative multi-agent tasks such as SMAC [35] and Google Football
[21]. Representative works consist of policy gradient algorithms [6, 48], and value decomposition
methods [34, 40]. There also have been extensive research in competitive environments such as Texas
hold’em and MOBA games. Some works design theoretically sounded RL algorithms which are
guaranteed to converge to approximate NE [3]. Some works propose RL methods based on self-play
[45, 46, 50] to train max-min policies which show strong empirical performances.

Offline RL. Offline reinforcement learning [22] learns purely from batched data. Representative
works take a conservative view of out-of-distribution state-action pairs to mitigate the distributional
shift problem. BCQ [8] uses VAE to propose candidate actions that are within the support of dataset.
IQL [19] uses expectile regression to learn Q function to avoid querying out-of-distribution actions.
CQL [20] puts regularization on the learning of Q function to penalize out-of-distribution actions.

Opponent exploitation. There have been extensive study on various aspects of opponent exploitation
[1, 28]. Some employ deep reinforcement learning to exploit the opponent in continuous control
tasks using policy gradients estimated from direct interaction [2, 10, 12]. Some works, including
RNR [17] and SES [24] study safe exploitation given an estimated opponent model. They keep
the exploitation policy close to NE in order to minimize the loss if the opponent changes its policy
adversarially. Some work, for example, GSCU [7], studies zero-shot generalization ability to exploit
totally unknown opponents. To our best knowledge, there lacks a thorough investigation into the
offline adaptation problem.

Robust RL. Formulated as robust-MDP (RMDP), robust RL [32, 30] is dedicated to learn a robust
policy against perturbation in environment dynamics, e.g., observation noise, action delay. Formally,
the unknown transition model in testing environment lies in an uncertainty set P which contains all
models within a certain distance from the training model. Robust RL solves a max-min problem, op-
timizing the worst-case performance against any transition model in P . Some works uses adversarial
training [32, 16]. RORL [42] uses smoothing on the Q function to learn robust policy. The similarity
to our work is that, our offline adaptation problem also optimizes the worst-case performance against
the target’s behavior on out-of-distribution states. However, we do not have any distance constraints
on the target’s policy on out-of-distribution states. To our best knowledge, our paper is the first to
investigate into the offline adaptation problem.

C Algorigthm

The CSP algorithm is illustrated in Algorithm 1. The proxy model is trained adversarially against
our agent, therefore, we set the proxy’s reward function to be the negative of our agent’s reward.
In our experiments on an n-player environment, we assume that we control n1 players, while the
target controls n2 players, and n1 + n2 = n. Therefore, we use MAPPO [48] as the basic learning
algorithm for players of both sides, since players from the same side are fully cooperative. MAPPO
deals with the cooperative multi-agent reinforcement learning problem through learning a centralized
value function conditioned on global state, and a decentralized control policy conditioned on local
observations. We use self-play with alternative update to learn both adaptation policy π, and target’s

17

proxy model µ simultaneously. We use a soft behavior cloning regularization term to minimize the
KL-divergence between proxy model µ and target policy πB .

Algorithm 1 Constrained Self-Play (CSP)

Input: dataset D, environment env, learning rate α, regularization coefficient CBC
Output: adaptation policy π, target’s policy proxy µ

1: Initialize adaptation policy π, critic vπ; and target’s policy proxy µ, critic vµ

2: while not converged do
3: Collect trajectories {Ti} ← rollout(π, µ; env)
4: if our turn then
5: For each trajectory Ti, calculate return target Rγ

t and advantage Ât of our side using
GAE with value function vπ for each step t

6: vπ ← vπ − α∇vπ
1

|∪Ti|
∑

(st,R
γ
t)∼∪Ti

(Rγ
t − vπ(st))

7: π ← π + α∇π
1

|∪Ti|
∑

(ot,at,πold,Ât)∼∪Ti
min

(
π(at|ot)

πold(at|ot) Ât,

8: clip
(

π(at|ot)
πold(at|ot) , 1− ϵ, 1 + ϵ

)
Ât

)
9: else

10: For each trajectory Ti, calculate return target Rγ
t and advantage Ât of target agent side

using GAE with value function vµ for each step t
11: B ← sample a random batch from D
12: vµ ← vµ − α∇vµ

1
|∪Ti|

∑
(st,R

γ
t)∼∪Ti

(Rγ
t − vµ(st))

13: µ← µ+ α∇µ

{
1

|∪Ti|
∑

(ot,at,πold,Ât)∼∪Ti
min

(
µ(at|ot)

µold(at|ot) Ât,

14: clip
(

µ(at|ot)
µold(at|ot) , 1− ϵ, 1 + ϵ

)
Ât

)
− CBC · 1

|B|
∑

(o,a)∈B − logµ(a|o)
}

15: end if
16: end while

D Experiment on Didactic Maze

We show experiment details of the Maze example in this section. The learning curve in case 1 is
shown in Figure 5. In the BC-First algorithm, since the dataset only contains trajectories that P1→
64, the BC model makes a wrong and risky generalization that assumes P1 always goes downwards
to 64 no matter how P2 acts. Therefore, the P2 policy learns to exploit this “weakness” by playing
P2→ 16, and achieves 16 in training phase. However, during testing, P2 obtains -4 reward through
trying to exploit an nonexistent weakness of P1.

Our algorithm avoids the trap of imaginary weakness, and learns to safely win the game, while the
BC-First method makes risky exploitations which will not work in evaluation finally. Our algorithm
keeps conservative for states outside dataset, and admits the possibility that P1 could go leftwards to
win the game if P2 does not plays P2→ 1.

0 50000 100000 150000
step

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

0 50000 100000 150000
step

10.0

7.5

5.0

2.5

0.0

2.5

5.0

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

Figure 5: The training curve of amortized average per step reward in maze game case 1 in training
(against the proxy). The x-axis represents training steps. Left. Average per step reward for P1. Right.
Average per step reward for P2.

18

The learning curve in case 2 is shown in Figure 6. As can be seen in Figure 6, our algorithm quickly
learns to exploit while the max-min strategy produced by Self-Play fails to.

0 50000 100000 150000
step

10

5

0

5

10

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

0 50000 100000 150000
step

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

Figure 6: The training curve of amortized average per step reward in maze game case 2 in training
(against the proxy). The x-axis represents training steps. Left. Average per step reward for P1. Right.
Average per step reward for P2.

We use the same set of hyper-parameters (including the same coefficient CBC for the BC regular-
ization term) for these two cases. The hyper-parameters are shown in Table 5. The dataset D1 =
{trajectories(P1 → 64, P2 → 256)} in case 1, and our algorithm learns to play P2→ 1; while in
case 2, given dataset D2 = {trajectories(P1→ 64, P2→ 256), trajectories(P1→ 64, P2→ 16)},
our algorithm learns to play P2 → 16. We use the same set of hyper-parameters for both cases.
Therefore, our algorithm produces different policies simply because of different datasets given. It
further validates that our algorithm is able to extract useful information from dataset, and only
perform risk-free adaptations.

Table 5: Hyper-parameters for maze.

ppo_epoch 1 num_mini_batch 1 entropy_coef 0.3
use_gae True gamma 0.99999 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 20 ppo_episode_length 12
data_chunk_length 12 steps 1.8K max_grad_norm 0.5
bc_regularization_coef 10 bc_batch_size 8 network MLP

E Conservative Offline Adaptation for Cooperative Tasks

We evaluate our method in competitive games to perform opponent exploitation. Nevertheless, our
method is also applicable to cooperative environments. The objective of CSP in cooperative games
maintains the same min-max structure because it promotes adherence to the policy exposed by dataset
for states within the dataset, while aiming to optimize for worst-case performance for states not in the
dataset. Therefore, in cooperative games, the policy regularization term incentivizes the adaptation
agent to collaborate with the target agent on states within the dataset, and the minimization over
opponent proxy µ encourages the adaptation agent to be conservative and not to rely on the target
agent’s OOD policy. Note that in objective 5 and Algorithm 1, no matter whether the game is
competitive or cooperative, the minimization over µ in training can be achieved by setting the target
agent’s reward function to be the negative of our adaptation agent’s reward function. We then train µ
to maximize this reward with policy regularization in self-play.

Although our method is applicable to cooperative environments as well, the challenges caused by
offline policy adaptation are more significant in competitive games. Recall that conservative offline
adaptation optimizes

max
π

min
µ

J(π, µ), s.t. µ ∈ CD. (22)

For cooperative tasks, it requires that the teammate µ will not cooperate on states outside dataset in
cooperative games. Therefore, for the adaptation policy, staying within dataset could be a trivial and

19

near-optimal solution for most cooperative problems if we would like to maximize the worst-case
performance against any dataset-consistent teammate.

F Potential Negative Social Impacts

Inappropriate use of exploitation algorithms may result in negative social impacts. An example
of its negative impact is the exacerbation of inequality in society. Companies who have access
to large amounts of data can utilize their customers more effectively. However, our algorithm is
general-purpose and depends on pre-collected data. We advocate for strict laws and regulations
that protect user privacy data to avoid negative impacts. It is recommended that products utilizing
exploitation algorithms are made public and supervised.

G Experiment Details

G.1 Environments

The experiment environments are illustrated in figure 7.

Figure 7: Illustration of experiment environments used in this paper. From left to right: (1) predator
prey in MPE, (2) YouShallNotPassHumans in MuJoCo, (3) Google Football.

Predator-Prey There are one good agent, three adversarial agents and two obstacles in the predator-
prey environment. The good agent is faster and receive a negative reward for being hit by adversaries
while adversaries are slower and are rewarded for hitting the good agent. All agents are initialized
randomly in the environment.

YouShallNotPassHumans The YouShallNotPassHumanoids environment [2, 10] creates a two-
player competitive game based on MuJoCo, where one humanoid (the runner) is aimed at passing the
other humanoid (the blocker) to reach the red line on the opposite side. The environment itself is
challenging because it has high dimensional observation space and requires continuous control. In our
experiments, we assume that our agent acts as the runner, while the blocker is the target opponent to
exploit. We use four independently pre-trained blocker models as opponent targets. For fairness, we
generate these targets with exactly four random seeds without any selection. Since the exploitability
of different opponent models can vary significantly, results with respect to different opponents are
not directly comparable. So we report results with respect to all targets.

Google Football Google Football [21] is a popular and challenging benchmark for MARL.
In our experiments, our adaptation policy controls all players in one team, while the opponent
target policy controls the other team. Since all players in the same team are fully coopera-
tive, we use MAPPO [48] to learn decentralized policy. We conduct experiments in 4 scenar-
ios: academy_3_vs_1_with_keeper (3vs1, where our agent acts as either defender or attacker),
academy_run_pass_and_shoot_with_keeper (RPS, defender), and academy_counterattack_easy (de-
fender). We report the winning rates of adaptation policies for 5 independently pre-trained opponent
targets. For attacker, winning rate refers to the percentage of episodes that the attacker scores, while
for defender, it refers to the percentage of episodes that the defender prevents the attacker from
scoring.

G.2 Hyper-parameters

In our experiments, we use MAPPO [48] as the base RL algorithm to learn policies on both sides (ours
and the target’s). MAPPO is an extension of single agent PPO to multi-agent reinforcement learning

20

within the centralized training decentralized evaluation (CTDE) paradigm. It learns a centralized
value function conditioning on global state to promote coordination among the agents. We selected
MAPPO as the base learning algorithm due to its simplicity and empirical strong performance.

For the BC-First method, we use exactly the same MAPPO (with the same set of hyper-parameters
and the same number of training samples) as CSP to train our adaptation policy, while keeping
the target’s proxy fixed. In order to ensure that the the performances of BC-First method are not
encumbered by an under-trained proxy model, we use the same network structure for the proxy model
as the real target model, and train enough steps to make sure that behavior cloning has converged.
For the Google Football environment, we use the same hyper-parameters as reported in the MAPPO
paper [48] for all scenarios. The hyper-parameters are listed in Table 6, 7, and 8.

Table 6: Hyper-parameters for predator-prey in MPE.

ppo_epoch 10 num_mini_batch 1 entropy_coef 0.01
use_gae True gamma 0.99 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 128 ppo_episode_length 50
data_chunk_length 10 steps 5M max_grad_norm 0.5
bc_regularization_coef 0.003 bc_batch_size 8 network RNN

Table 7: Hyper-parameters for MuJoCo.

ppo_epoch 4 num_mini_batch 1 entropy_coef 0.01
use_gae True gamma 0.99 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 100 ppo_episode_length 200
data_chunk_length 10 steps 40M max_grad_norm 0.5
bc_regularization_coef 0.1 bc_batch_size 256 network MLP

Table 8: Hyper-parameters for Google Football.

ppo_epoch 15 num_mini_batch 2 entropy_coef 0.01
use_gae True gamma 0.99 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 50 ppo_episode_length 200
data_chunk_length 10 steps 25M max_grad_norm 0.5
bc_regularization_coef 5.0 bc_batch_size 256 network RNN

G.3 Computing Resources

Each seed is run on a GPU server with one NVIDIA P100 GPU, and Intel(R) Xeon(R) Gold 6145
CPU @ 2.00GHz CPU. Each run can finish within 24 hours.

G.4 Target Models & Dataset Collection

For all the environments, we user different runs of self-play to get the group of targets. In order to
ensure a fair comparison, we use the exactly the same number of random seeds to generate these
targets, without any selection. In our experiments, we observe that different runs with different seeds
can produce diverse targets. For instance, in Google Football, different targets may have different
tendencies to pick which side to start a attack (left or right). Moreover, as can be seen from Table 4,
the difficulties to exploit these targets are diverse. For MuJoCo and Google Football, we use dataset
consisting of 5 trajectories. We collect these trajectories using the target model together with a rollout
policy. We observe that the 3 kinds of rollout policies: (1) random policy, (2) environment’s bot, (3)
target itself, do not have significant impacts on the experiment results in the MuJoCo and Google
Football environments.

21

G.5 Visualization

Runner (blue) in dataset makes a detour through the upper path

Runner (blue) learned in CSP prefers to pick the lower path

Blocker (red) learned in CSP learns to block the upper path,
and also tries to block the runner in the lower path

Runner (blue) learned in CSP picks the lower path and
steadily wins in evaluation

Blocker (red) in dataset tries to block the upper path

Blocker (red) in dataset tries to block the upper path

T

A

B

C

Figure 8: The visualization of policy behavior in MuJoCo. Top. The trajectory in dataset, where the
blocker is the real opponent policy πB and the runner is the policy which collects the dataset. Middle.
The trajectory during the training of CSP. Both agents are controlled by CSP. Bottom. The evaluation
of CSP’s runner with the real opponent blocker.

In Figure 8, we further consolidate our claim by visualizing the policy behavior in MuJoCo. As can
be seen in this example, in a trajectory contained in dataset, the runner (blue agent) typically makes a
detour through the upper path to avoid being pushed down by the blocker (red agent). The opponent
blocker also has the tendency to walk upwards to stop the runner. The runner trained by CSP learns
to exploit the policy represented by the dataset, and prefers making a detour through the lower path,
as can be seen from the middle and bottom lines of replays. Although the behavior of runner going
downwards is not contained in the dataset, the blocker trained by CSP can still learns to stop such
runner, which makes the runner even more robust and stronger than the real target model. Therefore,
when confronted with the real opponent blocker, who only knows how to defend the upper path, the
runner trained by CSP steadily wins the game.

G.6 Reward.

For predator-prey, we use the environment’s original reward. For MuJoCo, we use dense rewards
for locomotion learning as in previous works [2, 10]. In Google Football, we use both the sparse
scoring reward as well as the dense checkpoint reward which awards the attacker according to the ball
handler’s distance to the goal. Although the rewards for the attacker are provided by the environment,
Google Football does not provide rewards for the defender team in academy scenarios. In our
experiments, we just use the negative of the attacker’s reward to train defender’s policy to make the
game zero-sum.

G.7 Explanation of Training & Testing Performances

The observed lower training performance of CSP than the baseline, as shown in Figure 1, is expected
behavior since the opponent model used by CSP during training differs from that of BC-First. In BC-
First, the opponent model is solely pre-trained on a dataset and remains fixed, leading to significant
vulnerabilities in out-of-distribution states which can be easily exploited. Conversely, in CSP, the
opponent model is trained in an adversarial manner simultaneously with the exploitation policy. Due
to its evolutionary nature, it can compensate for its vulnerabilities and becomes significantly more

22

challenging to exploit. Consequently, the training performance of BC-First is higher. During testing,
both exploitation policies undergo evaluation using the same real target model.

23

	Introduction
	Related Work
	Preliminary
	Conservative Offline Adaptation
	Extrapolation Error in Offline Adaptation
	Conservative Offline Adaptation
	Constrained Self-Play

	Didactic Maze Example
	Experiment
	Experiments in Predator-Prey and MuJoCo
	Experiments in Google Football
	Comparison with Non-Conservative Opponent Exploitation

	Conclusion
	Proof
	Related Work
	Algorigthm
	Experiment on Didactic Maze
	Conservative Offline Adaptation for Cooperative Tasks
	Potential Negative Social Impacts
	Experiment Details
	Environments
	Hyper-parameters
	Computing Resources
	Target Models & Dataset Collection
	Visualization
	Reward.
	Explanation of Training & Testing Performances

