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Abstract

Conformal Prediction (CP) allows to perform rigorous uncertainty quantification by con-
structing a prediction set C(X) satisfying P(Y ∈ C(X)) ≥ 1 − α for a user-chosen α ∈ [0, 1]
by relying on calibration data (X1, Y1), ..., (Xn, Yn) from P = PX ⊗ PY |X . It is typically
implicitly assumed that PY |X is the “true” posterior label distribution. However, in many
real-world scenarios, the labels Y1, ..., Yn are obtained by aggregating expert opinions using
a voting procedure, resulting in a one-hot distribution PY |X

vote . This is the case for most
datasets, even well-known ones like ImageNet. For such “voted” labels, CP guarantees are
thus w.r.t. Pvote = PX ⊗ PY |X

vote rather than the true distribution P. In cases with unam-
biguous ground truth labels, the distinction between Pvote and P is irrelevant. However,
when experts do not agree because of ambiguous labels, approximating PY |X with a one-hot
distribution PY |X

vote ignores this uncertainty. In this paper, we propose to leverage expert
opinions to approximate PY |X using a non-degenerate distribution PY |X

agg . We then develop
Monte Carlo CP procedures which provide guarantees w.r.t. Pagg = PX ⊗PY |X

agg by sampling
multiple synthetic pseudo-labels from PY |X

agg for each calibration example X1, ..., Xn. In a
case study of skin condition classification with significant disagreement among expert anno-
tators, we show that applying CP w.r.t. Pvote under-covers expert annotations: calibrated
for 72% coverage, it falls short by on average 10%; our Monte Carlo CP closes this gap both
empirically and theoretically. We also extend Monte Carlo CP to multi-label classification
and CP with calibration examples enriched through data augmentation.

1 Introduction

Many application domains, especially safety-critical applications such as medical diagnostics, require reason-
able uncertainty estimates for decision making and benefit from statistical performance guarantees. Con-
formal prediction (CP) is a statistical framework allowing to quantify uncertainty rigorously by providing
finite-sample, non-asymptotic performance guarantees. First introduced by Vovk et al. (2005), it has be-
come very popular in machine learning as it is widely applicable while making no dsitributional or model
assumptions, e.g., see (Romano et al., 2019; Sadinle et al., 2019; Romano et al., 2020; Angelopoulos et al.,
2021; Stutz et al., 2021; Fisch et al., 2022) and Angelopoulos & Bates (2021) for more references.

Specifically, we consider a classification task with K classes and denote by [K] the set {1, . . . , K}. Then, a
classifier π : X → ∆K outputs the class probabilities where ∆K is the K-simplex. Based only on a held-out
set of n calibration examples (Xi, Yi) ∼ P, CP allows us to return a prediction set C(X) ⊆ [K] for a given
test point (X, Y ) (with Y being unobserved) dependent on the calibration data such that

P(Y ∈ C(X)) ≥ 1 − α, (1)

whatever being P and π as long as the joint distribution of ((X1, Y1), . . . , (Xn, Yn), (X, Y )) is exchangeable.
Here α ∈ [0, 1] is a user-specified parameter and the probability in Equation (1) is not only over (X, Y ) but
also over the calibration set. This is called the coverage guarantee of CP. The size of such prediction sets
|C(X)|, also called inefficiency, is a good indicator of the uncertainty for X.

It is commonly taken for granted that P = PX ⊗PY |X where PY |X is the “true” posterior label distribution so
that the l.h.s. of Equation (1) is the probability for the ground truth label Y being covered by the prediction
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Figure 1: Two ambiguous examples from CIFAR10-H (Peterson et al., 2019) with the corresponding anno-
tations of 50 experts. These annotations can be used to build Pagg(Y = y|X = x, Y 1, ..., Y q), see text for
details.

set C(X). However, in many practical applications, the calibration labels (Yi)i∈[n] are obtained based on
(multiple) expert opinions. In medical applications, for example, it is usually impossible to identify the
patient’s actual condition as this would require invasive and expensive tests. Instead, labels are derived from
expert annotations, e.g., doctor ratings (Liu et al., 2020). Beyond medical diagnosis, however, this is generally
the case for many popular datasets such as CIFAR10 (Krizhevsky, 2009; Peterson et al., 2019), COCO (Lin
et al., 2014), ImageNet (Russakovsky et al., 2015) or many datasets from the GLUE benchmark (Wang
et al., 2019) such as MultiNLI (Williams et al., 2018) (see Appendix A). Based on the expert annotations,
the majority voted label is then typically selected as the ground truth label. Formally, this means that we
consider Yi ∼ Pvote(·|X = xi) where Pvote(Y = y|X = x) is a one-hot distribution. Thus, when using CP on
these voted labels, we obtain guarantees of the form Pvote(Y ∈ C(X)) ≥ 1 − α for Pvote = PX ⊗ PY |X

vote rather
than a guarantee w.r.t. to the true distribution, P(Y ∈ C(X)) ≥ 1 − α. The difference between Pvote and P
is small for some tasks, including popular benchmarks such as CIFAR10, because most examples are fairly
unambiguous, meaning that annotators do rarely disagree because P(Y = y|X = x) is one-hot anyway and
a simple aggregation strategy can unambiguously determine the true class. However, in complex tasks such
as the dermatology problem addressed in this work, there are many examples where experts disagree. More
importantly, this disagreement is often “irresolvable” (Schaekermann et al., 2016; Gordon et al., 2022; Uma
et al., 2022), meaning that obtaining more annotations will likely not reduce disagreement. In such cases,
Pvote(Y = y|X = x) differs significantly from the true conditional distribution P(Y = y|X = x).

In such scenarios, performing CP using voted labels can severely underestimate the true uncertainty (see
Section 2.2 for an intuitive example). Instead of summarizing the expert annotations by a single one-hot
distribution, we propose here to rely on an approximation of Pagg(Y = y|X = x) to P(Y = y|X = x) to
better account for this uncertainty. As a simple example, assume that for each calibration data X, expert
q ∈ [p] annotates a single class Y q ∈ [K] as done on CIFAR10-H (Peterson et al., 2019), see Figure 1 for
an illustration. Then, let pk =

∑p
q=1 I(Y q = k) be the number of experts selecting class k, a simple voting

procedure sets Pvote(Y = y|X = x, Y 1, ..., Y q) = I(y = Ŷ ) where Ŷ = arg maxk∈[K] pk (disregarding ties
for simplicity) and unconditionally we also typically will have Pvote(Y = y|X = x) a one-hot distribution
in unambiguous cases (i.e. the same label is selected for all expert annotations). Obviously, if there is
sufficient disagreement among annotators, taking Ŷ will ignore many of the (usually expensive) annotations.
As a result, performing CP on the voted labels ignores this uncertainty. Instead, we argue that selecting
an aggregated distribution, e.g., Pagg(Y = y|X = x, Y 1, ..., Y q) = 1

p

∑
k∈[K] pkI(y = k), allows us to better

capture uncertainty present in the annotations. Ideally, by integrating over (Y 1, ..., Y q), the resulting Pagg
is a good approximation of the true distribution P (and we discuss common ways of constructing Pagg in
Section 3.1).

Contributions: In this paper, we propose CP procedures that allow us to construct a prediction set C(X)
satisfying Pagg(Y ∈ C(X)) ≥ 1 − α for Pagg = PX ⊗ PY |X

agg as long as one can sample from PY |X
agg 1. Note

that while it would be desirable to have instead guarantees w.r.t. the distribution P, this is an impossible

1As explained further, we cannot obtain i.i.d. samples from PY |X
agg but only exchangeable ones. This prevents the use of

concentration inequalities to obtain bounds on Pagg(Y ∈ C(X)|X = x) for a given C(X).
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task as we never observe any data with labels sampled from PY |X . Whether PY |X
agg is a good approximation

to PY |X will be application dependent. Instead, the prediction set C(X) outputted by our procedures is
the one we could compute if the experts had access to X and their opinions were aggregated through PY |X

agg .
This is the best one can hope for. We emphasize that we are not making more model assumptions than
is currently made by applying CP to voted labels from PY |X

vote . In contrast, we make the usually implicit
assumptions on label collection explicit. To perform calibration with PY |X

agg , we propose a sampling-based
approach, coined Monte Carlo CP, which proceeds by sampling multiple “pseudo ground truth” labels from
PY |X

agg for each calibration example X1, . . . , Xn. We show how this approach can provide rigorous coverage
guarantees despite not having access to exchangeable calibration examples. We present experiments on a
skin condition classification case study: Here, calibration with voted labels from PY |X

vote is shown to under-
cover expert annotated labels by a staggering 10%. Our approach closes this gap both theoretically and
empirically. Moreover, we discuss extensions to multi-label classification and calibration with augmented
calibration examples for robust CP.

Outline: The rest of this paper is structured as follows: In Section 2, we illustrate the problem on a toy
dataset and introduce required background on CP. Then, Section 3 introduces our original Monte Carlo CP
procedures, highlights the applicability of this approach to related problems and discusses related work. In
Section 4, we present an application to skin condition classification following (Liu et al., 2020), multi-label
classification and data augmentation before concluding in Section 5.

2 Background and Motivating Example

2.1 Conformal prediction

In the following, we briefly review standard (split) CP (Vovk et al., 2005; Papadopoulos et al., 2002). To
this end, we assume a classifier πy(x) ≈ P(Y = y|X = x) approximating the posterior label probabilities is
available. This model will be typically based on learned parameters using a training set. Then, given a set
of calibration examples (Xi, Yi)i∈[n] from P, we want to construct a prediction set C(X) ⊆ [K] for the test
point (X, Y ) such that the coverage guarantee from Equation (1) holds. As mentioned earlier, this requires
the calibration examples and the test example to be exchangeable but does not make any further assumption
on the data distribution or on the underlying model π.

A popular conformal predictor proceeds as follows: given a real-valued conformity score E(X, k) based on
the model predictions π(x) ∈ RK , we define

C(X) = {k ∈ [K] : E(X, k) ≥ τ} (2)

where τ is the ⌊α(n + 1)⌋ smallest element of {E(Xi, Yi)}i∈[n], equivalently τ is obtained by computing the
⌊α(n + 1)⌋/n quantile of the distribution of the conformity scores of the calibration examples

τ = Q

(
{E(Xi, Yi)}i∈[n];

⌊α(n + 1)⌋
n

)
. (3)

Here, Q(·; q) denotes the q-quantile. By construction of the quantile, see e.g. (Romano et al., 2019; Vovk
et al., 2005; Angelopoulos & Bates, 2021), this ensures that the lower bound on coverage in Equation (1) is
satisfied. Additionally, if the conformity scores are almost surely distinct, then we have the following upper
bound P(Y ∈ C(X)) ≤ 1 − α + 1

n+1 . The conformity score is a design choice. A standard choice, which we
will use throughout the paper, is E(x, k) = πk(x) (Sadinle et al., 2019) but many alternative scores have
been proposed in the literature (Romano et al., 2020; Angelopoulos et al., 2021).

An alternative view on CP can be obtained through a p-value formulation; see e.g. (Sadinle et al., 2019). The
conformity scores of the calibration examples and test example (X, Y ) are exchangeable so if the distribution
of E(X, Y ) is continuous then

ρY = |{i ∈ [n] : E(Xi, Yi) ≤ E(X, Y )}| + 1
n + 1 =

∑n
i=1 I[E(Xi, Yi) ≤ E(X, Y )] + 1

n + 1 (4)
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Figure 2: Illustration of CP on a toy dataset detailed in Section 2.2 for two examples X, indexed 0 and 1.
Here, the conformity scores {E(X, k)}k∈[K] are taken to be the estimated posterior probabilities πk(X) of a
multilayer preceptron (MLP) whose decision boundaries are shown. To construct the prediction sets C(X),
these scores are thresholded using the threshold τ , cf. Equations (2) and (3). Equivalently, we can use
the p-value associated formulation and threshold (ρy)y∈[K] at confidence level α, cf Equations (4) and (5).
Calibrating against true labels, both approaches obtain coverage 1 − α (w.r.t. the true labels).

is uniformly distributed over {1/(n + 1), 2/(n + 1)..., 1} and thus ρY is a p-value in the sense it satisfies
P(ρY ≤ α) ≤ α, equivalently P(ρY > α) ≥ 1−α. If the distribution is not continuous, then it can be checked
that P(ρY ≤ α) ≤ α still holds (see e.g. (Bates et al., 2023)). It follows directly that

C(X) := {y ∈ [K] : ρy > α} (5)

satisfies P(Y ∈ C(X)) ≥ 1−α and the prediction set obtained this way is identical to the one obtained using
Equations (2) and (3). For completeness, the equivalence between both formulations is detailed in Section
B.1 of Appendix B. In contrast to calibrating the threshold τ , the p-value formulation requires computing
(ρk)k∈[K] for each test example X and is thus computationally more expensive. The p-value formulation will
be useful in our context as p-values can easily be combined to obtain a new p-value; see e.g. (Vovk & Wang,
2020). We illustrate an application of CP to a 3-class classification problem in Figure 2.

2.2 Motivating Example

We now consider a toy dataset to illustrate the impact a voting strategy can have on prediction sets produced
by CP. Consider the true distribution P = PX ⊗ PY |X = PY ⊗ PX|Y be defined as follows: PX|Y admits a
density p(x|y) = N (x; µy, diag(σ2

y)) with µy ∈ Rd and diag(σ2
y) ∈ Rd×d being mean and variance. Further,

one has P(Y = y) = wy with
∑K

y=1 wy = 1. To generate examples (X, Y ) ∼ P, we first sample Y from
P(Y = y) = wy and then X from p(x|y) so we have ground truth labels for each example. Furthermore,
by Bayes’ rule we have access to the true posterior probability mass function P(Y = y|X = x). If the
Gaussians are well-separated, P(Y = y|X = x) will be crisp, i.e., close to one-hot with low entropy. However,
encouraging significant overlap between these Gaussians, e.g., by moving the means (µk)k∈[K] close together,
will result in highly ambiguous P(Y = y|X = x). We sample examples (Xi, Yi)i∈[n] as outlined above
and indicate classes by color in Figure 3 (top left). These synthetic data were previously used in the
example displayed in Figure 2 to illustrate CP. The true posterior label probabilities P(Yi = y|X = Xi) are
also displayed, cf. Figure 3 (top middle). As can be seen, these distributions can be very ambiguous in
between all three classes. Let us assume a large set of annotators that allow us by majority vote to recover
Ŷi = arg maxy∈[K] P(Y = y|X = Xi), i.e., the voted label, as shown on Figure 3 (top right). This defines the
one-hot distribution Pvote(Y = y|X = Xi) = I(y = Ŷi). Clearly, these voted labels ignore the fact that PY |X

can have high entropy.

Contrary to Figure 2, we now perform standard split CP using calibration data relying on the voted labels
(Xi, Ŷi)i∈[n] from Pvote = PX ⊗ PY |X

vote rather than (Xi, Yi)i∈[n] from P = PX ⊗ PY |X , using a conformity
score E(x, k) = πk(x) where πk(x) is given by a multilayer perceptron. We randomly split the examples
in two halves for calibration and testing. In Figure 3 (bottom), we plot the empirical coverage, i.e., the
fraction of test examples for which (a) the true label (blue) or (b) the voted label (green) is included in
the predicted prediction set. In this case, CP guarantees the latter by design, (b), to be 95% (on average
across calibration/test splits). Strikingly, however, coverage against the (usually unknown) true labels is
significantly worse. Of course, this gap depends on the ambiguity of the problem.
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Figure 3: Illustration of an ambiguous problem with K = 3 classes, in two dimensions, using our toy dataset.
Top: We show examples colored by their true posteriors P(Y = y|X = x) (left), true labels (middle) and
voted labels, i.e., Ŷ = arg maxy∈[K] P(Y = y|X = x) (right). Note the high ambiguity between the classes,
which is clearly ignored in the voted labels. Bottom: Empirical coverage over random calibration/test splits,
i.e. the proportion of true or voted labels included in the constructed prediction sets C(x), when calibrating
against the voted labels. This produces prediction sets that significantly undercover w.r.t. true labels.

3 Monte Carlo conformal prediction

As discussed in the introduction and illustrated in Section 2.2, we want to avoid using a one-hot distribution
PY |X

vote when labeling ambiguous examples. Instead we first explain here how, based on expert opinions, we can
obtain non-degenerate estimates PY |X

agg of PY |X . We then show how PY |X
agg can be leveraged to provide novel

CP procedures for constructing prediction sets that satisfy coverage guarantees w.r.t. Pagg = PX ⊗ PY |X
agg .

Given that we never observe labels from the true distribution PY |X , providing guarantees w.r.t. Pagg is the
best we can hope to do. For a test example X, this can be understood as guaranteeing coverage against
labels that expert annotators would assign if they had access to X and their annotations were aggregating
using PY |X

agg .

3.1 From expert annotations to PY |X
agg

From now on, we assume that we have calibration data (Xi, Bi) ∼ P for i ∈ [n] and a test data X, B ∼ P with
B unobserved; the joint distribution of (Xi, Bi)i∈[n] and (X, B) being exchangeable. Here Bi corresponds
to a set of expert annotations, the space of annotations being dependent on the application. For example,
on CIFAR-10H (Peterson et al., 2019), each expert provides a single label in [K]. In contrast, in our
dermatology application, using data from (Liu et al., 2020), Bi represents a set of partial rankings whose
cardinality depends on i. This corresponds to differential diagnoses from dermatologists. However, while
the format of the Bi’s can vary, we are always interested in returning prediction sets of classes C(X) ⊆ [K]
satisfying a coverage guarantee w.r.t. Pagg where Pagg needs to be specified based on the expert annotations
Bi

2

We give two simple examples to illustrate how PY |X
agg can be obtained and then present a more generic

framework. However, the aim of this section is not to provide the best way to aggregate expert opinions.

2Based on this setup, we could in principle develop a CP method returning prediction sets for B, e.g., prediction sets of
rankings, satisfying a coverage guarantee w.r.t P. However, we are interested here in prediction sets for labels.
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This is application dependent and there is a substantial literature on the topic. Instead, we focus here on
showing how such techniques can be exploited in a CP framework:

• Single labels: We first revisit and extend the construction presented in Section 1 where B =
(Y 1, ..., Y p) with Y q ∈ [K] corresponding to the single label the expert q assigns to X. We then
consider Pagg(Y = y|X, B) = 1

p

∑
k∈[K] pk,iI(y = k) for pk,i =

∑p
q=1 I(Y

q
i = k)3. Note that this

approximation is deterministic given (X, B). However, we could also use a bootstrap procedure by
resampling the entries of B with replacement.

• Partial rankings: In medical applications, it is common for expert annotations to be given by
differential diagnoses, corresponding to partial rankings. That is, out of the K possible conditions,
each expert returns a partial ranking of conditions because multiple conditions are deemed plausible
while a large majority of the conditions can be excluded. While probabilistic models for aggregating
such rankings exist (Hajek et al., 2014; Zhu et al., 2023), we follow (Liu et al., 2020) and describe
a simple deterministic procedure called inverse rank normalization which we will also exploit in our
experiments, see Section 4.1. Let B = (B1, ..., Bp) be the collection of available partial rankings for
data X. Each partial ranking Bq is divided into nq blocks, Bq = (Bq

1 , ..., Bq
nq

), with Bq
i ∈⊆ [K] and

Bq
i

⋂
Bq

j = ∅ and Bq
nq

the collection of excluded conditions. The conditions in Bq
i are assessed as

being more plausible than the conditions in Bq
j for i < j. We then define

αy =
p∑

q=1

nq−1∑
i=1

1
i|Bq

i |
I(y ∈ Bq

i ), Pagg(Y = y|X, B) = αy∑K
k=1 αk

. (6)

As above, this approximation is deterministic given (X, B). Again, we could also use a bootstrapping
procedure by resampling the entries of B with replacement.

More generally, we assume the distribution of (X, B) admits a density p(x, b). Then, we will denote by
λ = (λ1, ..., λK) the probabilities (Pagg(Y = 1|X, B), ...,Pagg(Y = K|X, B)) obtained by some deterministic
or stochastic annotations aggregation procedures. We refer to λ as plausibilities since they quantify how
plausible the different classes are to be the actual ground truth label given the annotations B. Then, the
resulting marginal density of (X, λ) is given by

p(x, λ) =
∫

p(x, λ, b)db =
∫

p(λ|b, x)p(x, b)db. (7)

In the examples above, note that p(λ|b, x) = p(λ|b). Then, our aggregation model for label Y can be written
as

Pagg(Y = y|X = x) =
∫

p(y|λ)p(λ|x)dλ =
∫ ∫

λyp(λ|b, x)p(b|x)dλdb. (8)

In words, p(b|x) corresponds to the annotation process, i.e., how experts draw their annotations when
observing data x, and p(λ|b, x) models aggregation of annotations into plausibilities. Given data (X, B) ∼
p(b, x), then B is distributed according to p(b|X) given X and by sampling λ ∼ p(|B, X) and then Y such
that P(Y = y|λ) = λy, we obtain a sample from Pagg(Y = y|X). Note however that we cannot obtain i.i.d.
samples from Pagg(Y = y|X) as we only have access to one sample from B given X. We can only obtain
exchangeable samples by repeating sampling from λ ∼ p(|B, X) and P(Y = y|λ) = λy. Hence we cannot use
concentration inequalities to obtain finite sample bounds for quantities such as Pagg(Y ∈ C(X)|X = x) for
a given C(X).

We will instead develop CP procedures returning prediction sets satisfying Pagg(Y ∈ C(X)) ≥ 1 − α, it
is worth clarifying what this means particularly when Pagg(Y |X) is ambiguous, i.e., not one-hot. With
Pagg = PX ⊗ PY |X

agg , we can rewrite the coverage guarantee as

Pagg(Y ∈ C(X)) = EX∼PX

[
EY ∼Pagg(·|X)[I[Y ∈ C(X)]]

]
. (9)

3Pagg(Y = y|X, B) obviously converges towards P(Y = y|X) as p → ∞ if Y q i.i.d.∼ Pagg(·|X), i.e., this assumes that expert
annotations follow the true distribution P.
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Algorithm 1 Monte Carlo CP with 1 − α coverage guarantee for m = 1 and 1 − 2α for m ≥ 2.
Input: Calibration examples (Xi, λi)i∈[n]; test example X; confidence level α; number of samples m
Output: Prediction set C(X) for test example

1. Sample m labels (Y j
i )j∈[m] per calibration example (Xi)i∈[n] where P(Y j

i = k) = λik.

2. Calibrate the threshold τ using

τ = Q

(
{E(Xi, Y j

i )}i∈[n],j∈[m];
⌊αm(n + 1)⌋ − m + 1

mn

)
. (10)

3. Return C(X) = {k ∈ [K] : E(X, k) ≥ τ}.

It makes explicit that, coverage is marginal across examples and classes: in ambiguous cases, the prediction
set C(X) might cover only part of the classes with non-zero plausibility. We will refer to Pagg(Y ∈ C(X))
defined in Equation (9) as aggregated coverage to emphasize that this is w.r.t. Pagg. This is to contrast
from voted coverage Pvote(Y ∈ C(X)) which is w.r.t. Pvote. To obtain prediction sets with aggregated
coverage guarantees, we will assume access to a set of exchangeable calibration data (Xi, λi)i∈[n] of examples
and corresponding plausibilities from p(x, λ). To obtain this calibration data, we can simply rely on the orig-
inal (exchangeable) calibration data (Xi, Bi)i∈[n] and then sample λi ∼ p(·|Xi, Bi) where λi = (λi1, ..., λik).
In the examples given above, λi is given deterministically given (Xi, Bi) so p(λ|x, b) is single delta-Dirac
mass but, if a bootstrapping procedure is used to account for uncertainty in the annotation process, then it
is not anymore.

3.2 Introduction to Monte Carlo conformal prediction

We propose Monte Carlo CP, a sampling-based approach to CP under ambiguous ground truth. Given
the calibration examples (Xi, λi)i∈[n], we sample m labels Y j

i for each Xi according to plausibilities λi, i.e.
P(Y j

i = k) = λik and duplicate the corresponding inputs4. That is, we obtain m ·n new calibration examples
(Xi, Y j

i )i∈[n],j∈[m] and then apply the conformal calibration outlined in Algorithm 1.

The aggregated coverage guarantees we will provide for Algorithm 1 are marginal over the sampled la-
bels (Y j

i )i∈[n],j∈[m]. This is illustrated in Figure 4 (left) on the toy dataset of Section 2.2 using a fixed
calibration/test split but multiple samples of (Y j

i )i∈[n],j∈[m]. The empirical aggregated coverage across cal-
ibration/test splits is 1 − α (see Figure 4 (left)) but the variability across such splits is high if the entropy
of PY |X

agg is high for many calibration data. This variability can be reduced by increasing m (see Figure 4,
right), this is especially beneficial in the low calibration data regime.

We now discuss the theoretical coverage properties of Algorithm 1. Recall that we have assumed in Section
3.1 that the joint distribution of (Xi, Bi)i∈[n] and a test data (X, B) is exchangeable. This implies that
the joint distribution of (Xi, Y j

i )i∈[n] and (X, Y ) is exchangeable for any j ∈ [m]. For m = 1, it is clear
that this approach boils down to standard split CP applied to calibration data (Xi, Y 1

i ) ∼ Pagg and thus
Pagg(Y ∈ C(X)) ≥ 1 − α follows directly. For m ≥ 2, the calibration examples include m repetitions of
each Xi and exchangeability with the test example X, typically used to establish the validity of CP, is not
satisfied anymore. Nevertheless, as mentioned earlier, we empirically observe an empirical coverage close to
1 − α on average in Figure 4 (middle).

In the following, Section 3.3, we focus on establishing rigorous coverage guarantees for Monte Carlo CP when
m ≥ 2, showing that we can establish Pagg(Y ∈ C(X)) ≥ 1 − 2α. This is akin to the observation in (Barber
et al., 2021) that jackknife+, cross-conformal or out-of-bag CP consistently obtain empirical coverage 1 − α
while they only guarantee 1 − 2α. In applications where rigorous coverage guarantees better than 1 − 2α are

4An alternative valid procedure would sample m plausabilities λj
i ∼ p(·|Xi, Bi) for each Xi and then Y j

i such that P(Y j
i =

k) = λj
ik

. Obviously when p(·|Xi, Bi) is a delta-mass distribution for all i, this coincides with the procedure described previously.
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Figure 4: Left: Empirical aggregated coverage for Monte Carlo CP, m = 1, with a fixed calibration/test
split but different randomly sampled labels Y j

i , cf. Algorithm 1. The approach obtains coverage 1−α across
calibration/test splits but overestimates coverage slightly for this particular split. However, in Monte Carlo
CP, coverage is marginal across not only test and calibration examples but also the sampled labels during
calibration, as shown in this histogram. Middle and right: Instead fixing the sampled labels for different
m and plotting variation in coverage across random calibration/test split shows that aggregated coverage is
empirically close to 1 − α even for m > 1. Large m generally reduces the variability in coverage observed
across calibration/test splits, especially for small calibration sets (we consider 5% to 50% calibration data).

necessary, we show in Section 3.4 that this can be achieved by developing an alternative Monte Carlo CP
procedure presented in Algorithm 2 which relies on an additional split of the calibration examples.

3.3 Coverage 1 − 2α by averaging p-values

In order to establish the coverage guarantee Pagg(Y ∈ C(X)) ≥ 1 − 2α when m ≥ 2 for Algorithm 1, let us
introduce for j ∈ [m]:

ρj
Y =

∑n
i=1 I[E(Xi, Y j

i ) ≤ E(X, Y )] + 1
n + 1 . (11)

The random variables ρj
Y are p-values, i.e. P(ρj

Y ≤ α) ≤ α, since the scores {E(Xi, Y j
i )}i∈[n] and {E(X, Y )}

are exchangeable for fixed j ∈ [m]. We can now average these quantities over j ∈ [m] to obtain

ρ̄Y = 1
m

m∑
j=1

ρj
Y =

∑m
j=1

(∑n
i=1 I[E(Xi, Y j

i ) ≤ E(X, Y )] + 1
)

m(n + 1) . (12)

As ρ̄Y is an average of (dependent) p-values, it follows from standard results (Rüschendorf, 1982; Meng,
1994) that P(2ρ̄Y ≤ 2α) ≤ 2α, equivalently P(ρ̄Y > α) ≥ 1 − 2α. Hence we have P(Y ∈ C(X)) ≥ 1 − 2α
for C(X) = {y ∈ [K] : ρ̄y > α}. Nevertheless, as discussed previously, we obtain empirical coverage close
to 1 − α, cf. Figure 4 (middle), see also the discussion in (Barber et al., 2021, Section 4). This approach is
illustrated in Figure 5. Note that in the context of aggregating m different models, (Linusson et al., 2017)
also considered similar types of averaging.

Practically, we do not have to compute and actually average ρj
y for j ∈ [m] and y ∈ [K] to determine

C(X) = {y ∈ [K] : ρ̄y > α}. As in Section 2.1, we can reformulate this prediction set as C(X) = {k ∈ [K] :
E(X, k) ≥ τ} as in Equation (2) where τ is the ⌊αm(n+1)⌋−m+1 smallest element of {E(Xi, Y j

i )}i∈[n],j∈[m],
equivalently τ is obtained by computing the ⌊αm(n+1)⌋−m+1

mn quantile of the distribution of these scores, i.e.
C(X) = {k ∈ [K] : E(X, k) ≥ τ} for τ given in Equation (10). This is established in Section B.2 of Appendix
B.

3.4 Beyond coverage 1 − 2α

The 1−2α coverage guarantee from Monte Carlo CP arises from the fact that we use a standard result about
average of p-values (Rüschendorf, 1982; Meng, 1994). When the p-values are independent, a few techniques
have been proposed to get back to a 1−α coverage; see e.g. (Cinar & Viechtbauer, 2022) for a comprehensive
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Figure 5: The m label samples result in (ρj
k)j∈[m] for the test example X, (ρj

Y )j∈[m] being p-values. We
can average ρj

k over j and threshold the resulting average ρ̄k at level α to obtain the prediction set, this is
equivalent to Algorithm 1 as explained in Section 3.3. Alternatively we can combine the p-values ρj

Y using
the ECDF approach described in Section 3.4; see Algorithm 2 for a detailed computational description.
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Figure 6: For illustration, we sample 10k p-values for m = 10 independent tests and duplicate them to
obtain m = 20 dependent tests. Left: Histograms for averaged and ECDF-corrected p-values. The ECDF
correction is able to ensure that p-values are distributed approximately uniformly. Right: Target confidence
level α plotted against the empirical confidence level when calibrating with averaged p-values (blue) and
the ECDF-corrected ones (green). As the p-values are one-dimensional, the Dvoretzky–Kiefer–Wolfowitz
inequality provides tight finite-sample guarantees on the ECDF correction, using δ = 0.0001 = 0.01%.

review. However, in our case, the p-values (ρj
Y )j∈[m] we want to combine are strongly dependent as they use

the same calibration examples Xi and then rely on different pseudo-labels Y j
i from the same distribution

(given by λi). In this setting, many standard methods yield overly conservative results.

We follow here a method that directly estimates the cumulative distribution function (CDF) of the combined,
e.g., averaged p-values (Balasubramanian et al., 2015; Toccaceli & Gammerman, 2019; Toccaceli, 2019). Let
ρ̄Y = 1/m

∑m
j=1 ρj

Y be the averaged p-values. As shown in Figure 6 (left), these averaged p-values will not
be uniformly distributed. However, if F denotes the CDF of ρ̄Y , then ρY = F (ρ̄Y ) is a p-value5 and thus
the prediction set C(X) = {y ∈ [K] : ρy > α} will obtain coverage 1 − α. The true CDF is unknown but
we can split the original calibration examples into X1, . . . , Xl and Xl+1, . . . , Xn and used the second split to
obtained an empirical estimate F̄ of F . The procedure is described in Algorithm 2.

As F̄ is not the true CDF F but an empirical CDF (ECDF) estimate, C(X) = {y ∈ [K] : F̄ (ρ̄y) > α}
would only provide an approximate coverage guarantee at level 1 − α. However, if the original calibration
examples Xl+1, . . . , Xn are i.i.d., then the Dvoretzky–Kiefer–Wolfowitz inequality (see e.g. (Wasserman,
2006)) provides rigorous finite sample guarantees for the ECDF, i.e.

P( sup
f∈[0,1]

|F̄ (f) − F (f)| > ϵ) ≤ 2 exp(−2(n − l)ϵ2). (13)

5We have P(F (ρ̄Y ) ≤ f) = P(F (F −1(U) ≤ f) for U a uniform random variable on [0, 1] for F −1(f) = inf{ρ ∈ R : F (ρ) ≥ f}.
However F (F −1(U)) ≥ U so P(F (F −1(U) ≤ f) ≤ P(U ≤ f) = f . Hence, we have P(ρY ≤ α) ≤ α.

9
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Figure 7: On our toy dataset, we plot aggregated coverage ob-
tained using Monte Carlo CP without and with ECDF correction
for m = 10 and l = ⌊n/2⌋. As expected, Monte Carlo CP, even for
m ≥ 2, does not result in reduced coverage. Thus, ECDF correc-
tion does not yield meaningfully different results besides exhibit-
ing higher variation in coverage across calibration/test splits due
to the additional split l.

Algorithm 2 ECDF Monte Carlo CP with (1 − α)(1 − δ) coverage guarantee.
Input: Calibration examples (Xi, λi)i∈[n]; test example X; confidence levels α, δ; data split 1 ≤ l ≤ n − 1;
number of samples m
Output: Prediction set C(X) for test example X

1. Sample m labels (Y j
i )j∈[m] per calibration example (Xi)i∈[l] where P(Y j

i = k) = λik.

2. Sample one label Yi per calibration example (Xi)i∈{l+1,...,n} where P(Yi = k) = λik.

3. Compute (ρ̄i)i∈{l+1,...,n} where

ρ̄i =

∑m
j=1

(∑l
p=1 I[E(Xp, Y j

p ) ≤ E(Xi, Yi)] + 1
)

m(l + 1) . (15)

4. Build the ECDF F̄ (f) = 1
n−l

∑n
i=l+1 I[ρ̄i ≤ f ] and its upper bound F̄+(f) using Equation (14).

5. For test example X, compute for k ∈ [K]

ρ̄k =

∑m
j=1

(∑l
p=1 I[E(Xp, Y j

p ) ≤ E(X, k)] + 1
)

m(l + 1) , ρ̄corr
k = F̄+(ρ̄k). (16)

6. Return C(X) = {k ∈ [K] : ρ̄corr
k > α}.

Basic manipulation results in a confidence band for F̄

P(∀f ∈ [0, 1], F̄−(f) ≤ F (f) ≤ F̄+(f)) ≥ 1 − δ with F̄±(f) = min
max

{
F̄ (f) ±

√
1

2(n − l) log 2
δ

,
1
0

}
. (14)

This confidence band is illustrated shown in Figure 6 (right). We can now define the prediction set C(X) =
{y ∈ [K] : ρy > α} for ρY = F̄+(ρ̄Y ) and show that it satisfies Pagg(Y ∈ C(X)) ≥ (1 − α)(1 − δ). Indeed,
writing F̄+ ≥ F to abbreviate F̄+(f) ≥ F (f) ∀f , we have P(F̄+(ρ̄Y ) > α) ≥ P(F̄+(ρ̄Y ) > α|F̄+ ≥ F )P(F̄+ ≥
F ) ≥ P(F (ρ̄Y ) > α|F̄+ ≥ F )P(F̄+ ≥ F ). Now we have from Equation (13) that P(F̄+ ≥ F ) ≥ 1 − δ and
P(F (ρ̄Y ) > α|F̄+ ≥ F ) = P(F (ρ̄Y ) > α) as the probability in Equation (13) is over (Xi, Yi)i∈{l+1,...,n} while
ρ̄Y is only a function of (Xi, Y j

i )i∈[l],j∈[m] and (X, Y ). Using the fact that P(F (ρ̄Y ) > α) ≥ 1 − α, we obtain
the desired coverage guarantee.

Figure 7 compares the empirical coverage obtained using standard CP with true labels to both approaches
of Monte Carlo CP (cf. Algorithms 1 and 2) to verify that this approach indeed obtains coverage 1 − α ≈
(1 − α)(1 − δ) on average for δ ≪ 1. As discussed, without the ECDF correction discussed here, this is
only empirical as the approach discussed in the previous section can only guarantee 1 − 2α. We also did not
observe a significant difference in prediction set size when using or not using the ECDF correction.
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3.5 Summary

We have presented two Monte Carlo CP techniques, Algorithms 1 and 2, which rely on sampling multiple
synthetic pseudo-labels from PY |X

agg for each calibration data. In this setting, the coverage guarantees we
obtain have to be understood marginally across calibration examples and their sampled labels. We summarize
the advantages and drawbacks of these methods in Table 1. In the following, we show that these developments
are relevant beyond the setting of ambiguous ground truth and discuss related work.

Procedure Theoretical
coverage

Avg. empirical
coverage

Variability
emp. coverage

Additional
calibration split

Alg. 1, m = 1 1 − α 1 − α High No
Alg. 1, m ≥ 2 1 − 2α 1 − α Low No
Alg. 2 (1 − α)(1 − δ) (1 − α)(1 − δ) Low Yes

Table 1: Overview of the Monte Carlo CP procedures in this paper in terms of the provided theoretical
coverage guarantee, the observed ampirical coverage (averaged across sampled pseudo labels), variability of
the empirical coverage (w.r.t. sampled pseudo labels) and whether an additional split of the calibration data
is required.

3.6 Applications to related problems

Multi-label classification: Let Yi ⊆ [K] be the known, ground truth multi-label set for each calibration
example Xi. For simplicity, we express the multi-label setting using plausibilities λi that divide probability
mass equally across the Li = |Yi| ≥ 1 labels. We can then apply Monte Carlo CP to this setup. When m ≫ 1,
we obtain calibration examples where the proportion of (Y j

i )j∈[m] equal to a given class is approximately
1/Li. This is related to an empirical existing method to perform multi-label CP (Tsoumakas & Katakis, 2007;
Wang et al., 2014; 2015) where for each calibration example (Xi, Yi) we perform CP using the calibration
examples (Xi, Y 1

i ), . . . , (Xi, Y Li
i ). Monte Carlo CP provides coverage guarantees on Pagg(Y ∈ C(X)) for

Pagg(Y = y|X = x) =
∑

Y
λ(Y)y p(Y|x) (17)

with p(Y|x) being the conditional probability of the set Y given X = x and λ(Y)y = I(y ∈ Y)/|Y|.

Data augmentation and robustness: Consider a scenario where we have exchangeable calibration data
(Xi, Yi)i∈[n] for Yi ∈ [K]. We want to augment the set of calibration data by using data augmentation,
i.e. for each X1

i := Xi we sample additional X2
i , ..., Xm

i ∼ p(·|Xi). For example, these could correspond to
versions of Xi which are (adversarially or randomly) perturbed or corrupted, rotated, flipped, etc. As we
usually train with data augmentation and frequently want to improve robustness against distribution shifts or
specific types of perturbations, considering these augmentations for calibration is desirable. However, when
using the augmented set m · n of calibration data (Xj

i , Yi)i∈[n],j∈[m], the joint distribution of calibration
data and test data is not exchangeable anymore. However, we can still provide rigorous coverage guarantees
using a procedure very similar to Monte Carlo CP. Each test data (X, Y ), we set X1 = X and sample
augmentations X2, ..., Xm ∼ p(·|X). We then proceed by averaging the following m p-values

ρj
Y =

∑n
i=1 I[E(Xj

i , Yi) ≤ E(Xj , Y )] + 1
n + 1 , ρ̄Y = 1

m

m∑
j=1

ρj
Y . (18)

By following arguments similar to Section 3.3, the prediction set C(X1, X2, ..., Xn) = {y ∈ [K] : ρ̄y >
α} satisfies Paug(Y ∈ C(X1, X2, ..., Xn)) ≥ 1 − 2α where Paug is the joint distribution of the test data
(X = X1, Y ) and the augmentations X2, .., Xm. In this case, the coverage guarantee is marginal across
(X1, ..., X2, Y ) and (Xj

i , Yi)i∈[n],j∈[m].
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Figure 8: Realized voted coverage, i.e., I[arg maxk λik ∈ C(Xi)] (green), and aggregated coverage, i.e.,∑
y∈[K] λiyI[y ∈ C(Xi)] (blue), for standard CP using voted labels, i.e., arg maxk λik. Additionally, we plot

the maximum plausibility per example (dashed black) as proxy of ambiguity. We sort examples on the
x-axis according to each plot individually. Clearly, many cases are very ambiguous and aggregated coverage
is underestimated severely (62% vs. the target of 73%).

3.7 Related work

CP (Vovk et al., 2005) has recently found numerous applications in machine learning, see e.g. (Romano et al.,
2019; Sadinle et al., 2019; Romano et al., 2020; Angelopoulos et al., 2021; Stutz et al., 2021; Fisch et al.,
2022). In this paper, we focus on split CP (Papadopoulos et al., 2002). However, there are also transductive
and cross-validation/bagging-inspired variants being studied (Vovk et al., 2005; Vovk, 2015; Steinberger &
Leeb, 2016; Barber et al., 2021; Linusson et al., 2020). Our work is related to these approaches in that
many of them guarantee coverage 1 − 2α while empirically obtaining coverage close to 1 − α. For example,
cross-CP (Vovk, 2015) was recently shown to satisfy a 1 − 2α guarantee in (Vovk et al., 2018; Kim et al.,
2020). Moreover, this guarantee is also based on combining p-values without making any assumption about
their dependence structure.

As outlined before, our work is also related to CP for multi-label classification which faces similar challenges
as CP for ambiguous ground truth (Wang et al., 2014; 2015; Lambrou & Papadopoulos, 2016; Papadopoulos,
2014; Cauchois et al., 2021). Finally, our work has similarities to work on adversarially robust CP (Gendler
et al., 2022), especially in terms of our ideal coverage guarantee.

There is also a long history of work on combining dependent or independent p-values (Fisher, 1925; Rüschen-
dorf, 1982; Meng, 1994; Heard & Rubin-Delanchy, 2017). Key work has been done in (Vovk et al., 2018),
showing results without dependence assumption and thereby establishing guarantees for, e.g., cross-CP. Sim-
ilar to us, (Balasubramanian et al., 2015; Linusson et al., 2017; Toccaceli & Gammerman, 2019; Toccaceli,
2019) use the ECDF to combine p-values but they do not provide rigorous coverage guarantees for this
procedure.

4 Applications

4.1 Main case study: skin condition classification

In the main case study of this paper, we follow (Liu et al., 2020; Stutz et al., 2023) and consider a very
ambiguous as well as safety-critical application in dermatology: skin condition classification from multiple
images. We use the dataset of Liu et al. (2020) consisting of 1949 test examples and 419 classes with
up to 6 color images resized to 448 × 448 pixels. The classes, i.e., conditions, were annotated by various
dermatologists who provide partial rankings. These rankings are aggregated deterministically to obtain the
plausibilities λ using the inverse rank normalization procedure of (Liu et al., 2020) described in Section 3.1.
We followed (Roy et al., 2022; Stutz et al., 2023) to train a classifier that achieves 72.6% top-3 accuracy
against the voted label from the plausibilities6. We chose a coverage level of 1−α = 73% for our experiments
(with results for α = 0.1 in the appendix) to stay comparable to the base model.

In Figure 8, we highlight how ambiguous the plausibilities for skin condition classification are: in dotted
black, we plot the largest plausibility against (sorted) examples. As baseline, we performed CP using the

6To be precise, in 72.6% of the cases, the voted label from the plausibilities is included in the top-3 prediction set derived
from the predicted softmax output π(x) without any conformal calibration.
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Figure 9: Comparison between CP applied to voted labels (left), Monte Carlo CP (middle) and ECDF
Monte Carlo CP (right) in terms of voted coverage (blue) and aggregated coverage (green) across 100
random calibration/test splits. We use m = 10. With with votedl labels does not reach the 73% aggregated
target coverage (black). Monte Carlo CP overcomes this gap at the expense of higher inefficiency (bottom).
Using ECDF-corrected p-values increases observed variation slightly due to the additional calibration data
split (half of the original split).
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Figure 10: Comparison of Cp with voted labels and Monte Carlo CP on two concrete examples. Both are
ambiguous cases as shown by the high-entropy plausibilities. Monte Carlo CP clearly covers more plausibility
mass (i.e., yields higher realized aggregated coverage), potentially improving patient outcome. Appendix C
includes more qualitative results.

classifier’s softmax output as conformity scores and calibrating against the voted labels ŷ := arg maxk λik

per calibration example (Xi, λi). In blue, we plot the realized coverage by evaluating I[ŷ ∈ C(Xi)] per
example. This is a step function and roughly 27% of the examples on the x-axis are covered. In green,
we plot the realized aggregated coverage by evaluating

∑
k∈[K] λikI[k ∈ C(Xi)] per example. For many

examples, aggregated coverage lies in between (0, 1) showing that the obtained prediction sets only cover
part of the plausibility mass. More importantly, aggregated coverage is 62% on average, i.e., significantly
under-estimated by calibrating against voted labels. This is the core problem we intend to address.

While the above results consider a fixed calibration/test split, Figure 9 shows our overall results across 100
random splits. As suggested above, on the left, we show how standard CP applied to voted labels does
not achieve the target of 73% for the aggregated coverage Pagg(Y ∈ C(X)) (green). Essentially, this can
be understood as a form of over-confidence; as highlighted in Figure 10, it causes the prediction sets to
miss highly plausible conditions. In the middle and on the right, we demonstrate that Mont Carlo CP with
m = 10 overcomes this problem and achieves (on average) the target aggregated coverage of 73%. Note that
coverage w.r.t. the voted label (blue) increases alongside aggregated coverage (i.e., the gap between voted
and aggregated coverage remains approximately the same). In terms of inefficiency, avoiding over-confidence
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Figure 11: The multi-label CP strategy of Wang et al. (2015; 2014); Tsoumakas & Katakis (2007) is a
slight variant of our Monte Carlo CP approach. As shown on this example of up to two overlaid, differently
colored digits, Monte Carlo CP achieves target coverage of 90% (top left). However, it is free to decide how
many labels to cover per examples (top middle) and, due to the poor performance of the base model (58.8%
aggregated coverage), inefficiency is rather high. On the bottom, we show two examples of our dataset with
the corresponding ground truth label set Y (blue) and the obtained Monte Carlo p-values (green).
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Figure 12: Standard CP applied to original images (left) and Monte Carlo CP (middle and right) applied to
augmented images from ImageNet for m = 1 (middle) and m = 10 (left). We show coverage on original (blue)
and augmented images (green, average across 25 AutoAugment augmentations per image). Monte Carlo CP
is able to overcome the coverage gap between augmented and original images on average (green vs. blue)
at the expense on higher inefficiency (on both original and augmented images). Using more augmentations
during calibration generally reduces the observed variation across random calibration/test splits.

by improving aggregated coverage leads to a significant increase in the average prediction set size from 2.66
to 4.57. However, Figure 10 highlights that this is necessary for the prediction sets to include relevant
conditions.

4.2 Case study: multi-label classification

In Figure 11 we consider a simple MNIST-based multi-label classification problem with up to two, differently
colored digits per image. We trained 10 multi-layer perceptrons with 100 hidden units for each digit to
determine if the digit is present in the image. This simple classifier achieves 58.8% aggregated coverage
when thresholding the 10 individual sigmoids at 0.5. As discussed in Section 3.6, a common strategy (Wang
et al., 2015; 2014; Tsoumakas & Katakis, 2007) of performing multi-label CP consists in repeating each
example according to its number of labels (here, at most 2). We can achieve something similar with rigorous
aggregated coverage guarantee by uniformly sampling labels to perform Monte Carlo CP. We illustrate this
procedure in Figure 11 (top left) where we show that it achieves the 90% coverage target. Furthermore,
our discussion in Section 3.2 establishes the corresponding guarantee of 1 − 2α without ECDF correction.
However, it is important to understand what aggregated coverage means for multi-label classification: CP
decides how many of the labels it intends to cover per example in order to achieve the marginal coverage
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guarantee. This is highlighted in Figure 11 (bottom) showing the corresponding p-values for two examples.
In the first example, only one out of two examples is covered by the prediction set.

4.3 Case study: data augmentation and robustness

We also apply Monte Carlo CP in the data augmentation and robustness setting outlined Section 3.6.
Specifically, we took a pre-trained MobileNet V2 (Howard et al., 2017) achieving 71.3% (top-1) accuracy on
the first 5k test examples of ImageNet (Russakovsky et al., 2015) and additionally evaluated it on augmented
images using AutoAugment (Cubuk et al., 2018). We generated 25 random augmentations per test example.
The model achieves 60.2% accuracy on average, significantly lower than on the original images. Similarly,
Figure 12 shows a significant gap in coverage when calibrating only on the original images. While coverage
on original examples is around the target of 90%, depending on the random calibration/test split, coverage
of augmented images is only slightly above 80%. With the Monte Carlo CP procedure described in Section
3.6, we can use as calibration data the original and augmented images. This procedure allows us to reach
the target coverage we want at the cost of higher inefficiency. Moreover, using more augmented images
during calibration significantly reduces the observed variation in coverage. We interpret these results in
two ways: First, there is no reason anymore to train state-of-the-art models with data augmentation but
discard augmented images during calibration. Second, our Monte Carlo CP approach is effective in improving
robustness against augmentations or other corruptions.

5 Discussion

In many classification tasks, the available ground truth labels arise from a voting process relying on several
expert annotations resulting in a one-hot distribution PY |X

vote . However, in scenarios where annotators tend
to disagree because ground truth labels are ambiguous, this voting approach ignores the label uncertainty.
Thus, performing CP with such voted labels can only guarantee coverage w.r.t. PY |X

vote . This can have severe
consequences, especially in safety-critical applications such as the dermatology case study in this paper.
Instead, we use standard procedures from the literature to aggregate expert opinions and return a non-
degenerate conditional probability distribution PY |X

agg that can capture uncertainty about Y . In this paper,
we proposed two Monte Carlo CP procedures which can output prediction sets satisfying some pre-specified
coverage guarantees under the corresponding distribution Pagg = PX ⊗PY |X

agg by sampling m synthetic labels
from PY |X

agg for each calibration data. This allows to reduce the variability of the empirical coverage across
realizations of the sampled labels. For a test example X, the prediction set outputted by such procedures can
be thought as the one expert would assign if they had access to X and their annotations were aggregating
using PY |X

agg . In the scenario considered here where true labels are never observed, this is the best one can
hope for. We have established rigorous coverage guarantees for these Monte Carlo CP procedures despite the
fact that the joint distribution between the calibration data and the test data is not exchangeable. While the
averaged empirical coverage provided by Algorithm 1 is 1−α, our theoretical result only guarantees 1−2α. In
applications where rigorous tighter theoretical guarantees are required, we show how it is possible to modify
this procedure to obtain (1 − α)(1 − δ) coverage at the cost of an additional calibration split, see Algorithm
2. We demonstrates the applicability of these approaches in the safety-critical and particularly ambiguous
setting of skin condition classification. In this context, the use of voted labels leads to overconfident prediction
sets which leads to severe under-coverage of roughly 10% w.r.t. PY |X

agg . Our Monte Carlo CP overcomes this
gap empirically and theoretically. We also demonstrated how our methodology allows conformal calibration
with augmented examples and provides, for the first time, a coverage guarantee for multi-label CP.

We also want to highlight the assumptions that underlie our work and some potential extensions. First,
we assume access to calibration data of the form (Xi, Bi)i∈[n] for annotations Bi from which we obtain
calibration data (Xi, λi)i∈[n] for plausibilities λi and then by sampling pseudo-labels (Xi, Y j

i )i∈[n],j∈[m].
While assuming that the joint distribution of (Xi, Y 1

i )i∈[n] is exchangeable is a fairly weak and common
assumption, we rely on the stronger assumption that the joint distribution of (Xi, Y 1

i )i∈[n],j∈[m] and test
data (X, λ) is exchangeable for Algorithm 1 and that these data are i.i.d. for Algorithm 2. In presence of
distribution shift at test time, this is not true but we believe it should be possible to adapt Monte Carlo
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CP to this setting using the techniques developed in (Tibshirani et al., 2019). We note finally that it is
also possible to bypass having to sample pseudo-labels and perform conformal calibration directly on the
plausibilities using calibration data (Xi, λi)i∈[n] but this leads to prediction intervals which are difficult to
interpret and exploit. Second, our method relies on an aggregation model PY |X

agg . However, we emphasize
that we are not making more assumptions than is currently made by applying CP to voted labels. On
the contrary, we explicitly state the typically implied assumptions regarding label collection. Finally, it
is important to keep in mind that, as any CP technique, the proposed Monte Carlo CP procedures only
provide unconditional coverage guarantees of the form Pagg(Y ∈ C(X)) ≥ 1 − α and not guarantees of the
form Pagg(Y ∈ C(X)|X = x) ≥ 1 − α.

Broader impact

Our work addresses the important problem of conformal calibration in ambiguous settings where ground truth
labels are not crisp as generally implicitly assumed in supervised machine learning. As discussed in our skin
condition classification case study, ignoring this ambiguity can have severe consequences: key conditions
(such as the cancerous “Melanoma” in Figure 10) may not be covered in the produced prediction sets despite
experts including them in their annotations. This can have very immediate negative consequences for patients
as well as increase cost and strain on the healthcare system. Therefore, we generally view the impact of our
work very positively, especially in the deployment of safety-critical applications such as in health. However,
it is also important to look into how the methods proposed here affect different demographic groups.

Data availability

The de-identified dermatology data used in this paper is not publicly available due to restrictions in the
data-sharing agreements.
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A Annotations in popular datasets

Many popular machine learning datasets have been created using annotators to determine labels. Often, they
also use very basic aggregation and voting mechanisms (corresponding to Pagg and Pvote) such as majority
voting or averaging. For example, the list of most cited datasets on Papers with Code7 includes the following:

• The CIFAR10 dataset (Krizhevsky, 2009) is a popular multiclass classification benchmark of 32×32
pixel color images. It was labeled using a strategy similar to majority voting: first, a crowd-sourced
label was collected which was then verified and potentially corrected by an author.

• CIFAR10H revisited the CIFAR10 dataset by gathering additional human annotations where each
annotator provides a single label.

• ImageNet (Russakovsky et al., 2015) uses multiple annotators with majority voted labels (Pvote).

• COCO (Lin et al., 2014) labels a category as present if any out of 8 annotators labeled it as present
(even if all other annotators disagree).

• The Stanford sentiment treebank (Socher et al., 2013) includes 3 annotations per example which are
used in various ways during evaluation.

• MultiNLI (Williams et al., 2018) includes 5 annotations which are majority voted.

• The semantic textual similarity benchmark (Cer et al., 2017) averages scores across multiple anno-
tators.

• The Recognizing Textual Entailment datasets8 also consider multiple annotators and several editions
of the corresponding challenge simply neglected examples with disagreeing annotators (equivalent
to majority voting while ignoring ambiguous examples).

Note that the above natural language processing datasets are all part of the GLUE benchmark (Wang et al.,
2019) – the go-to benchmark for natural language understanding. Datasets beyond (multi-label) classification
also often include multiple annotations. VQA (Goyal et al., 2017), for example, includes 10 free-form answers
per question; aggregating them is clearly non-trivial. For many datasets, it might also be unclear how
annotations have been collected or aggregated. The Quora Question Pairs webpage9 explicitly mentions
label errors but does not five details on annotation and aggregation. All of these examples emphasize that
aggregating annotations and using majority voted or averaged labels is extremely common across supervised
machine learning. This means that plausibilities are typically readily obtainable and the core problem we
address – using majority voted labels on ambiguous tasks for calibration leads to under-coverage – is highly
relevant.

B Calibration threshold and p-values

B.1 Single p-value

We include for completeness a proof of the results presented in Section 2.1. These are standard results. The
p-value formulation detailed here will be then extended to establish the validity of some of the procedures
proposed in this work.

We first establish that the prediction set defined by Equations (2) and (3) satisfies

1 − α ≤ P(Y ∈ C(X)) ≤ 1 − α + 1
n + 1 , (19)

the upper bound requiring the additional assumption that the conformity scores are almost surely distinct.
7https://paperswithcode.com/datasets?q=&v=lst&o=cited
8https://tac.nist.gov//2008/rte/past_data/index.html
9https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

20

https://paperswithcode.com/datasets?q=&v=lst&o=cited
https://tac.nist.gov//2008/rte/past_data/index.html
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


Under review as submission to TMLR

Let us write (Xn+1, Yn+1) = (X, Y ) and Si = E(Xi, Yi). As (Si)i∈[n+1] are exchangeable, then a direct
application of (Romano et al., 2019, Appendix A, Lemma 1) shows that for any α ∈ (0, 1) and τ1 =
Q

(
{−Si}i∈[n]; (1 − α)(1 + 1/n)

)
P(−Sn+1 ≤ τ1) ≥ 1 − α (20)

and, if the random variables (Si)i∈[n+1] are almost surely distinct, then

P(−Sn+1 ≤ τ1) ≤ 1 − α + 1
n

. (21)

Note that we have additionally
P(−Sn+1 ≤ τ1) = P(−Sn+1 ≤ τ2) (22)

for τ2 = Q
(
{−Si}i∈[n]; ⌈(1 − α)(n + 1)⌉/n

)
. So C(Xn+1) includes all the values y such that −S(y, Xn+1) is

smaller or equal than the ⌈(1 − α)(n + 1)⌉ smallest values of (−Si)i∈[n]. This is equivalent to considering all
the values y such that S(y, Xn+1) is larger or equal than the ⌊α(n + 1)⌋ smallest values of (Si)i∈[n]. Hence
this corresponds to the prediction set defined by Equations (2) and (3).

We now show that this prediction set can also be obtained by thresholding p-values. Indeed Equation (4)
can be rewritten as

ρYn+1 =
∑n+1

i=1 I(Si ≤ Sn+1)
n + 1 . (23)

As (Si)i∈[n+1] are exchangeable, then ρYn+1 is uniformly distributed on { 1
n+1 , 2

n+1 , ..., 1} if the distribution of
the scores is continuous and thus ρYn+1 is a p-value, i.e. P(ρYn+1 ≤ α) ≤ α ⇐⇒ P(ρYn+1 > α) ≥ 1 − α.
It can be checked that this property still holds if the distribution of the scores is not continuous (see e.g.
(Bates et al., 2023)). So if we define the prediction set as

C(Xn+1) = {y : ρy > α} (24)

then by construction it follows that

P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α. (25)

We show here that Equation (24) does indeed coincide with the set defined by Equations (2) and (3). We
have

ρy > α ⇐⇒
n∑

i=1
I(Si ≤ E(Xn+1, y)) > α(n + 1) − 1. (26)

If α(n + 1) is an integer then
∑n

i=1 I(Si ≤ E(Xn+1, y)) ≥ α(n + 1), i.e. E(Xn+1, y) is larger or equal than
the α(n + 1) smallest values of (Si)i∈[n]. If α(n + 1) is not an integer then it means that

∑n
i=1 I(Si ≤

E(Xn+1, y)) ≥ ⌈α(n + 1)⌉ − 1, i.e. E(Xn+1, y) is larger than the ⌈α(n + 1)⌉ − 1 smallest values of (Si)i∈[n].
However, we have ⌈α(n + 1)⌉ − 1 = ⌊α(n + 1)⌋ as α(n + 1) is not an integer. So overall, we have that
ρy > α corresponds to E(Xn+1, y) being larger or equal than the ⌊α(n + 1)⌋ smallest values (Si)i∈[n]. So the
prediction set in Equation (24) does coincide with the set defined by Equations (2) and (3).

Finally note that when the distributions of the scores is continuous, i.e. the scores are almost surely distinct,
then we also have P(ρYn+1 ≤ α) ≥ α − 1/n+1 so P(ρYn+1 > α) ≤ 1 − α + 1/n+1.

B.2 Average of p-values

We establish here the expression of the prediction set obtained by thresholding the following average p-value

ρYn+1 =
∑m

j=1
∑n+1

i=1 I(Sj
i ≤ Sj

n+1)
m(n + 1) (27)

where Sj
n+1 = Sn+1 for all j ∈ [m]. We know that by construction the set C(Xn+1) = {y : ρy > α} is such

that
P(Yn+1 ∈ C(Xn+1)) ≥ 1 − 2α. (28)
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Figure 13: p-value histograms for CP with voted labels (left) and Monte Carlo CP (right). In both cases, we
show the p-values for the voted labels (arg max of plausibilities, top) and labels samples from the plausibilities
(bottom). Calibrating against voted labels guarantees a uniform distribution of the p-values shown on top,
Monte Carlo calibration guarantees the same for the bottom histograms. As a result, compared to the
expected uniform distribution (black), the distribution of p-values w.r.t. sampled labels is skewed for CP
with voted labels (bottom left) while p-values w.r.t. to voted labels are skewed for Monte Carlo CP (top
right).

We have

ρy > α ⇐⇒
m∑

j=1

n∑
i=1

I(Sj
i ≤ E(Xn+1, y)) > αm(n + 1) − m. (29)

If αm(n+1) is an integer then E(Xn+1, y) needs to be larger or equal than the αm(n+1)−m+1 smallest values
of (Sj

i )i∈[n],j∈[m]. If αm(n+1) is not an integer then
∑m

j=1
∑n

i=1 I(S
j
i ≤ E(Xn+1, y)) ≥ ⌈αm(n+1)⌉−m, i.e.

E(X, y) is larger or equal than the ⌈αm(n+1)⌉−m smallest values of Si. However, we have ⌈αm(n+1)⌉−1 =
⌊αm(n + 1)⌋ as αm(n + 1) is not an integer. So ⌈αm(n + 1)⌉ − m = ⌊αm(n + 1)⌋ − m + 1. So overall we need
E(Xn+1, y) larger or equal than the ⌊αm(n+1)⌋−m+1 smallest values of (Sj

i )i∈[n],j∈[m], equivalently larger
that the quantile of (Sj

i )i∈[n],j∈[m] at level ⌊αm(n+1)⌋−m+1
mn , i.e. C(Xn+1) = {k ∈ [K] : E(Xn+1, k) ≥ τ} for

τ defined in Equation (10).

C Additional results for skin condition classification

Figure 13 shows the p-values of standard CP (with voted labels, left) and Monte Carlo CP (with sampled
labels, right) w.r.t. to the voted labels (top) and 10 labels randomly samples from the plausibilities (per
example, bottom). CP against voted labels results in the corresponding p-values being uniformly distributed.
However, the distribution of p-values corresponding to sampled labels is slightly skewed towards 0 (compare
to the black line). With Monte Carlo CP, we observe the opposite: the p-values corresponding to voted labels
are not entirely uniformly distributed while those corresponding to sampled labels are. This highlights the
impact of ambiguity on the corresponding p-values.

Figure 14 presents complementary results to Figure 8 in the main paper. Specifically, on top, we addi-
tionally consider ties among the voted labels (i.e., there is no unique arg max in the plausibilities λ). In
the calibration examples, we break these ties randomly. At test time, however, we can decide to evaluate
coverage proportional to the tied labels. Formally, we assume that Y 1

i , . . . , Y Li
i are the tied labels and

compute 1/Li

∑Li

j=1 I[Y
j

i ∈ C(Xi)] instead of the binary indicator I[Yi ∈ C(Xi)] to evaluate coverage. In
red, we see that quite a few examples exhibit ties and the predicted prediction sets often cover only a part
of the tied labels. This is an early indicator for high ambiguity in the ground truth of this dataset. On
the bottom, we additionally plot aggregated coverage for (ECDF) Monte Carlo CP in comparison to CP on
voted labels. Again, CP with voted labels significantly under-estimates aggregated coverage. While both
Monte Carlo approaches (with and without ECDF correction) look identical in this example, they do not
have to be due to randomness in how the calibration set is further split (cf. Algorithm 2). In expectation
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Figure 14: Top: Complementary to Figure 8, we include evaluation against voted labels while considering
ties (red, 1/Li

∑Li

j=1 I[Y
j

i ∈ C(Xi)] with Y j
i being one of Li tied labels for case i) which hints towards

several ambiguous cases. Looking at aggregated coverage (i.e.,
∑

y∈[K] λikI[y ∈ C(Xi)]) in blue, however,
shows that a significant portion of examples are ambiguous and standard evaluation against the voted labels
(i.e., I[arg maxk λik ∈ C(Xi)]) is unreasonable. Bottom: Aggregated coverage plot for Monte Carlo CP
procedures compared to CP with voted labels, highlighting that CP with voted labels does not obtain the
target aggregated coverage.

0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93
Empirical coverage

0.00

0.05

0.10

0.15

Fr
eq

ue
nc

y

Variation in aggregated coverage for Monte Carlo CP
Target
m = 1
m = 5
m = 10

Figure 15: Empirical aggregated coverage for Monte Carlo CP with
various m. As on our toy dataset in Figure 4, higher m clearly
reduces the variation in coverage across the evaluated 100 calibra-
tion/test splits despite using 50% of the 1949 examples for calibra-
tion.

across splits, however, we found that they coincide. This also highlights that the simple variant empirically
achieves aggregated coverage 1 − α despite only guaranteeing 1 − 2α.

Figure 15 reproduces Figure 4 on our skin condition classification case study showing the advantage of using
m > 1 in Monte Carlo CP to reduce variation in aggregated coverage across calibration/test splits.
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Figure 16: Additional qualitative results corresponding to Figure 10.
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Figure 17: Results corresponding to Figure 9 with α = 0.1.
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Figure 18: Additional qualitative results for α = 0.1 corresponding to Figures 10 and 16.

Figure 16 shows two additional qualitative examples where Monte Carlo CP improves results, i.e., more
conditions with significant plausibility (blue) are covered (green) but important conditions are still not
covered. This can be addressed using a lower confidence level such as α = 0.1 in Figure 18.

Results of our main experiments in dermatology for α = 0.1 can be found in Figures 17 to 18.
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