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ABSTRACT
In this supplementary material, we provide more details of the
descriptor group definition, visualization images and experimental
results that could not be included in the main article due to the
space limitation.

Table 1: The descriptor group definition for semantic at-
tributes of human faces. All the phrases are embedded in a
template ‘a face with {}’ respectively before sent to CLIP.

Attribute Descriptor Groups

Hairstyle

[curly hair, straight hair, wavy hair, crew cut]
[frizzy hair, smooth hair, crew cut]
[tied-up hair, cropped hair, shoulder-length loose hair,
chin-length loose hair]
[pixie cut, crew cut, bowl cut, slicked-back, undercut, Bob cut,
long hair]
[thick hair, thin hair, baldness]
[curtain bangs, choppy bangs, side-swept bangs, no bangs]
[center-parting hair, side-parting hair, slicked-back hair,
bangs, crew cut]

Hair color [black hair, brown hair, gray hair, white hair, blond hair,
auburn hair, ash green hair]

Eye region

[monolid eyes, double eyelid eyes]
[deep-set eyes, protruding eyes]
[blue eyes, brown eyes]
[sparse eyebrows, full eyebrows]
[sharp and defined eyebrows, messy and undefined eyebrows]

Expression

[slightly parted lips, tight lips, widely opened mouth, grinned,
gentle smile, drooped mouth]
[half-closed eyes, open eyes, closed eyes, squinting eyes]
[wrinkled eyebrows, raised eyebrows, unfurled eyebrows]
[left gazing, right gazing, upward gazing, downward gazing]

Beard
[no beard, beard]
[bushy beard, sparse beard]
[stubble beard, goatee, anchor beard, full beard, mustache]

Eyeglasses

[no glasses, glasses, sunglasses]
[round glasses, oval glasses, square glasses, square glasses]
[thin-rimmed glasses, thick-rimmed glasses, rimless glasses]
[red glasses, black glasses, golden glasses]

Table 2: The descriptor group definition for semantic at-
tributes of cars. All the phrases are embedded in a template
‘a model of {}’ respectively before sent to CLIP.

Attribute Descriptor Groups

Color [red car, blue car, white car, black car, yellow car, green car,
grey car, pink car]

Shape [sports car, saloon, roadster, truck, van, classic car, SUV]

Table 3: The descriptor group definition for semantic at-
tributes of cats. All the phrases are embedded in a template
‘a cat with {}’ respectively before sent to CLIP.

Attribute Descriptor Groups

Fur
[black fur, white fur, fawn fur, brown fur, mottled fur,
grey fur, red fur]
[solid colored fur, calico fur, tortoiseshell fur, tabby fur]

1 DESCRIPTOR GROUPS
We provide the definition of descriptor groups that are used for
attribute transfer in SAT3D on three domains. For facial attributes,
the phrases presented in Table 1 are templatized with ‘a face with
{}’. Specifically, for Beard and Eyeglasses, the first descriptor group
identifies the presence of attribute and the others describe attribute
characteristics. When measuring the attribute similarity between
two images, if the attribute is predicted to be present in both images
by the first descriptor group, other descriptor groups are further
utilized; otherwise, only the first descriptor group is used. The
descriptor groups for cars and cats are listed in Table 2 and Table 3
respectively. The phrases are templatized with ‘a model of {}’ and
‘a cat with {}’ respectively.

Table 4: Quantitative comparisons of 3D-aware attribute
transfer. AS measures the target attribute similarity between
edited and reference images, while AP measures the irrele-
vant attribute similarity between edited and source images.
The metric values are averaged over 5 views for each sample.

Metrics Method Smiling Beard Eyeglasses

AS Preim3D [4] 0.0428 0.0850 0.0657
SAT3D (ours) 0.0432 0.0816 0.0650

AP Preim3D [4] 0.0264 0.0510 0.0400
SAT3D (ours) 0.0315 0.0545 0.0398

Table 5: Quantitative comparisons of 2D attribute transfer.

Metrics Method Smiling Beard Eyeglasses

AS
InterfaceGAN [8] 0.0319 0.0829 0.0437
StyleCLIP [5] 0.0344 0.0940 0.0623
SAT3D (ours) 0.0323 0.0690 0.0419

AP
InterfaceGAN [8] 0.0349 0.0463 0.0657
StyleCLIP [5] 0.0335 0.0428 0.0566
SAT3D (ours) 0.0391 0.0428 0.0575
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Figure 1: Region segmentation for the semantic attribute Fur of human faces.
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Figure 2: Region segmentation for the semantic attribute Fur of cats.
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Figure 3: Visualization of attribute transfer on the EG3D generator pre-trained on FFHQ dataset.
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Figure 4: Supplementary attribute transfer results of SAT3D on EG3D generator.
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Figure 5: Multi-view visualization of attribute transfer on pre-trained facial EG3D generator. The source and reference images
are sampled from the style space. For attribute transfer with real images, both the source and reference images require only
one arbitrary viewpoint, which can be inverted into the latent space by pivotal tuning inversion (PTI) [7] or pseudo-multi-view
optimized HFGI3D [9].
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(a) Cat - Fur (b) Car - Shape
Figure 6: Multi-view visualization of attribute transfer results on cats and cars.

2 EXPERIMENTAL RESULTS
Quantitative results. Quantitative evaluations are conducted on
3D-aware and 2D semantic attribute transfer respectively. For eval-
uation, we define descriptor groups for the 40 attribute categories
of classifiers in [2] and utilize the zero-shot prediction capability
of CLIP [6] to provide quantitative measurement, which provides
more comprehensive description than binary classifiers. The at-
tribute transfer and preservation losses defined in main article
are applied on the 40 attributes as Attribute Similarity (AS) and
Attribute Preserving (AP) metrics, i.e., 𝐴𝑆 = L𝑟𝑒 𝑓 , 𝐴𝑃 = L𝑠𝑟𝑐 .

We perform evaluation on three common attributes "Smiling",
"Beard" and "Eyeglasses". For each attribute, we generate attribute
editing results on the testing set of CelebAMask-HQ [3] dataset
for all methods. Specifically, "Smiling" editing is applied on 1737
images that are classified as not smiling, "Beard" editing is applied
on 925 images of men, and "Eyeglasses" editing is applied on all of
the 2824 images. With a reference image selected for each attribute,
we calculate the AS and AP metrics to measure the target attribute
similarity of each edited-reference image pair and the irrelevant
attribute similarity of each edited-source image pair respectively.
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Figure 8: Typical failure cases on attribute transfer.
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For 3D-aware evaluation, the metric values are averaged over 5
views.

As displayed in Table 4 and Table 5, with comparable AP perfor-
mance, the generated "Beard" and "Eyeglasses" of our SAT3D are
more similar to the reference image with lower AS, demonstrating
the customizability of SAT3D. The "Beard" and "Eyeglasses" at-
tributes have multifaceted characteristics, e.g., the style and sparse-
ness of "Beard", and the shape and rims of "Eyeglasses". However, for
"Smiling", the metrics can only measure the magnitude of the smile.
Because of the relatively homogeneous characteristic of "Smiling",
the editing results of all methods have similar features, and the
advantages of our approach are suppressed.

Notably, although our evaluation metrics have more descriptive
dimensions relative to traditional binary classifiers, they still cannot
fully characterize the visual features of attributes, which are not
suitable for the novel image-driven semantic attribute transfer task.
Structural similarity evaluation is more reasonable, but there is no
such quantitative evaluation method available yet. Therefore, our
experimental results are mainly presented in images, which can be
more directly to indicate the effectiveness of our proposed method.
Qualitative results. For background loss, we perform image seg-
mentation using BiSeNet [10] for human faces and DeepLabv3 [1]
for cats. The segmented regions for semantic attributes are exem-
plified in Figure 1 and Figure 2. Supplementary attribute transfer
results of SAT3D are displayed in Figure 3 and Figure 4. Besides, in
Figure 5 and Figure 6, we further provide multi-view visualization
for different domains.
Influence of editing intensity. We provide more examples in
Figure 7 to visualize the influence of editing intensity 𝛿 on attribute
transfer. The proper value of 𝛿 varies for different source-reference
image pairs, roughly within the range [1.0, 2.25]. In practice, we
can generate multiple edited images of intensities within this range
and select the optimal one.

3 LIMITATION
For completeness, we provide some typical failure cases in Figure 8.
The limitations mainly originate from two issues: the latent space of
the pre-trained generator is insufficiently disentangled on current
attributes; the disparity between the source and reference image is
overly significant, resulting in large distance in latent space, mak-
ing it difficult to fully migrate target attributes without disturbing
others or sacrificing the quality of the generated image. Taking
Hairstyle as example, which is the most complicated attribute, the
key obstacles in transferring are the variations across gender and
hair length. For Beard, the major challenge is to find potential latent
codes for female without distortion.
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