
Efficient Reinforcement Learning for Optimizing
Multi-turn Student Outcomes with LLM Tutors

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) built on existing reinforcement learning with1

human feedback (RLHF) frameworks typically optimize immediate responses at2

each turn. However, this can fail in multi-turn dialogue settings, like online math3

tutoring, where a single-turn optimal tutor may give away answers instead of4

guiding the student step by step. We introduce a method that enhances LLM-based5

tutors by representing the dialogue history with a lower-dimensional (student) state6

representation and optimizing a long-term policy to select high-level actions given7

that state. This better aligns the tutor with the long-term objective of helping the8

student solve the target math problem(s) independently. Our approach based on9

lower-dimensional states and high-level actions is more computationally efficient10

than training the tutor policy end-to-end to directly generate the tutor’s response. In11

LLM-simulated tutoring scenarios evaluated on GSM8K, our approach improves12

student’s long-term outcomes by 50% compared to prompting baselines.13

1 Introduction14

Large language models (LLMs) have achieved remarkable success in complex tasks, such as solving15

math problems [28], summarization [24], and code generation [3]. These models can interact with16

humans through open-ended text outputs and have been explored across a wide range of domains,17

including education [31] and healthcare [5]. This widespread application is largely due to their18

easily leveraged capabilities, including in-context learning from user-provided demonstrations [7],19

instruction-tuning [17], as well as reasoning [36]. A major area of research focuses on aligning the20

behavior of language models with human preferences, a process referred to as reinforcement learning21

with human feedback (RLHF) [20].22

However, one main limitation of the existing RLHF framework [20, 21] is that LLMs are optimized23

only to generate the most preferred single-turn responses, rather than optimizing for conversation-24

level outcomes. This is surprising given that many common use cases of LLMs involve multi-turn25

interactions, as discussed in prior work [11, 38, 22, 4]. In particular, Hong et al. [11] highlights26

that the default LLM’s response tends to be generic and verbose, which is sub-optimal in many27

goal-directed multi-turn conversations, such as teaching a new concept, or personalizing a travel28

itinerary to specific user’s interests.29

In this work, we focus on online math tutoring as an example of complex, goal-directed dialogue,30

where multi-turn optimal behaviors (e.g., asking follow-up questions and giving hints) may differ31

substantially from single-turn optimal behaviors (e.g., showing solutions). Tutoring students on math32

problems requires planning for long horizons. Strategies like probing the student’s current math33

level and encouraging them to make another attempt are important, but they do not naturally emerge34

in chat-bots optimized for single-turn responses, as they are not designed to anticipate multi-turn35

interactions with the student. Customized prompts (e.g., “Do not give the solution") may help mitigate36
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(a) Our method optimizes the tutor’s behavior to im-
prove multi-turn student learning outcomes.

(b) The policy is optimized via RL and then deployed
to interact with the student.

Figure 1: Fig. (a) contrasts our proposed approach (purple) with a greedy baseline, in which the
tutor generates an immediately helpful response rather than a multi-turn-optimal response. In order
to generate multi-turn optimal response, we propose (1) embedding the conversation history with a
lower-dimensional vector representation, (2) planning with RL to map this state vector to a high-level
action choice, then (3) using few-shot examples to generate the most appropriate response given the
conversation history and the optimal action. In Fig (b), the tutor’s responses are optimized via RL to
map the student’s state to an appropriate high-level tutor action. During deployment, the tutor uses
the conversation history to contextualize the chosen action and generate a response.

this issue, but prompt engineering often fails to produce pedagogically meaningful behaviors from37

LLM tutors[31], and generation is harder to control reliably. To address the gap between single-turn38

and multi-turn optimality, recent research trains language models using RL with objectives based39

on long-term outcomes.[11, 23, 12, 38, 22]. However, most existing works from RLHF frameworks40

train token-level policies, which require substantial computational resources and training data. As41

an alternative, we propose representing dialogue as a low-dimensional (student) state and learning a42

policy over high-level actions, therefore avoiding direct token-level optimization.43

To improve on the existing RL finetuning methods for LLMs and optimize for multi-turn outcomes,44

we propose a novel decomposition of this problem into four parts:45

1. Compact state representation. Representing the dialogue as a low-dimensional vector46

representation,47

2. Offline RL for policy learning. Selecting an optimal high-level action using offline RL48

policy optimization,49

3. Response generation. Generating the tutor’s next-turn response, conditioned on the selected50

high-level action and the current conversation context using few-shot examples,51

4. Data augmentation. Improving data for offline RL through optimism-based exploration.52

While we use online math tutoring as a concrete example, our framework is broadly applicable to53

other multi-turn dialogue settings where greedily optimizing LLM assistant’s response at each turn54

may not align with long-term outcomes across multiple turns. In summary, our main contributions55

are:56

• Proposing a multi-turn optimal RL policy framework based on low-dimensional student’s57

state representation and high-level tutor’s actions,58

• Introducing a new exploratory data collection strategy to simulate diverse tutoring scenarios,59

• Demonstrating a 50% improvement in simulated students’ problem-solving rate over prompt-60

ing baselines in GSM8K-based tutoring scenarios.61

2 Related Work62

RL for multi-turn dialogue optimization of LLMs: Prior works apply both RL and non-RL63

methods to optimize LLM-based chat-bots for long-term outcomes. [30] propose sampling a set of64
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candidate responses from a base LLM and selecting the most optimal response based on the Q-value65

estimates. Similarly, [35, 4] use Monte Carlo Tree Search to simulate or predict the future outcomes66

of each candidate response and select the highest scoring response. In contrast to sampling based67

methods, [23] train a transformer-based value function and policy using offline RL. In contrast to68

prior work, we optimize the policy using offline RL and evaluate on much more complex scenarios69

often with more than ten turns per dialogue. While [38, 22] share the same motivation as our work,70

they train token-level policies instead of policies defined over abstract states and high-level actions.71

Hong et al. [11, 12] improve prior work [23] by focusing on synthetic data augmentation. They72

propose using an LLM-based critic [11] or a hindsight controller [12] to collect new actions that may73

help improve downstream RL policy learning. We continue to improve this line of work by proposing74

an optimism-guided approach for exploring potentially high-rewarding actions and training an offline75

RL policy with the augmented data.76

LLMs for supporting K-12 math education: Among many applications of multi-turn interaction,77

we focus on education, specifically math tutoring for K-12, as a representative domain with broad78

impact. The use of LLMs in K-12 math education has expanded from providing assistance to human79

tutors with LLM-guided examples [31, 33, 33], evaluating the difficulty of educational content [10],80

and various LLM-assisted tutoring services, such as Khanmigo and LearnLM [34, 19, 26]. As part81

of efforts to design more pedagogically aligned LLM tutors, [16] evaluates differences in students’82

learning outcomes across various tutoring dimensions, such as explanation type and quality and the83

degree of support provided.84

3 Setup85

Following the notations in prior work [2], we denote the conversation between a teacher X and a86

student Y as a sequence of turns C = {U
X
1 , U

Y
1 , ..., U

X
N , U

Y
N }, where N represents the number of87

dialogue turns (with the max length set to 20). Additionally, we include R
Y
n , an indicator of whether88

the student in the n-th turn has solved the problem correctly or not, so the resulting C becomes89

{U
X
1 , U

Y
1 , R

Y
1 , ..., U

X
N , U

Y
N , R

Y
N}. The session ends either when the student solves the problem90

correctly (reward +1) or when the maximum dialogue length is reached (penalty -1). The value91

of a conversation (i.e., conversation-level outcome) is measured by the discounted sum of per-turn92

rewards,
∑N

n=1 ω
n
R

Y
n . Note that with any ω < 1, the value is higher if the student solves the problem93

faster due to the smaller discounting amount. At each turn, the teacher generates U
X
n given the94

conversation history so far, HY
n→1 = {U

X
1 , U

Y
1 , ..., U

Y
n→1}. The student responds to the teacher with95

U
Y
n . We use εω (“tutor policy") to denote this mapping from H

Y
n→1 to U

X
n .96

Additionally, we introduce notations for the student’s state and the tutor’s high-level actions: SY
n97

denotes the low-dimensional state vector representing the student extracted from the dialogue so far98

H
Y
n and A

X
n denotes the tutor’s high-level action. We assume that there’s an one-to-one relationship99

between U
X
n (tutor’s utterance) and A

X
n (tutor’s high-level action). For brevity, we drop the super-100

scripts X and Y hereafter. The conversation is now represented as C = {S1, A1, R1, ..., Sn, An, Rn}.101

The tutor policy is parameterized by a neural network and can be optimized via RL, and the goal is to102

learn a good εω maximizing the expected value of the multi-turn conversation between the student103

and the (LLM) tutor.104

4 Synthetic Dialogue Generation105

We follow the data generation protocol used by prior work [11, 22], where a single LLM is prompted106

to generate the entire conversation between a teacher and a student on a particular topic. We use107

Claude 3 Sonnet [1] to simulate 3,000 conversation scenarios using SAT-level math problem from108

Kumar et al. [16] (more details in appendix:9.1). To make the generated scenarios more realistic, we109

include conversations between a real human student and an AI tutor from the algebra-level subset of110

Khan Academy’s CoMTA dataset [18]1 as few-shot examples in the prompt during generation. We111

assign +1 for success and -1 for failure, and use a discount factor of 0.9.112

1This dataset contains 188 dialogues between an LLM tutor and deidentified students. The authors were
approved by the license owners to use this dataset.
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Algorithm 1 Optimizing a tutor policy using RL
1: Input: conversation dataset D
2: Dε = →

3: for C ↑ D do
4: for n = 1 to max turn -1 do
5: Map H

Y
n ↓↔ S

Y
n .

6: Map U
X
n ↓↔ A

X
n .

7: Assign reward R
Y
n based on U

Y
n .

8: Add (SY
n , A

X
n , R

Y
n , S

Y
n+1) to Dε .

9: end for
10: end for
11: Run an offline RL algorithm on Dε with a discount factor ω.
12: Return: the optimized tutor policy εω. =0

5 Approach113

Our key distinction from prior RL-based work on multi-turn dialogue optimization is the use of114

low-dimensional state representations and high-level actions. We first map each dialogue to a 25-115

dimensional vector capturing different aspects of the student-tutor interaction and the student’s116

learning progress. Then we use an offline RL-optimized policy to select a high-level action for the117

tutor among the following options: (1) instruct, (2) encourage, (3) bring the student’s focus back to118

the session, and (4) ask a question. Finally, the LLM tutor generates a response conditioned on the119

selected action and the full conversation history for contextualization.120

Our proposed tutor policy εω maps lower-dimensional states Sn to tutor’s high-level actions An.121

Unlike the enormous token spaces of HY
n (full conversation history between the tutor and the student)122

and U
X
n (tutor’s token-level utterance), the state and action spaces are substantially lower dimensional,123

making RL-based policy optimization more efficient even without GPUs or large training datasets.124

5.1 Mapping dialogue to student state representation125

Training a tutor policy typically experiences the challenge of increasing (dialogue) input length as the126

conversation continues between the (LLM) tutor and the student. While Transformer models [29]127

can accommodate long histories, they are computationally expensive to train. To learn a lightweight128

tutor policy, we compress the dialogue history into a fixed, low-dimensional state and define the129

policy over this reduced space. Concretely, for each dialogue, we prompt Claude 3 Sonnet [1] to130

answer a structured set of questions about the observed dialogue, then vectorize these answers to131

obtain a 25-dimensional student state vector Sn. We further augment this representation with model132

outputs from [32], which quantify mathematical reasoning and “math density" in K-12 level math133

student discourse. Although the full conversation Hn grows with conversation turns n, the policy134

always operates on a constant-sized state defined by Sn. Full experimental details, including the135

question set for state representation, are in Appendix: 11.136

5.2 Extracting high-level actions from tutor’s utterance in offline dataset137

Inspired by prior work’s categorization of different teaching strategies [33], we define the high-level138

action space based on the following four actions: (1) instruct, (2) encourage, (3) bring the (distracted)139

student’s focus back to tutoring, and (4) ask a question, so the optimal tutor policy εω is a mapping140

from the low-dimensional student state to one of the four actions.141

5.3 Preparing data for offline RL142

We first generate 3,000 conversations using Claude 3 Sonnet as described in Section 4: Synthetic143

Dialogue Generation and map every student’s utterance into a low-dimensional state representation144

and every tutor’s utterance into one of the four action categories using Claude 3 Sonnet. The prompt145

used for extracting the high-level action from the tutor’s utterance is in Appendix:12. To assign a146

per-turn reward to the student, we extract the student’s most likely answer based on their most recent147

utterance and check whether the extracted numerical value matches the correct answer. Given this148
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offline dataset, we use RL to optimize the existing policy which is likely sub-optimal. In Section 5.5,149

we will discuss how to collect more diverse training samples by exploring tutoring strategies guided150

by optimistic Q-value estimates, and our experiments evaluate whether the diverse data collection151

improves the tutoring policy.152

5.4 Optimizing a tutor policy with RL153

Given the conversation dataset C, we optimize the tutor’s policy εω based on the actions most likely154

to yield higher expected rewards. Importantly, rather than optimizing the tutor for a single-step155

reward, we aim to maximize the overall conversation-level outcome. This requires considering the156

value of future student states, not just the current one. RL provides a computational framework for157

optimizing future outcomes through the Q-value, which is defined as:158

Q(sn, an) = Eεω

[
N∑

t=n+1

ω
t
Rt | Sn = sn, An = an

]
(1)

This represents the expected rewards of following the tutor policy prescribed by εω from the n-th159

turn. This Q-value is parameterized by µ and learned to minimize the following loss over the offline160

samples:161

L(µ) =
∑

(sn,an,rn,sn+1)↑D
[(

rn + ωmax
a

Qµ(sn+1, a)
)
↗Qµ(sn, an)

]2
(2)

Through the process of Q-iteration [8], we arrive at the resulting εω which greedily chooses162

argmaxa Qµ(sn, a) for each student state during deployment to maximize the multi-turn objective.163

Since offline RL is known to experience challenges due to out-of-distribution states and actions,164

we choose Conservative Q-learning (CQL) [14], rather than Q-iteration. Many successful and165

well-studied algorithms [15, 27, 13] exist for offline RL, and our framework can work with any166

method.167

One might ask: What’s the advantage of RL compared to supervised fine-tuning (i.e., behavioral168

cloning)? Even if we had access to actual student and teacher dialogue, the effectiveness of teaching169

may vary significantly between expert and beginner teachers [25], so we cannot guarantee that the170

data is always optimal. Moreover, our synthetic data is generated using the baseline LLM as the171

tutor, which is likely sub-optimal. In fact, our experiment results show that RL-optimized policy172

outperforms simple behavioral cloning.173

5.5 Tutor’s response conditioned on the selected high-level action174

Figure 2: Conditioning on different high-level
actions, “question” vs. “encourage the student”,
leads to clearly distinct tutor responses.

For each tutor’s turn, the policy εω chooses an op-175

timal high-level action which guides how the tutor176

should respond to the student. However, we still177

need to turn this action into tutor’s next turn re-178

sponse. We leverage instruction-following capabil-179

ities of LLMs to transform the selected high-level180

action into a context-appropriate response.181

The tutor LLM is prompted to generate an appro-182

priate response U
X
n conditioned on the dialogue183

and the selected action (Hn→1, An). To guide184

the generation, we provide a few-shot examples185

sampled from the offline data that demonstrate186

the selected action An. Fig. 2 shows how condi-187

tioning on the selected action shapes the tutor’s188

response. When the action is encourage, the tutor189

LLM responds with positive, supportive remarks190

like “You’ve got the key information – well done!" compared to the ask a question action.191
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Algorithm 2 Exploratory data collection
1: Input: annotated dataset Dε , N budget for data collection.
2: Dcandidate = →

3: Fitted Q-iteration using Dε to obtain Qµ.
4: Behavioral cloning with Dε to get εbc.
5: for (sn, an) ↑ Dε do
6: val = maxa Qµ(sn, a)↗Qµ(sn,εbc(sn))
7: a

↓
n = argmaxa Qµ(sn, a))

8: Add (val, sna↓n) to Dcandidate.
9: end for

10: for (sn, a↓n) ↑ Dcandidate[: top N] do
11: Query D with the matching student state sn

12: Generate tutors’ response conditioned on a
↓
n and the retrieved scenario from L11.

13: Continue generating the rest of the conversation.
14: Add this example to D.
15: end for=0

5.6 Optimism-guided data augmentation192

As highlighted by Hong et al. [11, 12], data augmentation is crucial for improving the quality of193

learned RL policies. While prior work largely rely on hand-designed prompts for data collection, we194

propose a data collection method based on optimism in RL.195

We first identify student states from the existing dataset D, where a different high-level action than196

the one chosen by the baseline policy has a higher Q-value estimate. We use the Q-function Qµ
2197

learned by minimizing the loss in Eq. (2). We can use the Q-value for each tuple (s, a) in the dataset198

to test whether a better alternative a
↓ to the baseline action a exists with a higher Q-value estimate,199

as in Alg. 2.200

We select 500 tuples of (s, a, a↓) with the highest expected value. For each tuple, we find examples201

from D, where the student’s state in the example matches the state in the tuple. We generate the202

tutor’s next response conditioned on the selected action a
↓ and complete the rest of the dialogue203

between the student and the tutor using the baseline LLM. We generate five scenarios for each tuple204

and augment additional 2,500 examples from optimism-guided exploration to the original dataset.205

To measure the benefit of exploration, we evaluate the tutor trained from both the original and the206

augmented data in our experiments. We denote the original by D and its augmented version by D
+.207

6 Evaluation208

We evaluate the proposed tutor’s conversation-level performance using a student simulator set up by209

Claude 3 Sonnet [1]. We have one LLM as the tutor (following either a specific policy or prompt210

engineering) and another LLM as the student. Each tutor is tested over 300 conversation samples and211

assessed based on the average success rate of the student correctly solving the problem within the212

maximum dialogue length.213

The baseline models used for comparison are: (1) Prompt engineering (details in Appendix:10.1),214

(2) Behavioral cloning, (3) Fitted Q-iteration, and (4) Conservative Q-learning (CQL). We test four215

models on both the original and the augmented data, resulting in seven different tutors since prompt216

engineering does not require any training. Behavioral cloning is our version of supervised fine-tuning.217

Instead of matching the output token distribution, the behavioral cloning policy is trained to match218

the baseline policy’s high-level action distribution.219

2Instead of CQL, we use fitted Q-iteration because the offline RL algorithm relies on pessimism to handle
out-of-distribution data, and is therefore, less suitable for our optimism-guided search.
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7 Student Simulator Results220

Our experiments are designed to answer two key questions: (1) Which tutor policies achieve better221

multi-turn outcomes, and (2) How much improvement is made in the tutor’s policy through exploratory222

data augmentation. Overall, we are interested in whether our proposed method (using CQL with the223

augmented data) outperforms other baselines based on both RL and non-RL.224

7.1 Does our method improve the simulated student’s problem-solving success rate?225

Our experimental results with the simulated student show that our method (embedding the dialogue226

history into a latent state representation and learning to select a long-term optimal action) outperforms227

prompt engineering. This holds true for both CQL policies, whether trained on the original data or228

the augmented data. Figure 3 shows that CQL (D) and CQL (D+) both achieve substantially higher229

average success rates (48.67% and 60.33% respectively) than prompt engineering (36% success rate230

on tutoring evaluations with sampled GSM8K problems). Notably, CQL on the augmented dataset231

achieves 50% improvement over the prompting baseline. Fitted Q-iteration on both D and D
+ also232

outperform the non-RL baseline, but the benefits are smaller than CQL with the largest improvements233

of 25.81% made by fitted Q-iteration.234

Figure 3: Average success rates of prompt
engineering, behavioral cloning (BC), fitted
Q-iteration (Q), and Conservative Q-learning
(CQL). The blue results are trained with the orig-
inal dataset and the orange results are trained
with the augmented dataset. The evaluations are
conducted with 300 conversations and the error
bars indicate 95% CI.

Interestingly, behavioral cloning on D under-235

performs, but the same model trained on D
+ out-236

performs prompt engineering. The benefit of data237

augmentation will be further discussed in the fol-238

lowing section. We believe the main reason for239

this improvement is that the augmented data in-240

cludes more successful conversation examples. By241

intervening with promising tutor actions, data aug-242

mentation effectively changes the baseline policy243

represented by the dataset. Since the goal of be-244

havioral cloning is to mimic the baseline policy’s245

action distribution, improving the baseline policy246

naturally leads to better performance.247

One might expect behavioral cloning on D to248

match the performance of prompt engineering249

since D is also generated using prompt engineer-250

ing (and therefore, the baseline policies should251

match). Therefore, the baseline tutor policy should252

be the same in both settings. However, Fig. 3253

shows that behavioral cloning on D performs254

worse. We suspect this gap is due to informa-255

tion loss when projecting the dialogue history into256

a lower-dimensional latent state representation. We learn a deterministic behavioral policy that maps257

each latent state to the most likely high-level action based on the action frequency observed in D.258

However, if two different dialogue histories are mapped to the same latent state and are therefore,259

treated identically by the learned policy, this could create a mismatch between the behavioral policy’s260

output and prompt engineering behavior. Additionally, prompt engineering has the advantage of261

selecting actions non-deterministically based on the full dialogue history.262

Despite the potential loss introduced by compact state representation, RL-optimized policies achieve263

better outcomes than prompt engineering. This supports our hypothesis that the baseline policy264

from prompt engineering is not optimized for conversation-level outcomes. The results further show265

that our proposed tutor (CQL+) achieves the highest average success rate across 300 conversation266

examples compared to other tutor models.267

7.2 How does exploratory data augmentation help with policy learning?268

One of our main contributions is optimism-based data collection for exploring promising tutor actions.269

Fig. 3 is designed to compare the policies trained on the original data (blue) and those trained on the270
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Dataset Success Diversity
Original D 74.64 38.53
Augmented D

+ 82.83 39.35
Table 1: The original dataset contains 3,000 dialogue examples, and the augmented dataset contains
2,500 additional samples collected from optimism-guided action exploration.

augmented data (orange). Across all policies, from behavioral cloning to CQL, we observe that using271

the augmented data improves the tutor’s performance.272

Data augmentation improves the tutor in two ways: first, by increasing the coverage of states and273

actions, and second, by leading to more successful conversation examples, where the student correctly274

solves the problem on their own. In Table 1, we compare the average success rate in the original and275

augmented data based on number of successful examples
total number of examples (as before, success is determined by whether the276

student solves the problem correctly within the maximum dialogue length). We also measure the277

diversity of states and actions covered in both datasets by calculating the ratio of unique states and278

actions to the total number of dialogue turns.279

We expect the augmented data to have higher diversity because we design the data augmentation280

process to explore student states and tutor actions not already observed in the existing data. However,281

this does not guarantee higher success rates. If the Q-value function learned from the original data is282

mis-specified or biased, the promising actions under the incorrect Q-function may result in worse283

outcomes.284

Promisingly, we observe that the augmented data also yields a higher average success rate. This285

suggests that the Q-function learned from D is already an improvement to the baseline policy. This286

aligns with our previous observation about the performance of Q-iteration in Fig. 3 (“Q" versus “BC"287

and “Prompt"). Since the augmented data includes more successful dialogue examples, behavioral288

cloning on the new data also achieves a higher success rate than the original behavioral cloning.289

8 Conclusion290

One limitation of RLHF is that the resulting model is optimized for a single turn. However, in many291

realistic settings, such as tutoring, conversations between an LLM and a user or student span multiple292

turns. Greedy optimization based on turn-level preferences fails to account for future outcomes.293

There are settings where turn-level optimal responses (e.g., providing a solution) don’t align with the294

overall objective (e.g., helping the student solve the problem on their own). To overcome this, we295

propose an efficient, lightweight RL approach for designing a long-term optimal LLM tutor.296

Our framework is applicable to many other multi-turn dialogue settings beyond tutoring. For example,297

analysis by Zheng et al. [37] on 100K conversations across 25 state-of-the-art LLMs shows that298

queries about technology and software are among the most frequent topics users ask LLMs. When299

answering these questions, chat-bots can adopt long-term strategies for engaging with users over long300

conversations.301

Ethical Considerations302

Concerns have been raised about using large language models to simulate students. To mitigate303

potential biases in simulated students’ behaviors, we exclude demographic information from the304

student profile and include only the potential mistakes a student might make while solving the target305

math problem.306

We understand that human teachers provide value to classrooms and individual students that is307

irreplaceable by LLM-based tutors. While we believe in the potential of LLMs and Generative308

AI to improve students’ learning experiences and outcomes, we are also mindful of potential risks309

associated with deploying such systems to directly interface with students. In this work, we focus on310

online math tutoring as a concrete example of multi-turn dialogue and propose a computationally311

efficient approach based on RL that can be broadly applied to non-education-related contexts.312
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Appendix464

9 Data generation465

For the reviewer’s easier parsing, we highlight parts of the prompts relevant to the student’s mistake,466

the math problem description, and a few-shot dialogue examples from CoMTA dataset [18] in yellow,467

high-level actions in magenta, and generated tutor and student dialogue snippets in lime.468

9.1 Prompt for data generation469

We use the following prompt to generate the full dialogue trajectory of a student and a tutor discussing470

a target math problem. We use one LM to act as both the tutor and the student.471

Generate a dialogue between an AI tutor and a sixth-grade student where the sixth-grade student472

asks the tutor for an explanation of a math problem. The student is not good at math, so the student473

struggles with the problem and makes a mistake. Insert a sampled student mistake. The474

tutor should perform information-gathering to figure out the sixth-grade student’s math background475

knowledge, by asking questions and engaging in dialogue with the sixth-grade student. In the476

dialogue, the tutor’s utterances are prefaced by “Tutor:" and the sixth-grade student’s utterances477

are prefaced by “Student:". The student is asking about the following problem: Insert the478

target math problem. Below are some examples of the student asking the tutor about math479

concepts. Insert examples of student-tutor dialogue from Khan Academy’s480

CoMTA dataset. Make sure the dialogue ends when the student gives the correct answer. The481

tutor should not give the solution explicitly but correct the student‘s mistake if the student makes any482

mistakes. The student is easily distracted and may lose interest in solving the problem, but the tutor483

needs to help the student focus on the problem.484

9.2 Prompt for exploratory data generation based on Q-value optimism485

For exploratory data collection and augmentation, (for example, we want to collect trajectories of486

executing a new action an from a latent state sn), we first look in the existing dataset for a dialogue487

example that includes the matching latent state sn but with a different action than the identified488

optimal action, a↓n. Next, we use the prompt in 10.2 for a single turn intervention conditioned on the489

desired action a
↓
n. Then, we continue generating the rest of the dialogue using the following prompt490

with a single LLM:491

Generate a dialogue between an AI tutor and a sixth-grade student where the sixth-grade student492

asks the tutor for an explanation of a math problem. The student is not good at math, so the student493

struggles with the problem and makes a mistake. The tutor should perform information-gathering to494

figure out the sixth-grade student’s math background knowledge, by asking questions and engaging in495

dialogue with the sixth-grade student. In the dialogue, the tutor’s utterances are prefaced by “Tutor:"496

and the sixth-grade student’s utterances are prefaced by “Student:". The student is asking about497

the following problem: Insert the math problem. Below are some examples of the student498

asking the tutor about math concepts. Insert examples of student-tutor dialogue499

from Khan Academy’s CoMTA dataset. Make sure the dialogue ends when the student gives500

the correct answer. The tutor should not give the solution explicitly but correct the student‘s mistake501

if the student makes any mistakes. The student is easily distracted and may lose interest in solving the502

problem, but the tutor needs to help the student focus on the problem. Note (d/30) + (d/50), d/30 +503

d/50, and d/(30) + d/(50) are equivalent expressions, so the tutor need not correct the student if the504

student gives any of these expressions. Also remember that the total distance traveled is 2d. Here’s505

the dialogue you need to continue writing: Insert the partial dialogue generated so506

far. Begin your response directly with “Student:" and continue writing the rest of the dialogue507

until the student solves the problem.508
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10 Prompts for generating LM tutors509

10.1 Prompt engineering only tutor510

You’re an online math tutor working with a sixth-grade student. Continue the following dialogue as511

the tutor. You should perform information-gathering to figure out the sixth-grade student’s math512

background knowledge, by asking questions and engaging in dialogue with the sixth-grade student.513

You should not give the solution explicitly but correct the student’s mistakes if the student makes any514

mistakes. The student is easily distracted and may lose interest in solving the problem, but the tutor515

needs to help the student focus on the problem. In the dialogue below, the tutor’s utterances are516

prefaced by Tutor:” and the sixth-grade student’s utterances are prefaced by Student:” Insert517

the dialogue here. Begin your generation with “[Generation] Tutor:” and make sure518

to respond to the student’s last utterance, which is Insert student’s response. Keep your519

response concise."520

521

522

10.2 High-level action conditioned tutor523

You’re an online math tutor working with a sixth-grade student. Continue the following dialogue524

with the goal of Insert the selected high-level action. In the dialogue below, the525

tutor’s utterances are prefaced by Tutor:” and the sixth-grade student’s utterances are prefaced by526

Student:”. Insert the dialogue here.527

Here are some examples of solving a different problem, but demonstrating the desired tutor’s action:528

5 examples of different student-tutor dialogues and the demonstration529

of the selected action.530

Now it’s your turn. Begin your generation with “[Generation] Tutor:" and respond to531

the student’s utterance by {Insert the selected action}. Make sure to respond to the532

student’s last utterance, which is Insert student’s response. Keep your response concise.533

534

The action-conditioned prompt is used for both the behaviorally cloned tutor from the orig-535

inal data and the optimistic Q-function-based tutor, as well as our proposed tutor based on536

Conservative Q-learning on the augmented data. For the behavioral cloned tutor, the actions are not537

optimized with reinforcement learning, but instead selected based on supervised learning.538

11 Latent student state representation539

One key idea is to map dialogue histories in natural language to low-dimensional vectors representing540

the student states. Each element in the vector represents the following item. Most items are binary541

responses (taking on either 1 for yes or 0 for no) to a single question, but some items use majority542

votes from multiple questions to get the values.543

1. Is the student producing math-related content?544

2. Has the student solved the problem correctly?545

3. Is the student asking the tutor to re-explain a concept or clarify what the tutor has said546

already?547

4. Is the student repeating or emphasizing what the tutor has already said?548

5. Is the student going off-topic?549

6. Is the student’s utterance unrelated to the math problem?550

7. Is the student explicitly asking the tutor a question?551

8. Is the student describing what they are stuck on or which part of the problem they are552

confused about?553

9. Has the student asked diagnostic questions to assess the student’s mathematical knowledge554

or level?555

10. Is the student expressing frustration?556
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11. Is the student expressing uncertainty or lack of confidence about their ability to solve the557

problem?558

12. Is the student expressing positive sentiment?559

13. Is the student asking the tutor for a break from the tutoring session?560

14. Is the student talking about the problem at hand?561

15. Is the student talking about their general mathematical background?562

16. Is the student talking about other math concepts related to the problem at hand?563

17. Has the student written down an equation for the problem?564

18. Is the tutor asking a question to the student?565

19. Did the student make a mistake in the current turn? (Based on the majority vote from566

answers to the following three questions):567

(a) Did the student make any calculation mistake in the most recent utterance?568

(b) Did the student make any mistake solving the problem? (Followed by examples of569

student mistakes that are marked as “possible mistakes" students may make.)570

(c) Did the student make any mistake solving the problem? (Followed by examples of571

successful student solutions that are marked as “correct solutions.")572

20. Has the tutor tried to bring the student’s focus back to the problem after the student is573

distracted? (Based on whether any previous time steps has answered yes to the following574

question: )575

21. How many questions did the tutor ask the student so far? (Based on the cumulative count of576

yes to Q18 from all previous time steps)577

22. How many questions did the student ask the tutor so far? (Based on the cumulative count of578

yes to Q7 from all previous time steps)579

23. What is the current turn in the conversation? (Integer value between 1 and maximum580

dialogue length)581

24. Output of the classifier by Wang and Demszky [32] representing ‘math density’582

25. Output of the classifier by Wang and Demszky [32] representing the amount of student’s583

mathematical reasoning584

12 Inferring the high-level action from the tutor’s utterance585

In order to create a dataset used for reinforcement learning, we need to turn the conversation data586

into tuples of latent states sn and high-level actions an. Appendix 11 describes how sn is mapped587

from the dialogue history. Here we describe how the high-level action sn is inferred from the tutor’s588

utterance in natural language. For each tutor’s utterance in the conversation, we turn into one of the589

high-level actions an by asking an LM the following prompt:590

We are evaluating a dialogue between an online tutor and a sixth-grade student. In the dialogue, the591

tutor’s utterances are prefaced by “Tutor:" and the student’s utterances are prefaced by “Student:".592

Insert the dialogue here. Based on this dialogue, can you label the tutor’s utterance as one593

of the following action types? The action types to choose from are: «1» teaching, «2» encouraging the594

student, «3» assessing the student’s background knowledge, and «4» bringing the student’s focus back595

to the lesson. Here are some examples. Insert one example of each action formatted596

as: Example #: Dialogue example. Label: «i corresponding description for597

Label i. Now it’s your turn to label this dialogue. Insert the dialogue here.598

13 Details about evaluation using simulated student599

We set up a sixth-grade student with the following prompt:600

You are easily distracted and may lose interest in solving the problem, but the tutor needs to help601

you focus. You might get distracted, ask questions, request more help from the tutor, or solve the602
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problem correctly on your own if you understand it. Keep your responses short and respond like a603

sixth-grader.604

We also sample a potential mistake, which is chosen uniformly at random from a candidate of 10605

mistakes. The candidate mistakes are the output to the prompt:606

We are designing a task where an AI agent needs to teach a human student how to solve this problem.607

Problem: Insert the target math problem. The student may make different mistakes that608

require the agent to personalize their instruction. Can you provide a list of 10 different problems609

that the student makes where the agent needs to change their teaching content for different mistakes?610

Begin your generation with ‘List:‘..611

Then we sample one of the mistakes uniformly at random when initializing the student simulator612

as follows: You are not good at math, so you struggle with the problem and make a mistake. One613

common mistake a student like you might make is: sampled student mistake.614

The reward is assigned based on whether the student correctly solves the problem or not. The tutor615

and the student take turns producing a sequence of tokens, continuing until the student correctly616

solves the problem – achieving the maximum reward of 1 – or until the maximum dialogue length617

is reached – receiving a penalty of -1. Specifically, we take the student’s utterance at each dialogue618

turn, extract the solution (if no solution is extracted, the reward is immediately 0), and check if the619

extracted value matches the correct solution. To avoid giving a positive reward when the student620

expresses confusion about the solution, even after correctly solving it, we also check whether the621

student expresses confusion in their response. If so, the reward is nullified to 0.622

14 Generalizability of the tutor: Can the tutor trained on a single problem623

teach new, unseen math problems?624

Another interesting question to explore is whether the same tutor policy, trained on a single math625

problem, can generalize to many unseen problems. We generally do not expect policies to generalize626

across tasks because the dialogue histories may differ significantly between problems. However, a627

low-dimensional policy may still generalize across problems, as two different dialogue histories from628

different problem contexts could be mapped to the same latent state representation. For example,629

suppose there are two different problems, x and y, and two students working on each problem. Let630

Hx represent the dialogue from problem x and Hy represent the dialogue from problem y. The631

policy mapping from the dialogue history to the tutor’s utterance, ε : H ↓↔ U , is likely to view632

Hx and Hy as different inputs. On the other hand, the low-dimensional policy, εω : S ↓↔ A,633

may receive the same low-dimensional latent state inputs mapped from Hx ↓↔ s and Hy ↓↔ s.634

Intuitively, if s represents a distracted student in both scenarios, then the optimal policy might be to635

choose the action “bring the student’s focus back to the lesson" and therefore,636

is applicable to both students. The tutor’s utterance, generated conditioned on the high-level action,637

may still differ for the two scenarios since the generator LLM also takes into account the full dialogue638

history including the problem contexts. Therefore, having the same high-level action a does not639

necessarily imply the same tutor’s responses are generated as long as different contents are present in640

the conversation window.641

To test this hypothesis, we evaluate our tutor on seven new problems from the GSM8K test-dataset642

[6]. The full list of problems used for evaluation is included in the next section. The success of643

generalization relies on the key assumption that dialogue histories from different problems are mapped644

to the same latent state, and that the latent state transition dynamics are problem-agnostic. Even645

if the latent state representations are the same; if the same high-level action leads to two different646

future (latent) states, then the optimal policy for one problem is likely not also optimal for the other647

problem.648

We observe that naively generalizing the tutor to new problems does not work in most cases. As649

shown in Fig. 4, our tutor based on CQL on the augmented data (dark blue) outperforms prompt650

engineering (green) on some problems, but not consistently across all problems. Overall, across651

the 7 different problems (each evaluated with 300 dialogue samples), our tutor achieves a mean652

success rate of 27.48 with a standard deviation of 17.35. Prompt engineering-based tutor achieves653

a slightly lower success rate of 26.90, but with a larger standard deviation of 22.78. These results654

are not significant to conclude that our proposed method has generalizable performance, better than655
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Figure 4: Each tutor is evaluated on 300 conversations about each target math problem. The error
bars show 95% confidence intervals. BC* is only trained on the exploratory data.

Tutor Success
Behavioral cloning with D

↓ 36.23 ± 20.80
CQL with D

+ 27.38± 17.35
Prompt engineering 26.90± 22.78

Table 2: Evaluation of different tutors across 7 GSM8K test problems. 300 tutoring trajectories are
sampled for evaluation of each problem. This table shows the mean and the standard deviation of the
average success rates across 7 math problems.

prompt engineering, on unseen math problems from the GSM8K benchmark dataset. It is possible656

that each problem has its own latent state transition dynamics, which would make generalization657

across new problems inherently difficult. In such a case, learning an optimal tutor policy tailored to658

one problem’s transition dynamics would not transfer to new problems with different dynamics.659

Surprisingly, we observe that instead of using the augmented data, performing behavioral cloning660

with the exploratory data D
↓ results in a tutor that outperforms both the RL-optimized tutor and661

prompt engineering. As shown in Table 2, behavioral cloning with D
↓ achieves an average success662

rate of 36.23± 20.80. The performance breakdown of each problem is shown in Fig. 4, where the663

light blue represents behavioral cloning with D
↓, and the dark blue represents our proposed tutor664

based on conservative Q-learning with the augmented data D
+.665

On problems 20 and 46, behavioral cloning using the exploratory data performs especially well666

compared to both prompt engineering and CQL. To understand the relative advantage of behavioral667

cloning to the other methods, we compare the actions selected by each policy in the observed668

trajectories. For both problems 20 and 46, the trajectories under the behavioral cloning policy contain669

significantly more instances of instruction, while the CQL policy selects more evenly across the four670

available actions: instruction, encouragement, questioning, and refocusing (Fig. 5). It is important671

to note that although behavioral cloning leads to the best performance on some of the new tasks, it672

relies heavily on giving instructions, which may be sub-optimal from pedagogical perspectives.673

An alternative approach to testing generalization would be to train on a smaller set of problems and674

then evaluate the learned tutor on new problems that differ from the training set. This would help675

determine whether the inconsistent performance of CQL+ observed in Fig. 4 is due to the current676

training data having too narrow coverage of the state and action tuples – which could be addressed by677

including dialogue samples from a broader range of problem contexts and collecting more samples –678

or whether each problem has its own latent transition dynamics that cannot be shared across different679

problems. If the latter hypothesis is true, then we would need to learn a distinct tutor policy for680

each problem, as one tutor policy will not generalize to other unseen problems that induce different681

transition dynamics of student’s states.682
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Figure 5: We compare the ratio of each high-level action observed in the tutoring conversations when
following different policies to solve the GSM8K problems #20 and #46 to analyze how the overall
actions selected by BC and CQL policies differ. Notably, BC relies on a significantly higher amount
of “instruction" than CQL.

15 Problems from the GSM8K benchmark for evaluation of the tutor’s683

teaching strategy684

We include new problems from the GSM8K dataset [6] as shown below, to evaluate the generalization685

capabilities of the tutor trained with a single training problem given by Kumar et al. [16].686

• Question 7: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute,687

but 40% of the way through the download, Windows forces a restart to install updates, which688

takes 20 minutes. Then Carla has to restart the download from the beginning. How load689

does it take to download the file? Answer: 160.690

• Question 12: Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it691

will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a year to water and feed692

the tree. How many years will it take before he starts earning money on the lemon tree?693

Answer: 13.694

• Question 13: Melanie is a door-to-door saleswoman. She sold a third of her vacuum695

cleaners at the green house, 2 more to the red house, and half of what was left at the orange696

house. If Melanie has 5 vacuum cleaners left, how many did she start with? Answer: 18697

• Question 15: A merchant wants to make a choice of purchase between 2 purchase plans:698

jewelry worth $5,000 or electronic gadgets worth $8,000. His financial advisor speculates699

that the jewelry market will go up 2.5% while the electronic gadgets market will rise 1.2%700

within the same month. If the merchant is looking to maximize profit at the end of this month701

by making a choice, how much profit would this be? Answer: 125.702
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• Question 20: I have 10 liters of orange drink that are two-thirds water and I wish to add it703

to 15 liters of pineapple drink that is three-fifths water. But as I pour it, I spill one liter of704

the orange drink. How much water is in the remaining 24 liters? Answer: 15.705

• Question 37: John plans to sell all his toys and use the money to buy video games. He has706

13 lego sets and he sells them for $15 each. He ends up buying 8 video games for $20 each707

and has $5 left. How many lego sets does he still have? Answer: 2708

• Question 46: Candice put 80 post-it notes in her purse before she headed out to her job at709

the coffee shop. On her way, she stopped off at the store and purchased a package of Post-it710

notes; At work, she placed a single Post-it note on each of 220 different cups of coffee. If711

she had 23 post-it notes remaining overall, how many Post-it notes were in the package that712

she purchased? Answer: 163.713

.714

16 Training tutor policy using offline RL715

We used d3rlpy library for conservative Q-learning d3rlpy.algos.DiscreteCQL implemen-716

tation with the following hyper-parameter set:717

• learning rate: 5e↗ 5,718

• Adam optimizer with epsilon: 1e↗ 2/32719

• Batch size: 32720

• Alpha: 4.0721

• Gamma: 0.9722

• Q function n quantiles: 200723

• Target update interval: 2000724

• Reward scaler to clip the reward values between -1 and 1 (our dataset already returns rewards725

in this range)726

• Model fitted with n steps = 1000000, and n steps per epoch = 10000.727

We also experimented with Batch-constrained Q learning [9] as an alternative algorithm for offline728

RL, implemented using d3rlpy.algos.DiscreteBCQ, using the same hyper-parameters as729

CQL but observed better performance with CQL. These offline RL algorithms available through730

d3rlpy can be trained without GPU requirements.731

17 Training Q function for exploratory data augmentation732

Our proposal for data augmentation requires learning a behavioral cloning policy (to model the action733

distribution captured in the existing dataset D or D+), as well as a Q-value function (to optimistically734

select latent student states and high-level actions that could be tried for exploratory data collection).735

Behavioral cloning learns a policy mapping from S
Y
n to A

X
n , and is parameterized by a 2-layer neural736

network implemented with pytorch. Additional training details include:737

• Hidden dimensions: [128, 128] with ReLU activation738

• Adam optimizer with learning rate 1e-3 and weight decay 1e-1739

• Trained on cross entropy loss to predict AX
n in the existing dataset (either D or D+)740

• Used 1:9 random split for validation and training.741

• Max training epochs = 1000, and selected a model from the lowest validation loss.742

Q-value function is parameterized by sklearn.ensemble.ExtraTreesRegressor with the743

following hyper-parameters:744

• n estimators: 25,745
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• Minimum sample split: 2.746

High-level actions are one-hot-encoded via sklearn.preprocessing OneHotEncoder and747

concatenated with the 25-dimensional state vectors as inputs to the Q-function network. Q-function748

is trained to minimize the loss in Eq. 5.4 over the entire training dataset with the following hyper-749

parameters:750

• Gamma: 0.9.751

• Number of iterations over the entire dataset: 50752

19


	Introduction
	Related Work
	Setup
	Synthetic Dialogue Generation
	Approach
	Mapping dialogue to student state representation
	Extracting high-level actions from tutor's utterance in offline dataset
	Preparing data for offline RL
	Optimizing a tutor policy with RL
	Tutor's response conditioned on the selected high-level action
	Optimism-guided data augmentation

	Evaluation
	Student Simulator Results
	Does our method improve the simulated student's problem-solving success rate?
	How does exploratory data augmentation help with policy learning?

	Conclusion
	Data generation
	Prompt for data generation
	Prompt for exploratory data generation based on Q-value optimism

	Prompts for generating LM tutors
	Prompt engineering only tutor
	High-level action conditioned tutor

	Latent student state representation
	Inferring the high-level action from the tutor's utterance
	Details about evaluation using simulated student
	Generalizability of the tutor: Can the tutor trained on a single problem teach new, unseen math problems?
	Problems from the GSM8K benchmark for evaluation of the tutor's teaching strategy
	Training tutor policy using offline RL
	Training Q function for exploratory data augmentation
	Submission of papers to NeurIPS 2025
	Style
	Retrieval of style files

	General formatting instructions
	Headings: first level
	Headings: second level
	Headings: third level


	Citations, figures, tables, references
	Citations within the text
	Footnotes
	Figures
	Tables
	Math
	Final instructions

	Preparing PDF files
	Margins in LaTeX


