E-3DGS: Event-Based Novel View Rendering of Large-Scale Scenes
Using 3D Gaussian Splatting

Supplementary Material

This supplement provides additional details and insights
into the methods and experiments discussed in the main pa-
per. In Sec. I, we elaborate on our frustum-based initial-
ization, explaining the sampling strategy and how it ensures
effective Gaussian placement in the scene. Sec. II provides
further details on our pose refinement, specifically the use
of Gram-Schmidt orthogonalization to maintain valid trans-
formations during optimization. In Sec. III, we analyze the
camera pose noise in the E-3DGS-Real dataset and describe
the process we use to simulate realistic pose perturbations
for the E-3DGS-Synthetic-Hard dataset. Sec. IV outlines
the implementation details, including adjustments to the
original 3DGS training schedule to improve convergence.
Sec. V covers our evaluation, highlighting the measures we
take to ensure reliable results, particularly for the ablation
studies. Finally, we present a comprehensive comparison in
Sec. VI showcasing additional visual results and ablation
studies on the E-3DGS-Real, E-3DGS-Synthetic, and E-
3DGS-Synthetic-Hard datasets. These experiments expand
on the results from the main paper and further demonstrate
the effectiveness of our method across different scenarios.

I. Frustum-Based Initialization

As described in Sec. 4.2 of the main paper, our approach
involves initializing a fixed number of Gaussians, denoted
as Ng. If we have N, camera poses, we distribute the
Gaussians across these poses, resulting in N, /N, Gaussians
being initialized for each pose. The initialization process
begins by sampling points within the camera frustum in
normalized device coordinates (NDC). However, instead of
uniformly sampling all three coordinates (x,y, z) in NDC,
we adopt a different strategy for depth (z-axis).

We observe that when depth was sampled directly in
NDC, most Gaussians would cluster very close to the near
plane (zye,r), leading to poor scene coverage. To address
this, we sample the depth uniformly in camera coordinates
between zpear and zg,,.. This ensures a more even distribu-
tion of Gaussians across the entire depth range.

Once the depth is sampled in camera coordinates, it is
converted into NDC. Next, the x and y coordinates are sam-
pled uniformly in NDC. With z, y, and z values now in
NDC, we un-project them back into the world coordinates.
This conversion gives us the final positions for the Gaus-
sians in the 3D scene. Next, the entire process is repeated
for each camera frustum associated with the given poses
P,, ensuring a comprehensive initialization across all views.
Therefore, the distribution of Gaussians is effectively tied to

the observable scene regions.

II. Pose Refinement and Gram-Schmidt Or-
thogonalization

In Sec. 4.5 of the main paper, we introduce our approach to
pose refinement, where the refined pose P/ is modeled as
P/ = PgP,, with P? being an error correction transform.
Rather than directly optimizing Py as a 3x3 matrix, we
represent it using two rotation vectors 1 and 75 and a trans-
lation vector 7', following the method of Hempel et al. [6].
This representation allows us to ensure that P remains a
valid transformation matrix during optimization.

To maintain the orthogonality of the rotation matrix, we
apply Gram-Schmidt orthogonalization to r; and 75 to com-
pute the final rotation matrix R = [r}, 7%, r5]. The process
is as follows:
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Here, 7] is the normalized version of r;, and 7} is ob-
tained by subtracting the projection of 5 onto ] and nor-
malizing the result. The third vector 74 is calculated as the
cross product of 7 and r4, ensuring that the resulting rota-
tion matrix is orthogonal. The final error correction matrix
P¢ is then constructed using these orthogonal vectors and
the translation vector 7'.

This approach guarantees that the pose refinement re-
mains valid throughout the optimization process, contribut-
ing to the stability and accuracy of our method.

ITI. Pose Perturbation in E-3DGS-Synthetic-
Hard

As described in Sec. 5.2 of the main paper, we provide the
E-3DGS-Synthetic-Hard dataset that differs from E-3DGS-
Synthetic in two aspects: 1) The camera speed is highly
varied and 2) the camera extrinsics exhibit noise similar in
characteristics to the noise observed in the real data. To
quantify the camera pose noise in the E-3DGS-Real dataset,
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(a) Rotation errors for both E-3DGS-Real and E-3DGS-Synthetic-Hard show a similar error distribution.
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(b) Larger translation errors are applied to E-3DGS-Synthetic-Hard, compared to those in E-3DGS-Real, to account for the
larger scene size and ensure a sufficiently challenging difficulty level for meaningful ablation studies.

Figure 1. Comparison of estimated pose errors in the E-3DGS-Real dataset versus the synthetically introduced errors in the E-3DGS-
Synthetic-Hard dataset. The synthetic perturbations are generated using an Ornstein—Uhlenbeck process to match the time-correlated

nature and variance of the real data.

we compare the refined training camera trajectories with the
initial trajectories. Our analysis reveals that these errors are
time-correlated. Based on this observation and by exam-
ining the scale of these errors, we introduce synthetic per-
turbations in the E-3DGS-Synthetic dataset using a random
walk with decay, specifically the Ornstein—Uhlenbeck pro-
cess [21], which ensures the perturbations have zero mean
while remaining time-correlated.

We calibrate the variance of the synthetic perturbations
to match the rotation errors observed in the real data. For
translation, we apply a higher level of perturbation, given
that the synthetic scenes are significantly larger in scale than
the real data. This adjustment ensures that translation errors
are proportionally scaled, creating a comparable difficulty
level for the ablation studies. The noise patterns are illus-
trated in Fig. L.

IV. Implementation Details

Our codebase is based on 3DGS [9]. We train the method
for 6 - 10* instead of 3 - 10*iterations, allowing the
pose refinement to converge. The original paper performs
both, densification and opacity resets of the Gaussians until

1.5 - 10%iterations. In our case, we perform opacity re-
sets until 3 - 10* and densification until 5 - 10* iterations.
From our analysis—while opacity resets are important to
remove floaters—they also hamper the reconstruction qual-
ity. Therefore, once the scene is reasonably converged, we
stop resetting opacity and only densify the scene to get bet-
ter reconstruction.

Furthermore, 3DGS uses the fixed threshold value 2 -
10~* to decide whether a Gaussian should be split up dur-
ing the densification. We start the optimization with the
same value, however, we linearly decrease it to 4- 1075 over
4 - 10* iterations. First, this allows our method to refine the
poses with larger Gaussians, providing more support, and
second, reduce the threshold in later stages to obtain a more
detailed reconstruction. We initialize N, = 5 - 10* Gaus-
sians in all our trainings.

In the experiments with pose refinement, we restrict the
number of spherical harmonics to one, as it allows for bet-
ter pose refinement [8, 15]. For the experiments with perfect
poses, we follow the original 3DGS approach and use three
spherical harmonics. In all experiments, except those con-
ducted with the EventNeRF dataset [25], we consistently
use Ny =108 events for the window size. As sequences of



the latter are very short and do not contain enough events
for such large windows, we use Ny =10° for them. Train-
ing the full method takes one to two hours with a single
NVIDIA GeForce RTX 3090, depending on the scene size.

V. Further Evaluation Details (Ablations)

To ensure the reliability of the results, all ablation studies
are conducted four times, with evaluation metrics averaged
to provide more accurate insights and minimize the effects
of coincidence. For the E-3DGS-Synthetic-Hard dataset,
where the camera poses are perturbed, direct evaluation is
not feasible due to slight misalignments between the learned
3D scene and the ground truth. To correct this, we first
freeze the Gaussians and then refine the test poses with
a small learning rate to ensure proper convergence. This
alignment process allows the test views to match the ground
truth accurately, enabling precise evaluation.

VI. Additional Comparisons and Ablations

In this section, we expand on the main paper experiments
by showing additional results on E-3DGS-Real, E-3DGS-
Synthetic, and E-3DGS-Synthetic-Hard datasets. Fig. II
demonstrates the performance of E-3DGS in comparison
to Deblur-GS [28], E2VID [23]+3DGS [9] and Event-
NeRF [25] on the E-3DGS-Real dataset. These baselines
exhibit severe artifacts such as blur, floaters and noise. In
the same figure, we also demonstrate the impact of the key
components of our method. Removing Ljs, leads to in-
creased amounts of floaters and other artifacts. As the cap-
tured camera poses contain noise, pose refinement (PR) is
crucial to achieve accurate results. Hence, without it, the
model cannot produce accurate predictions, resulting in se-
vere artifacts and blurriness. However, the model without
the adaptive windows (AW) shows similar performance to
the full model. That is likely due to the overall uniformity
of the camera speeds in the used dataset, which diminishes
the potential impact of adaptive event windows.

In Fig. I1I, we compare E-3DGS against EventNeRF [25]
and E2VID [23]4+3DGS [9] on E-3DGS-Synthetic dataset.
Both baselines perform poorly: While E2VID+3DGS cap-
tures the edges and the general structure, it struggles
with color representation, and EventNeRF reconstruction
is much noisier and blurrier compared to our method. In
contrast, our E-3DGS outperforms them, showing clear and
sharp novel views with accurate color representation. Some
issues are still observable but are mostly in less supervised
areas, e.g., on the roof in ScienceLab or Subway scenes.

Lastly, Fig. I'V visualizes results of the ablation study on
the E-3DGS-Synthetic-Hard dataset. In comparison to E-
3DGS-Synthetic, this dataset has artificially added camera
extrinsics noise, which we describe in Sec III, and drasti-
cally increased camera speed variation (Sec. 5.2). While

these changes make obtaining high reconstruction quality
more difficult, our full method still works well, outperform-
ing all ablated models. As on the E-3DGS-Real, remov-
ing Lis results in severe artifacts (e.g., in the first view
of Company or in the second view of Subway). E-3DGS-
Synthetic-Hard dataset has camera pose noise, and, hence,
using pose refinement (PR) is important, as removing it
results in blurriness and artifacts. Removing the adaptive
event windows (AW) leads to deterioration; e.g., the method
without AW exhibits artifacts on the sofa in the first view
of the Company sequence that are absent in the results of
the full method. It is also noteworthy that while all ablated
models struggle with the second view of the Subway se-
quence, the full method, nevertheless, achieves a better re-
sult: The structure is clearer and more recognizable with
fewer artifacts.
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Figure II. Comparison of E-3DGS against the baselines and ablation study on E-3DGS-Real. As observed in the main paper, Deblur-GS,
E2VID + 3DGS, and EventNeRF exhibit issues such as blurring, floaters, and noise. Notably, the ablation study highlights the impact of
removing key components. Removing Li, leads to an increase in floaters and artifacts. In contrast, the experiment without adaptive event
windows (AW) shows little difference in performance. This is likely due to the relatively consistent camera speeds in this dataset, which
reduce the potential benefits of the adaptive event window.



E2VID + 3DGS EventNeRF E-3DGS Ground-Truth

Company

ScienceLab

Subway

Figure III. Comparison of E-3DGS vs. baselines on the E-3DGS-Synthetic dataset. As observed in the main paper, E2VID + 3DGS
struggles with poor color reconstruction but captures edges and structure reasonably well. EventNeRF suffers from noise and a lack of
sharpness. In contrast, our method delivers clear details and accurate colors, with issues mainly confined to less observed areas, such as
the roof. Best viewed with zoom.
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Figure IV. Ablation study of E-3DGS on the E-3DGS-Synthetic-Hard dataset. The increased difficulty of this dataset leads to overall
performance deterioration compared to E-3DGS-Synthetic, but our full method still performs well. The version without the adaptive event
window (AW) is closest to the full method but shows more artifacts. For example, in the first column of the Company sequence, the sofa
shows some artifacts in the AW-removed version that are absent in the full method. Similar minor artifacts are visible elsewhere. The
second column of the Subway sequence is interesting, as all versions struggle with reconstructing it. Even so, the full method demonstrates
a better structure and fewer artifacts than the others.



