A DQN ALGORITHM PSEUDOCODE

for episode < 1 to M do

fort < 1to T do

With probability e: a; =random(), otherwise:

a; = argmazy Q(s,a’);

Execute a; and observe sg and 7¢;

Store transition {st, a7, 8} in the replay buffer D;
Sample a mini-batch of transitions {sj,aj,rj,sg} from D,
yj =rj+7 mazy Qs(s), aj);

6 ¢—aY, Lt (s;,a5) — yy);

end

end
Algorithm 1: DQN algorithm

B VIT PATH SIZE STUDY

Patch size Score Mean Time
6 305.7+71.0 4:56.33

8 801.9 £523.9 3:22.4

10 778.0 £324.0 3:10.2

12 627.0£284.0 3:12.8

Table 1: Scores obtained by training Rainbow, using different path sizes for ViT, in MsPacman for
100k steps across 10 different seeds

C RESNET ARCHITECTURE

The ResNet we used is based on the ResNet used for SGI, which uses three inverted residual blocks
with an expansion ratio of two, where each block is a sequence of Conv2D, Batch Normalization,
and ReLU, as shown in Figure T[] However, to have a number of parameters similar to the ViT tiny
we added an additional residual block and changed the channels of each block to 64, 128, 256 and
512. Additionally, we change the strides of each block to 2 for all blocks. The encoder computes
representations vectors with size of 18432.

= o = oy =
o & o i o
= U0 0 ~ =
3 w Pl w O 3 w Pl » 3 w
 ©) =] LY@ 1 B &
=3 = s = = = — N (&
N S c NR N g c & NS
[=d o © [=4 ° =
o Il o Il =}
=) =) =1 o S

Figure 1: ResNet residual block

D TOV-VICREG PSEUDOCODE

N: batch size, D: dimension of the embedding

mse_loss: Mean square error loss function, off_diagonal: off-
diagonal elements of a matrix, relu: RelLU activation function

shuffle: shuffles elements in a certain dimension according to a
permutation index

for u, v, w in loader: # load a batch with N samples
u —> x_{t}
v —> x_{t-1}
w —> x_{t+1}

apply augmentations
= augmentation_1 (u)
augmentation_2 (u)
= augmentation_3(v)
= augmentation_3 (w)

#
u_a
u_b
v
w

compute representations
= encoder (u_a)
encoder (u_b)
encoder (v)
encoder (w)

*<1L<IT<IL<Z:'4:
lC
oo
Il

compute embeddings

= expander (y_u_a)
expander (y_u_Db)
expander (y_v)
expander (y_w)

N N N N =#
[«
oo
Il

shuffle_indexes = randint (0, 6) # sample from 0 to 3 permutations
of 3
labels = where(shuffle_indexes == 0, 0, 1)

concat and shuffle (N, 3, D)
c = concat (p_u_a, p_v, p_w)
c = shuffle(c, shuffle_indexes, dim=1)

temporal loss
preds = linear(c) # Linear layer Dx6
temp_loss = Binary_Cross_Entropy_Loss (preds, labels)

invariance loss
sim_loss = mse_loss(z_a, z_Db)

variance loss

std_z_a = torch.sqgrt(z_a.var(dim=0) + le-04)

std_z_b = torch.sqgrt (z_b.var(dim=0) + 1le-04)

std_loss = torch.mean(relu(l - std_z_a)) + torch.mean(relu(l -
std_z_b))

covariance loss

z_a = z_a — z_a.mean (dim=0)

z_b = z_b - z_b.mean (dim=0)

cov_z_a = (z_a.T @ z_a) / (N - 1)

cov_z b = (z_b.T @ z_b) / (N - 1)

cov_loss = off_diagonal (cov_z_a) .pow_(2).sum() / D + \
off_diagonal (cov_z_b) .pow_(2) .sum() / D

loss

loss = inv_coef * inv_loss + var_coef x var_loss + cov_coef =x

cov_loss + temp_coef x temp_loss
optimization step

loss.backward ()
optimizer.step ()

Listing 1: Pytorch-like TOV-VICReg pseudocode

E TOV-VICREG AUGMENTATIONS

Augmentation 1 / tau
RandomResizedCrop (84, scale=(0.08, 1.)),
RandomApply ([
ColorJitter (0.4, 0.4, 0.2, 0.1)
1, p=0.8),
RandomGrayscale (p=0.2),
RandomApply ([GaussianBlur ((7, 7), sigma=(.1l, .2))], p=1.0),
RandomHorizontalFlip ()

Augmentation 2 / tau prime
RandomResizedCrop (84, scale=(0.08, 1.)),
RandomApply ([
ColorJitter (0.4, 0.4, 0.2, 0.1)
1, p=0.8),
RandomGrayscale (p=0.2),
RandomApply ([GaussianBlur ((7, 7), sigma=(.1, .2))], p=0.1),
RandomSolarize (120, p=0.2),
RandomHorizontalFlip (),

Augmentation 3 / tau two prime and tau three prime
RandomApply ([
ColorJitter (0.4, 0.4, 0.2, 0.1)

] ’ p:O .8) ’
RandomGrayscale (p=0.2),

Listing 2: Pytorch-like pseudocode of TOV-VICReg augmentations

F RAINBOW IMPLEMENTATION

We trained our agents using a PyTorch implementation of the Rainbow algorithm available on GitHub,
which offers enough flexibility to adapt it to our needs. In Table 2| we present a comparison between
the implementation used and the official results reported by DER (van Hasselt et al., [2019), we
observed a similar performance in most games except for Assault, and Frostbite, where the official
results are significantly higher. Despite these differences, we validated the implementation code
and are confident that the results here presented are trustworthy. To allow the agents to play the
Atari games we used the gym library (Brockman et al.| 2016)), where for all games we used version
number four of the environments (v4), disabled the default frame skip, and wrapped it with the DQN
wrappers.

Game DER DER (ours)
Alien 739.9 446.6 +224.7
Assault 431.2 178.7 £ 87.1
Bank Heist 51.0 23.8+14.3
Breakout 1.9 1.93 +1.43
Chopper Command ~ 861.8 696.0 £274.6
Freeway 27.9 27.8+2.0
Frostbite 866.8 127.7+£25.8
Kangaroo 779.3 448.0 £ 648.0
MsPacman 1204.1 1015 +487.1
Pong -19.3 -18.6 +4.4

Table 2: Comparison between DER scores and our implementation scores

G ATARI ENVIRONMENTS SETUP

We used the Atari games available at the gym library (Brockman et al., [2016)) (version 0.23.1),
and all games were run using their 4th version without frame skip, e.g. "AlienNoFrameskip-v4".
Furthermore, we employ similar wrappers to the environments as previous works (Mnih et al.| [2015)),

namely, scale observation to 84x84, change observations to grayscale, stack observations, apply a

max number of no-op actions, and terminate the environment when the agent loses a life.

env AtariPreprocessing (env,
scale_obs=True)

env TransformReward (env,
env FrameStack (env, 3)

terminal_on_life_loss=True,

np.sign)

Listing 3: Gym Atari Wrappers

H SELF-SUPERVISED METHODS HYPERPARAMETERS

Hyperparameter Value

Drop path rate 0.1

Freeze last layer True

local crops 8

Local crops scale interval [0.05, 0.5]
Learning rate 5.0 x 107*
Min learning rate 1.0 x 107¢
Teacher ema coefficient 0.996
Normalize last layer False
Optimizer AdamW
Out dimension 1024

Use batch normalization in head false
Teacher warmup temperature 0.04

warmup epochs for teacher temperature 0

Weight decay 0.04
Weight decay final value 0.4

Table 3: DINO hyperparameters

Hyperparameter Value
Random crop min scale 0.08
Learning rate 0.6
Number of features 256
Momentum encoder ema coefficient 0.99

MLP hidden dimensions 4096
Softmax temperature 1.0
Optimizer LARS
Weight decay 1.0 x 107¢

Table 4: MoCo v3 hyperparameters

Hyperparameter

Value

Base Learning Rate
Covariance coefficient
MLP dimensions
Invariance coefficient
Variance coefficient
Weight decay

0.2

1.0
1024-1024-1024
25.0

25.0

1.0 x 1076

Table 5: VICReg hyperparameters

Hyperparameter Value

Base Learning Rate 0.2
Covariance coefficient 10.0

MLP dimensions 1024-1024-1024
Invariance coefficient 25.0

Variance coefficient 25.0

Weight decay 1.0 x 1076

Table 6: TOV-VICReg hyperparameters

I MODELS USED

Model Name # parameters

Nature CNN 75.936
ResNet 4.932.524
ViT tiny 5.526.720

Table 7: Number of learnable parameters of each model we used

47194V], SI'INSHY [

owes Surpuodsariod ay) 10y $1008 159q oY) Judsaidar sanfea p[oq Y [[g] uonoag ur pajussard sjuowLiadxd wWoIy (JOLId pIEpUL)S PUE ULAW) S)NSAI JO A[qE], :§ A[qRL,

6CFISI- EYFOLI- VEFY8I- VeI FT9- 00F 01T 98F0CI- L6F9€l- Suog

I'TLE FO'EE9 SLSTF 1'98S SYLE T 6'869 ¥'8LE F $'6€9 6'65C F 6819 TEIWF LLSL T'LIP FEISL URWORASIN

SHPT F 0°89C 0'1€S F 0¥8€ SEETFO9IE L9LOI FOPOL L16F009 Y'97CF0SOr $'SEOT F0'9LL OOIeSuRy|

T81F00CI OLEFECTIT I'P1F LTEL L'90T F L'€PT 9SIFSLTI 89T F 6°L01 6'STF 1°0TI 911q1s01]

YTFLET ['CFSTT 0CF0ST LTF6ST YIFTIC STFSOT TIFH 0 Kemaorg

—UCNEEOU

6vLT F 0°899 0°€L9 F 0896 06V F009L TTIE F 0°€S8 S'89T F O'L¥L O¥SEFOLEL 8°€TE F 0'8C8 Iaddoyp

9OTFIE 9OTFLT 1287 LTFEY 9TFTE ICFLY CEFIS Inoyearg

9CI F9'6C ['0E F0'1¢ LOT 981 881 F S'H¢ P'STI F €8S 9'81 ¥ 9°0¢ C6TF9LE ISIOH yueg

8QIT F € L8] L'P6T F 8°08€ TESTFI'SLT YYITF9L61 9'THT ¥ 9°0ST ¥H0T F 6981 I'€€T F8°01¢ usIy

9'9ST F S'80F I'181 F £'¢6F L'bST F €'€6b SYTI F £€99¢ 6'9%1 F L'TCE ['6¥€ F 0TSY TS0T F 1°6S¢ ynessy
S9YDIA

SOUDIA+LIA ODON+LIA ONIQ+LIA -AOL+LIA LIA 1ONSOY NND amjeN sowen

K DATA-EFFICIENCY IN UNSEEN ENVIRONMENTS

Table 9] shows a comparison of the randomly initialized and a pre-trained (using TOV-VICReg)
Vision Transformer in Atari games that were not used in the pre-training phase. In general,
both models seem to perform very similarly as indicated by the IQM over the aggregated
normalized scores, except for two games, RoadRunner where the pretraining seems to degrade
data-efficiency and Venture where pretraining improves data-efficiency. In short, we don’t find
any advantage in using a pre-trained vision transformer for games that were not used during
pretraining. We don’t find this result surprising given the lack of variety present in the dataset used
for pretraining which reduces the possibility of the encoder finding features that can be used elsewhere.

Games ViT TOV-VICReg+ViT
Asterix 443.5 £225.6 445.0 +£214.9
Krull 944.5 £525.8 708.9 £572.3

RoadRunner 2687.0 £2884.3 913.0+1289.9
Spacelnvaders 184.3 £ 117.0 155.9+91.0
Venture 4.0+28.0 76.0 £152.4

IQM 0.0174 0.0186

Table 9: Mean and standard error results of the evaluations across 10 different training runs, where at
each evaluation the agent plays 10 episodes of the game. The agent was trained using the Rainbow
algorithm for 100k steps.

L PROBABILITY OF IMPROVEMENT

P(VIT+TOV-VICReg > Y)

ResNet+TOV-VICReg |
> ViT+VICReg |
£ ViT+MoCo |
é ViT+DINO |
< ResNet []

Nature CNN| IS
045 060 075 090

Figure 2: The probability of the Rainbow agent using the ViT pretrained with TOV-VICReg being
better than the remaining agents

M EVALUATION TASK

Evaluating representations computed by a pretrained encoder is a difficult task. One possible option is
assessing improvements in data efficiency in a reinforcement learning task, as we did in the previous
section. However, the results usually suffer from a high level of uncertainty which requires us to run
dozens of training runs, thus making it computationally expensive. Another possible path would be
using previously proposed benchmarks like the AtariARI benchmark |Anand et al.| (2020), which tries
to evaluate representations using the RAM states as ground truth labels. However, this only works
for 22 Atari games (out of 62) and requires the encoder to use the full observation provided by the
environments (160x210). For those reasons, we propose using a different evaluation task that is more
efficient, allowing us to test more pretrained models during the research process (50min per game),
and flexible, meaning that we can use it in different environments. Our evaluation task is a simple
Imitation Learning task where we train a network, composed of a frozen pre-trained encoder and a

Randomly initialized encoder Pre-trained encoder W/o freeze

Random Nature ResNet ViT ViT+TOV- ViT+DINO ViT+MoCo ViT+VICReg ViT+TOV- Nature
Classifier CNN VICReg VICReg CNN
L
Game
Alien 0.0556 0.0077 0.0558 0.0147 0.1003 0.0470 0.0646 0.0695 0.0988 0.1021
Assault 0.1519 0.1497 0.2270 0.1770 0.3044 0.2536 0.2557 0.3704 0.3065 0.6673
BankHeist 0.0608 0.0780 0.1312 0.0756 0.1622 0.1059 0.1083 0.1467 0.1523 0.2080
Breakout 0.2509 0.1311 0.3850 0.2183 0.3285 0.3591 0.2765 0.4077 0.3099 0.5907
Chopper 0.0563 0.0145 0.0647 0.0176 0.3225 0.0383 0.2019 0.1298 0.3088 0.2660
Command
Freeway 0.3999 0.6808 0.6850 0.6843 0.7041 0.6850 0.6972 0.6971 0.6942 0.8885
Frostbite 0.0565 0.0302 0.0730 0.0367 0.1021 0.0517 0.0744 0.0664 0.1001 0.1019
Kangaroo 0.0603 0.0311 0.1039 0.0562 0.2184 0.0877 0.1374 0.1259 0.2126 0.3311
MsPacman 0.1121 0.0388 0.1419 0.0780 0.1527 0.1215 0.1168 0.1400 0.1500 0.2063
Pong 0.1644 0.0692 0.1702 0.0718 0.2853 0.1447 0.2730 0.2337 0.3042 0.4340
Mean 0.1369 \ 0.1231 0.2038 0.1430 \ 0.2680 0.1894 0.2206 0.2387 0.2637 \ 0.3796

Table 10: Fl-scores for each game evaluated and mean. We trained all the encoders in all games
seperatly for 100 epochs over a dataset of 100k observations and evaluate in 10k new observations.
The rightmost column show the results of a Nature CNN encoder that was not frozen during train and
which we use as a goal for the remaining.

linear layer, i.e. linear probing, to correctly predict the action that a certain policy will perform given
its current observation. The intuition to use such an evaluation is that a representation that allows an
agent to efficiently learn an environment must encode state information that can be recovered by a
linear layer and which can be used to learn other tasks efficiently. We present the results in Table[I0}
we compare against a random classifier, i.e. uniform sampling, randomly initialized networks and a
non-frozen encoder which we use as a goal score. All methods were trained for 100 epochs except the
latter which we trained for 300. We use the DQN Replay dataset to obtain the observations and the
actions we obtain the datapoints from the last checkpoint of each game, where we consider the policy
to be less stochastic. The train dataset is composed of 100 thousand observations from the game we
are testing and the test dataset is composed of 10 thousand. ViT+TOV-VICReg L corresponds to a
ViT tiny pretrained with TOV-VICReg on the 26 Atari games from the Ataril00k.

To validate our evaluation task we calculate the Pearson correlation coefficient between the mean
of the average human normalized scores, obtained in the reinforcement learning, and the mean of
the F1-scores, from the evaluation task of all pretrained models. We report a Pearson correlation
factor of 0.5276. Even though we are not in the presence of a strong correlation there is a clear
trend for the RL scores to increase when the evaluation scores also increase, as observed in Figure [3]
Despite the promising results, more data points are needed, especially using different pre-training
methods, which would allow us to better validate this evaluation task. Nevertheless, we believe that
the evaluation task might be a compelling tool for future methods that try to learn good representations
for a reinforcement learning task.

016

0.15

Mean Human average score
[=]
-
=

011 ®

019 020 021 022 023 024 025 026 027
Mean F1-Score

Figure 3: Relation between the mean average human score obtained in RL and the mean F1-score
obtained in the evaluation task of several experiments

	DQN algorithm pseudocode
	ViT path size study
	ResNet architecture
	TOV-VICReg Pseudocode
	TOV-VICReg augmentations
	Rainbow implementation
	Atari Environments setup
	Self-Supervised methods hyperparameters
	Models used
	Results Table
	Data-efficiency in unseen environments
	Probability of improvement
	Evaluation Task

