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Abstract

Decentralized Actor-Critic (AC) algorithms have been widely utilized for multi-1

agent reinforcement learning (MARL) and have achieved remarkable success.2

Apart from its empirical success, the theoretical convergence property of decen-3

tralized AC algorithms is largely unexplored. The existing finite-time convergence4

results are derived based on either double-loop update or two-timescale step sizes5

rule, which is not often adopted in real implementation. In this work, we introduce6

a fully decentralized AC algorithm, where actor, critic, and global reward estimator7

are updated in an alternating manner with step sizes being of the same order, namely,8

we adopt the single-timescale update. Theoretically, using linear approximation for9

value and reward estimation, we show that our algorithm has sample complexity of10

Õ(ϵ−2) under Markovian sampling, which matches the optimal complexity with11

double-loop implementation (here, Õ hides a log term). The sample complexity12

can be improved to O(ϵ−2) under the i.i.d. sampling scheme. The central to13

establishing our complexity results is the hidden smoothness of the optimal critic14

variable we revealed. We also provide a local action privacy-preserving version15

of our algorithm and its analysis. Finally, we conduct experiments to show the16

superiority of our algorithm over the existing decentralized AC algorithms.17

1 Introduction18

Multi-agent reinforcement learning (MARL) [16, 30] has been very successful in various models of19

multi-agent systems, such as robotics [14], autonomous driving [37], Go [25], etc. MARL has been20

extensively explored in the past decades; see, e.g., [18, 20, 41, 26, 8, 22]. These works either focus21

on the setting where an central controller is available, or assuming a common reward function for all22

agents. Among the many cooperative MARL settings, the work [42] proposes the fully decentralized23

MARL with networked agents. In this setting, each agent maintains a private heterogeneous reward24

function, and agents can only access local/neighboring information through communicating with its25

neighboring agents on the network. Then, the objective of all agents is to jointly maximize the average26

long-term reward through interacting with environment modeled by multi-agent Markov decision27

process (MDP). They proposed the decentralized Actor-Critic (AC) algorithm to solve this MARL28

problem, and showed its impressive performance. However, the theoretical convergence properties29

of such class of decentralized AC algorithms are largely unexplored; see [41] for a comprehensive30

survey. In this work, our goal is to establish the strong finite-time convergence results under this fully31

decentralized MARL setting. We first review some recent progresses on this line of research below.32

Related works and motivations. The first fully decentralized AC algorithm with provable con-33

vergence guarantee was proposed by [42], and they achieved asymptotic convergence results under34

two-time scale step sizes, which requires actor’s step sizes to diminish in a faster scale than the critic’s35

step sizes. The sample complexities of decentralized AC were established recently. In particular, [6]36
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and [11] independently propose two communication efficient decentralized AC algorithms with opti-37

mal sample complexity of O(ε−2 log(ε−1)) under Markovian sampling scheme. Their analysis are38

based on double-loop implementation, where each policy optimization step follows a nearly accurate39

critic optimization step (a.k.a. policy evaluation), i.e., solving the critic optimization subproblem to40

ε-accuracy. Such a double-loop scheme requires careful tuning of two additional hyper-parameters,41

which are the batch size and inner loop size. In particular, the batch size and inner loop size need to be42

of order O(ε−1) and O(log(ε−1)) in order to achieve their sample complexity results, respectively.43

In practice, single-loop algorithmic framework is often utilized, where one updates the actor and44

critic in an alternating manner by performing only one algorithmic iteration for both of the two45

subproblems; see, e.g., [23, 18, 15, 39]. The work [38] proposes a new decentralized AC algorithm46

based on such a single-loop alternative update. Nevertheless, they have to adopt two-timescale step47

sizes rule to ensure convergence, which requires actor’s step sizes to diminish in a faster scale than48

the critic’s step sizes. Due to the separation of the step sizes, the critic optimization sub-problem49

is solved exactly when the number of iterations tends to ∞. Such a restriction on the step size will50

slow down the convergence speed of the algorithm. As a consequence, they only obtain sub-optimal51

sample complexity of O(ε−
5
2 ). In practice, most algorithms are implemented with single-timescale52

step size rule, where the step sizes for actor and critic updates are of the same order. Though there53

are some theoretical achievements for single-timescale update in other areas such as TDC [31] and54

bi-level optimization [4], similar theoretical understanding under AC setting is largely unexplored.55

Indeed, even when reducing to single-agent setting, the convergence property of single-timescale56

AC algorithm is not well established. The works [9, 10] establish the finite-time convergence result57

under a special single-timescale implementation, where they attain the sample complexity of O(ε−2).58

However, their analysis is based on an algorithm where the critic optimization step is formulated as a59

least-square temporal difference (LSTD) at each iteration, where they need to sample the transition60

tuples for Õ(ε−1) times to form the data matrix in the LSTD problem. Then, they solve the LSTD61

problem in a closed-form fashion, which requires to invert a matrix of large size. Later, [4] obtains the62

same sample complexity using TD(0) update for critic variables under i.i.d. sampling. Nonetheless,63

their analysis highly relies on the assumption that the Jacobian of the stationary distribution is64

Lipschitz continuous, which is not justified in their work.65

The above observations motivate us to ask the following question:66

Can we establish finite-time convergence result for decentralized AC algorithm with single-timescale67

step sizes rule?168

Main contributions. By answering this question positively, we have the following contributions:69

• We design a fully decentralized AC algorithm, which employs a single-timescale step sizes70

rule and adopts Markovian sampling scheme. The proposed algorithm allows communication71

between agents for every Kc iterations with Kc being any integer lies in [1,O(ε−
1
2 )], rather72

than communicating at each iteration as adopted by previous single-loop decentralized AC73

algorithms [38, 42].74

• Using linear approximation for value and reward estimation, we establish the finite-time75

convergence result for such an algorithm under the standard assumptions. In particular, we76

show that the algorithm has the sample complexity of Õ(ε−2), which matches the optimal77

complexity up to a logarithmic term. In addition, we show that the logarithmic term can be78

removed under the i.i.d. sampling scheme. Note that these convergence results are valid for79

all the above mentioned choices for Kc.80

• To preserve the privacy of local actions, we propose a variant of our algorithm which utilizes81

noisy local rewards for estimating global rewards. We show that such an algorithm will82

maintain the optimal sample complexity at the expense of communicating at each iteration.83

The underlying principle for obtaining the above convergence results is that we reveal the hidden84

smoothness of the optimal critic variable, so that we can derive an approximate descent on the85

averaged critic’s optimal gap at each iteration. Consequently, we can resort to the classic convergence86

analysis for alternating optimization algorithms to establish the approximate ascent property of the87

overall optimization process, which leads to the final sample complexity results.88

1As convention [9], when we use "single-timescale", it means we utilize a single-loop algorithmic framework
with single-timescale step sizes rule.
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Another technical highlight is the Lyapunov function we construct for measuring the progress of our89

algorithm. Such a construction is motivated by [4], which analyzes bi-level optimization algorithm.90

However, our Lyapunov function is different from theirs as it involves the additional optimal gap of91

averaged critic and reward estimator, which is necessary for dealing with the decentralized setting.92

We finish this section by remarking that our convergence results are even new for single agent AC93

algorithms under the setting of single-timescale step sizes rule.94

2 Preliminary95

In this section, we introduce the problem formulation and the policy gradient theorem, which serves96

as the preliminary for the analyzed decentralzed AC algorithm.97

Suppose there are multiple agents aiming to independently optimize a common global objective, and98

each agent can communicate with its neighbors through a network. To model the topology, we define99

the graph as G = (N , E), where N is the set of nodes with |N | = N and E is the set of edges with100

|E| = E. In the graph, each node represents an agent, and each edge represents a communication101

link. The interaction between agents follows the networked multi-agent MDP.102

2.1 Markov decision process103

A networked multi-agent MDP is defined by a tuple (G,S, {Ai}i∈N ,P, {ri}i∈[N ], γ). G denotes the104

communication topology (the graph), S is the finite state space observed by all agents, Ai represents105

the finite action space of agent i. Let A := A1 × · · · × AN denote the joint action space and106

P(s′|s, a) : S ×A× S → [0, 1] denote the transition probability from any state s ∈ S to any state107

s′ ∈ S for any joint action a ∈ A. ri : S ×A → R is the local reward function that determines the108

reward received by agent i given transition (s, a); γ ∈ [0, 1] is the discount factor.109

For simplicity, we will use a := [a1, · · · , aN ] to denote the joint action, and θ := [θ1, · · · , θN ] ∈110

Rdθ×N to denote joint parameters of all actors, with θi ∈ Rdθ . Note that different actors may have111

different number of parameters, which is assumed to be the same for our paper without loss of112

generality. The MDP goes as follows: For a given state s, each agent make its decision ai based113

on its policy ai ∼ πθi(·|s). The state transits to the next state s′ based on the joint action of all the114

agents: s′ ∼ P(·|s, a). Then, each agent will receive its own reward ri(s, a). For the notation brevity,115

we assume that the reward function mapping is deterministic and does not depend on the next state116

without loss of generality. The stationary distribution induced by the policy πθ and the transition117

kernel is denoted by µπθ (s).118

Our objective is to find a set of policies that maximize the accumulated discounted mean reward119

received by agents120

θ∗ = argmax
θ

J(θ) := E

[ ∞∑
k=0

γkr̄(sk, ak)

]
. (1)

Here, k represents the time step. r̄(sk, ak) := 1
N

∑N
i=1 r

i(sk, ak) is the mean reward among agents121

at time step k. The randomness of the expectation comes from the initial state distribution µ0(s), the122

transition kernel P , and the stochastic policy πθi(·|s).123

2.2 Policy gradient Theorem124

Under the discounted reward setting, the global state-value function, action-value function, and125

advantage function for policy set θ, state s, and action a, are defined as126

Vπθ (s) := E

[ ∞∑
k=0

γkr̄(sk, ak)|s0 = s

]
(2)

Qπθ (s, a) := E

[ ∞∑
k=0

γkr̄(sk, ak)|s0 = s, a0 = a

]
Aπθ (s, a) := Qπθ (s, a)− Vπθ (s).
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To maximize the objective function defined in (1), the policy gradient [28] can be computed as follow127

∇θJ(θ) = Es∼dπθ ,a∼πθ
[

1

1− γ
Aπθ (s, a)ψπθ (s, a)

]
,

where dπθ (s) := (1 − γ)
∑∞
k=0 γ

kP(sk = s) is the discounted state visitation distribution under128

policy πθ, and ψπθ (s, a) := ∇ log πθ(s, a) is the score function.129

Following the derivation of [42], the policy gradient for each agent under discounted reward setting130

can be expressed as131

∇θiJ(θ) = Es∼dπθ ,a∼πθ
[

1

1− γ
Aπθ (s, a)ψπθi (s, a

i)

]
. (3)

3 Decentralized single-timescale actor-critic132

Algorithm 1: Decentralized single-timescale AC (reward estimator version)

1: Initialize: Actor parameter θ0, critic parameter ω0, reward estimator parameter λ0, initial state s0.
2: for k = 0, · · · ,K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (·), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k and λ̃i
k by (4) and (7).

9:
10: for i = 0, · · · , N in parallel do
11: Reward estimator update: Update λi

k+1 by (8).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update: Update θik+1 by (6).
14: end for
15: end for

We introduce the decentralized single-timescale AC algorithm; see Algorithm 1. In the remaining133

parts of this section, we will explain the updates in the algorithm in details.134

In fully-decentralized MARL, each agent can only observe its local reward and action, while trying135

to maximize the global reward (mean reward) defined in (1). The decentralized AC algorithm solves136

the problem by performing online updates in an alternative fashion. Specifically, we have N pairs of137

actor and critic. In order to maximize J(θ), each critic tries to estimate the global state-value function138

Vπθ (s) defined in (2), and each actor then updates its policy parameter based on approximated policy139

gradient. We now provide more details about the algorithm.140

Critics’ update. We will use ωi ∈ Rdω to denote the ith critic’s parameter and ω̄ := 1
N

∑N
i=1 ω

i to141

represent the averaged parameter of critic. The ith critic approximates the global value function as142

Vπθ (s) ≈ V̂ωi(s).143

As we will see, the critic’s approximation error can be categorized into two parts, namely, the144

consensus error 1
N

∑N
i=1 ∥ωi − ω̄∥, which measures how close the critics’ parameters are; and the145

approximation error ∥ω̄ − ω∗(θ)∥, which measures the approximation quality of averaged critic.146

In order for critics to reach consensus, we perform the following update for all critics147

ω̃ik =

{∑N
j=1W

ijωjk if k mod Kc = 0

ωik otherwise.
(4)

where W ∈ Rn×n is a weight matrix for communication among agents, whose property will be148

specified in Assumption 5; Kc denotes the consensus frequency.149

To reduce the approximation error, we will perform the local TD(0) update [29] as150

ωik+1 = ΠRω (ω̃
i
k + βkg

i
c(ξk, ω

i
k)), (5)
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where ξ := (s, a, s′) represents a transition tuple, gic(ξ, ω) := δi(ξ, ω)∇V̂ω(s) is the update direction,151

δi(ξ, ω) := ri(s, a) + γV̂ω(s
′)− V̂ω(s) is the local temporal difference error (TD-error). βk is the152

step size for critic at iteration k. ΠRω projects the parameter into a ball of radius of Rω containing153

the optimal solution, which will be explained when discussing Assumption 1 and 2.154

Actors’ update. We will use stochastic gradient ascent to update the policy’s parameter, and the155

stochastic gradient is calculated based on policy gradient theorem in (3). The advantage function156

Aπθ (s, a) can be estimated by157

δ(ξ, θ) := r̄(s, a) + γV (s′)− V (s),

with a sampled from πθ(·|s). However, to preserve the privacy of each agents, the local reward158

cannot be shared to other agents under the fully decentralized setting. Thus, the averaged reward159

r̄(sk, ak) is not directly attainable. Consequently, we need a strategy to approximate the averaged160

reward. In this paper, we will adopt the strategy proposed in [42]. In particular, each agent i will have161

a local reward estimator with parameter λi ∈ Rdλ , which estimates the global averaged reward as162

r̄(sk, ak) ≈ r̂λi(sk, ak).163

Thus, the update of the ith actor is given by164

θik+1 = θik + αk δ̂(ξk, ω
i
k+1, λ

i
k+1)ψπθi

k

(sk, a
i
k), (6)

where δ̂(ξ, ω, λ) := r̂λ(s, a) + γV̂ω(s
′)− V̂ω(s) is the approximated advantage function. αk is the165

step size for actor’s update at iteration k.166

Reward estimators’ update. Similar to critic, each reward estimator’s approximation error can be167

decomposed into consensus error and the approximation error.168

For each local reward estimator, we perform the consensus step to minimize the consensus error as169

λ̃ik =

{∑N
j=1W

ijλjk if k mod Kc = 0

λik otherwise.
(7)

To reduce the approximation error, we perform a local update of stochastic gradient descent.170

λik+1 = ΠRλ(λ̃
i
k + ηkg

i
r(ξk, λ

i
k)), (8)

where gir(ξ, λ) := (ri(s, a) − r̂λ(s, a))∇r̂λ(s, a) is the update direction. ηk is the step size for171

reward estimator at iteration k. Note the calculation of gir(ξ, λ) does not require the knowledge of s′;172

we use ξ in (8) just for notation brevity. Similar to critic’s update, ΠRλ projects the parameter into a173

ball of radius of Rλ containing the optimal solution.174

In our Algorithm 1, we will use the same order for αk, βk, and ηk and hence, our algorithm is in175

single-timescale.176

Linear approximation for analysis. In our analysis, we will use linear approximation for both critic177

and reward estimator variables, i.e. V̂ω(s) := ϕ(s)Tω; r̂λ(s, a) := φ(s, a)Tλ, where ϕ(s) : S →178

Rdω and φ(s, a) : S ×A → Rdλ are two feature mappings, whose property will be specified in the179

discussion of Assumption 1.180

Algorithm for preserving the local action. Note that in Algorithm 1, the reward estimators need181

the knowledge of joint actions in order to estimate the global rewards. To preserve the privacy of182

local actions, we further propose a variant of Algorithm 1, which estimates the global rewards by183

communicating noisy local rewards; see [6] for the original idea. However, to maintain the optimal184

sample complexity, such an approach requires O(log(ε−1)) communication rounds for each iteration.185

We postpone the detailed design and analysis of such an algorithm scheme into Appendix B.186

Remarks on sampling scheme. The unbiased update for critic and actor variables requires sampling187

from µπθ and dπθ , respectively. However, in practical implementations, states are usually collected188

from an online trajectory (Markovian sampling), whose distribution is generally different for µπθ189

and dπθ . Such a distribution mismatch will inevitably cause biases during the update of critic and190

actor variables. One has to bound the corresponding error terms when analyzing the algorithm. In191

this work, we will provide the analysis for both sampling schemes.192
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4 Main Results193

In this section, we first introduce the technical assumptions used for our analysis, which are standard194

in the literature. Then, we present the convergence results for both actor and critic variables under195

i.i.d. sampling and Markovian sampling.196

4.1 Assumptions197

Assumption 1 (bounded rewards and feature vectors). All the local rewards are uniformly bounded,198

i.e., there exists a positive constants rmax such that | ri(s, a) | ≤ rmax, for all feasible (s, a) and199

i ∈ [N ]. The norm of feature vectors are bounded such that for all s ∈ S, a ∈ A, ∥ϕ(s)∥ ≤200

1, ∥φ(s, a)∥ ≤ 1.201

Assumption 1 is standard and commonly adopted; see, e.g., [3, 35, 38, 24, 21]. This assumption can202

be achieved via normalizing the feature vectors.203

Assumption 2 (negative definiteness of Aθ,ϕ and Aθ,φ). There exists two positive constants λϕ, λφ204

such that for all policy θ, the following two matrices are negative definite205

Aθ,ϕ := Es∼µθ(s)[ϕ(s)(γϕ(s
′)T − ϕ(s)T )]

Aθ,φ := Es∼µθ(s),a∼πθ(·|s)[−φ(s, a)φ(s, a)
T ],

with λmax(Aθ,ϕ) ≤ λϕ, λmax(Aθ,φ) ≤ λφ, where λmax(·) represents the largest eigenvalue.206

Assumption 2 can be achieved when the matrices Φϕ := [ϕ(s1), · · · , ϕ(s|S|)] and Φφ :=207

[φ(s1, a1), · · · , φ(s|S|, a|A|)] have full row rank, which ensures that the optimal critic and reward208

estimator are unique; see also [24, 34]. Together with Assumption 1, we can show that the norm of209

ω∗(θ) and λ∗(θ) are bounded by some positive constant, which justifies the projection steps.210

Assumption 3 (Lipschitz properties of policy). There exists constants Cψ, Lψ, Lπ such that for211

all θ, θ′, s ∈ S and a ∈ A, we have (1). |πθ(a|s) − πθ′(a|s)| ≤ Lπ∥θ − θ′∥; (2). ∥ψθ(s, a) −212

ψθ′(s, a)∥ ≤ Lψ∥θ − θ′∥; (3). ∥ψθ(s, a)∥ ≤ Cψ .213

Assumption 3 is common for analyzing policy-based algorithms; see, e.g., [33, 32, 11]. The assump-214

tion ensures the smoothness of objective function J(θ). It holds for a large range of policy classes215

such as tabular softmax policy [1], Gaussian policy [7], and Boltzman policy [13].216

Assumption 4 (irreducible and aperiodic Markov chain). The Markov chain under πθ and transition217

kernel P(·|s, a) is irreducible and aperiodic for any θ.218

Assumption 4 is a standard assumption, which holds for any uniformly ergodic Markov chains and219

any time-homogeneous Markov chains with finite-state space. It ensures that there exists constants220

κ > 0 and ρ ∈ (0, 1) such that221

sup
s∈S

dTV (P(sk ∈ ·|s0 = s, πθ), µθ) ≤ κρk, ∀k.

Assumption 5 (doubly stochastic weight matrix). The communication matrix W is doubly stochastic,222

i.e. each column/row sum up to 1. Moreover, the second largest singular value ν is smaller than 1.223

Assumption 5 is a common assumption in decentralized optimization and multi-agent reinforcement224

learning; see, e.g., [27, 5, 6]. It ensures the convergence of consensus error for critic and reward225

estimator variables.226

4.2 Sample complexity under i.i.d. sampling227

Theorem 1 (sample complexity under i.i.d. sampling). Suppose Assumptions 1-5 hold. Consider228

the update of Algorithm 1 under i.i.d. sampling. Let αk = ᾱ√
K

for some positive constant ᾱ,229

βk = C9

2λϕ
αk, and ηk = C10

2λφ
αk, Kc ≤ O(K1/4), where K denotes the total number of iterations.230

Then, we have231

1

K

K∑
k=1

N∑
i=1

E
[
∥ωik − ω∗(θk)∥2

]
≤ O

(
1√
K

)
1

K

K∑
k=1

N∑
i=1

E
[
∥∇θiF (θk)∥2

]
≤ O

(
1√
K

)
+O(εapp + εsp), (9)
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where C9, C10 are positive constants defined in the proof.232

The proof of Theorem 1 can found in Appendix E.1. It establishes the iteration complexity of233

O(1/
√
K), or equivalently, sample complexity of O(ε−2) for Algorithm 1. Note that actors, critics,234

and reward estimators use the step sizes of the same order. The sample complexity matches the235

optimal rate of SGD for general non-convex optimization problem. To explain the errors in (9), let us236

define the approximation error as the following:237

εapp := max
θ,a

√
Es∼µθ

[
|Vπθ (s)− V̂ω∗(θ)(s)|2 + |r̄(s, a)− r̂λ∗(θ)(s, a)|2

]
.

The error εapp captures the approximation power of critic and reward estimator. Similar terms238

also appear in the literature (see e.g., [35, 1, 21]). Such an approximation error becomes zero in239

tabular case. The error εsp is inevitably caused by the mismatch between discounted state visitation240

distribution dπθ and stationary distribution µπθ ; see, e.g., [38, 24]. It is defined as241

εsp := 2Cθ(logρ κ
−1 +

1

ρ
)(1− γ).

When γ is close to 1, the error becomes small. This is because dπθ approaches to µπθ when γ goes to242

1. In the literature, some works assume that sampling from dπθ is permitted, thus eliminate this error;243

see, e.g., [4].244

4.3 Sample complexity under markovian sampling245

Theorem 2 (sample complexity under Markovian sampling). Suppose Assumptions 1-5 hold. Con-246

sider the update of Algorithm 1 under Markovian sampling. Let αk = ᾱ√
K

for some positive constant247

ᾱ, βk = C9

2λϕ
αk, and ηk = C10

2λφ
αk, Kc ≤ O(K1/4), where K is the total number of iterations. Then,248

we have249

1

K

K∑
k=1

N∑
i=1

E
[
∥ωik − ω∗(θk)∥2

]
≤ O

(
log2K√

K

)
1

K

K∑
k=1

N∑
i=1

E
[
∥∇θiF (θk)∥2

]
≤ O

(
log2K√

K

)
+O(εapp + εsp), (10)

where C9, C10 are positive constants defined in proof.250

We put the proof of Theorem 2 in Appendix E.2. In Markovian sampling, the updates are biased for251

critics, actors, and reward estimators. The error will decrease as the Markov chain mixes, and the252

logarithmic term is due to the cost for mixing.253

Theorem 2 establishes the iteration complexity of O(log2K/
√
K), or equivalently, sample complex-254

ity of Õ(ε−2) for Algorithm 1. It matches the state-of-the-art sample complexity of decentralized AC255

algorithms, which are implemented in double-loop fashion [11, 6].256

4.4 Proof sketch257

We present the main elements for the proof of Theorem 2, which helps in understanding the difference258

between classical two-timescale/double-loop analysis and our single-timescale analysis. The proof of259

Theorem 1 follows the same framework with simpler sampling scheme.260

Under Markovian sampling, it is possible to show the following inequality, which characterizes the261

ascent of the objective.262

E[J(θk+1)]− J(θk) ≥
N∑
i=1

[αk
2
E∥∇θiJ(θk)∥2 +

αk
2
E∥gia(ξk, ωik+1, λ

i
k+1)∥2

− 8C2
ψαkE∥ω∗(θk)− ωik+1∥2 − 4C2

ψαkE∥λ∗(θk)− λik+1∥2
]

−O(log2(K)α2
k)−O((εapp + εsp)αk). (11)
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To analyze the errors of critic ∥ω∗(θk)− ωik+1∥2 and reward estimator ∥λ∗(θk)− λik+1∥2, the two-263

timescale analysis requires O(αk) < min{O(βk),O(ηk)} in order for these two errors to converge.264

The double-loop approach runs lower-level update for O(log(ε−1)) times with batch size O(ε−1)265

to drive these errors below ε and hence, they cannot allow inner loop size and bath size to be O(1)266

simultaneously. To obtain the convergence result for single-timescale update, the idea is to further267

upper bound these two lower-level errors by the quantity O(αkE∥gia(ξk, ωik+1, λ
i
k+1)∥2) (through a268

series of derivations), and then eliminate these errors by the ascent term αk
2 E∥gia(ξk, ωik+1, λ

i
k+1)∥2.269

We mainly focus on the analysis of critic’s error through the proof sketch. The analysis for reward270

estimator’s error follows similar procedure. We start by decomposing the error of critic as271

N∑
i=1

∥ωik+1 − ω∗(θk)∥2 =

N∑
i=1

(∥ωik+1 − ω̄k+1∥2 + ∥ω̄k+1 − ω∗(θk)∥2). (12)

The first term represents the consensus error, which can be bounded by the next lemma.272

Lemma 1. Suppose Assumptions 1 and 5 hold. Consider the sequence {ωik} generated by Algorithm 1,273

then the following holds274

∥Qωk+1∥ ≤ ν
k′
Kc ∥ω0∥+ 4

k∑
t=0

ν⌈
k′−1−t
Kc

⌉βt
√
NCδ,

where ω0 := [ω1, · · · , ωN ]T , Q := I − 1
N 11T , k′ := ⌊ k

Kc
⌋ ∗ Kc. The constant ν ∈ (0, 1) is the275

second largest singular value of W .276

Based on Lemma 1 and follow the step size rule of Theorem 2, it is possible to show ∥Qωk+1∥2F =277 ∑N
i=1 ∥ωik+1 − ω̄k+1∥2 = O(K2

cβ
2
k). Let Kc = O(β

− 1
2

k ), we have ∥Qωk+1∥2F = O(βk), which278

maintains the optimal rate.279

To analyze the second term in (12), we first construct the following Lyapunov function280

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2 + ∥λ̄k − λ∗(θk)∥2. (13)

Then, it remains to derive an approximate descent property of the term ∥ω̄k − ω∗(θk)∥2 in (13).281

Towards that end, our key step lies in establishing the smoothness of the optimal critic variables282

shown in the next lemma.283

Lemma 2 (smoothness of optimal critic). Suppose Assumptions 1-3 hold, under the update of284

Algorithm 1, there exists a positive constant Lµ,1 such that for all θ, θ′, it holds that285

∥∇ω∗(θ)−∇ω∗(θ′)∥ ≤ Lµ,1∥θ − θ′∥,

where ∇ω∗(θ) denotes the Jacobian of ω∗(θ) with respect to θ.286

This smoothness property is essential for achieving our Õ(1/
√
K) convergence rate.287

To the best of our knowledge, the smoothness of ω∗(θ) has not been justified in the literature.288

Equipped with Lemma 2, we are able to establish the following lemma.289

Lemma 3 (Error of critic). Under Assumptions 1-5, consider the update of Algorithm 1. Then, it290

holds that291

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)∥ω̄k+1 − ω∗(θk)∥2

+
αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 +O(α2

k). (14)

E[∥ω̄k+1 − ω∗(θk)∥2] ≤ (1− 2λϕβk)∥ω̄k − ω∗(θk)∥2

+ CK1
βkβk−ZK + CK2

αk−ZKβk. (15)

Here, ZK := min{z ∈ N+|κρz−1 ≤ min{αk, βk, ηk}}, C9, λϕ are constants specified in appendix,292

and CK1
and CK2

are of order O(log(K)) and O(log2(K))d respectively.293
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Figure 1: Averaged reward versus sample complexity and communication complexity. The vertical
axis is the averaged reward over all the agents.

Plug (15) into (14), we can establish the approximate descent property of ∥ω̄k − ω∗(θk)∥2 in (13):294

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)(1− 2λϕβk)∥ω̄k − ω∗(θk)∥2

+
αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2

+O(CK1βkβk−ZK + CK2αk−ZKβk). (16)

Finally, plugging (11), (14), and (16) into (13) gives the ascent of the Lyapunov function, which leads295

to our convergence result through steps of standard arguments.296

5 Numerical results297

In this section, our objective is to illustrate the empirical sample complexity and communication298

complexity of the proposed algorithms. We also implement the algorithm in [6] to serve as a baseline,299

which employs double-loop algorithmic framework. Our simulation is based on the grounded300

communication environment proposed in [19]; see Appendix A for detailed set up. Through the301

discussion, we refer the algorithm in [6] as "DLDAC", the Algorithm 1 as "SDAC-re", the Algorithm 2302

as "SDAC-noisy" (see Appendix B). We also provide the result which assumes full reward is available303

to serve as baseline, which we refer as "SDAC-full". We set Kr = 5 for "SDAC-noisy"; Kc = 1304

for "SDAC-re", "SDAC-noisy", and "SDAC-full". We choose Tc = 5 (loop size), T ′
c = 1 (critic305

consensus number every iteration), T ′ = 5 (reward consensus number every iteration) for "DLDAC".306

The sample complexity and communication complexity are shown in Figure 1. The results are307

averaged over 10 Monte Carlo runs. As we can see, the proposed two algorithms achieve significantly308

higher reward than "DLDAC" in terms of both sample complexity and communication complexity.309

Moreover, their performances approach the baseline “SDAC-full", where the global reward is assumed310

to be available, indicating that the reward approximation is nearly accurate. Due to space limit, we311

will put additional experiments on the comparison with existing decentralized AC algorithms and the312

ablation study of hyper-parameters to Appendix A.313

6 Conclusion and future direction314

In this paper, we studied the convergence of fully decentralized AC algorithm under practical single-315

timescale update for the first time. We designed such an algorithm which maintains the optimal316

sample complexity of Õ(ε−2) under less communications. We also proposed a variant to preserve the317

privacy of local actions by communicating noisy rewards. Extensive simulation results demonstrate318

the superiority of our algorithms’ empirical performance over existing decentralized AC algorithms.319

One limitation of our work is that we only study the convergence to stationary point. Thus, we leave320

the research on the avoidance of saddle points and convergence to global optimum as promising321

future directions.322
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A Experiment settings and additional simulation results510

In this section, we first introduce the experimental setting. Then, we present more experiments on the511

comparison between the proposed algorithms and existing decentralized AC algorithms. Additionally,512

we conduct ablation study on different consensus frequencies of the proposed algorithm.513

Experiment setting. We adopt the grounded communication environment proposed in [19]. Our514

task consists of N agents and the corresponding N landmarks inhabited in a two-dimension world,515

where each agent can observe the relative position of other agents and landmarks. For every discrete516

time step, agents take actions to move along certain directions, and receive their rewards. Agents517

are rewarded based on the distance to their own landmark, and penalized if they collide with other518

agents. The objective is to maximize the long-term averaged reward over all agents. Since we focus519

on decentralized setting, each agent shall not know the target landmark of others, i.e., the reward520

function of others. To exchange information, each agent is allowed to send their local information via521

a fixed communication link. Through all the experiments, the agent number N is set to be 5, and the522

discount factor γ is set to be 0.95.523

Comparison to double-loop decentralized AC under mini-batch update. Since the algorithm524

in [6] uses mini-batch update to reduce the variance during the update, we will compare the proposed525

algorithms with [6] under different choices of actor’s batch sizes, critic’s batch sizes, and inner loop526

sizes, respectively. Since their algorithm communicates noisy reward to achieve consensus, we will527

use "SDAC-noi" to serve as baseline.528

1. Actor’s batch size. We fix Tc = 50, T ′
c = 10, Nc = 10, 2 which is adopted by [6]. We529

examine values of N in {10, 50, 100}. The results are in Figure 2a. We observe that the best530

choice of actor’s batch size N is 50, and the proposed "SDAC-noi" converges faster than it531

in terms of sample complexity.532

2. Critic’s batch size. We fix Tc = 50, T ′
c = 10, N = 100, which is adopted by [6]. We533

examine values of Nc in {2, 10, 50}. The results are shown in Figure 2b. As we can see,534

"DLDAC" with smaller critic’s batch sizes can achieve better sample complexity, indicating535

that the variance of critic’s update is relatively small and the mini-batch update is not needed536

for this task. Our proposed "SDAC-noi" achieves better convergence compared with the537

double-loop decentralized AC under different choices of Nc.538

3. Inner loop size. We fix T ′
c = 10, N = 100, Nc = 10, which is adopted by [6]. We examine539

values of Tc in {5, 20}. The results are shown in Figure 3. We can see that the proposed540

"SDAC-noi" enjoys a better convergence in terms of sample complexity.541

(a) Different actor’s batch sizes. (b) Different critic’s batch sizes.

Figure 2: Comparison between the proposed algorithms and the double-loop decentralized AC
algorithm that uses mini-batch update. The results are averaged over 10 Monte Carlo runs.

2Note that we adopt the notations in [6]. Here, Tc is the inner loop size, T ′
c is the communication number for

each outer loop, N is the batch size for actor’s update, and Nc is the batch size for critic’s update.
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Figure 3: Comparison between the proposed algorithm and the double-loop decentralized AC
algorithm under different inner loop sizes. The results are averaged over 10 Monte Carlo runs.

Comparison to two-timescale decentralized AC. Next, we compare the empirical performance542

between single-timescale and two-timescale implementations. The baseline we compare here is the543

existing decentralized two-timescale AC algorithm [38].544

We use "TDAC-re" to denote the algorithm proposed in [38]. To compare with our proposed545

Algorithm 2, we also implement a noisy reward version of "TDAC-re" and denote it by "TDAC-noi".546

We fix Kc = 1, Kr = 5 for this experiment. We set αk = 0.01(k + 1)−0.5, βk = 0.1(k + 1)−0.5,547

and ηk = 0.1(k + 1)−0.5 for "SDAC-re" and "SDAC-noi"; we set αk = 0.01(k + 1)−0.6, βk =548

0.1(k + 1)−0.4, and ηk = 0.1(k + 1)−0.4 for "TDAC-re" and "TDAC-noi". The sample complexity549

complexity is presented in Figure 4. We can see that the convergence speed of "TDAC-noi" is550

comparable to its single-timescale counterpart "SDAC-noi". However, when using reward estimator551

for the global reward estimation, we observe that "SDAC-re" has much more stable convergence552

behavior than "TDAC-re", and achieves significantly higher rewards.

Figure 4: Comparison between the proposed algorithms and two-timescale decentralized AC algo-
rithms [38]. The results are averaged over 10 Monte Carlo runs.

553

Ablation on different consensus periods. We compare the performance of "SDAC-noi" under554

different choices of consensus periods Kc. In particular, we let αk = 0.01(k + 1)−0.5, βk =555

0.1(k + 1)−0.5, Kr = 1 and examine the consensus periods Kc of 1, 5, 10, and 20, respectively.556
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The corresponding sample complexities and are summarized in Figure 5. Evidently, as the consensus557

period Kc increases, the convergence becomes slower and become relatively unstable. Therefore,558

when the communication cost is low, choosing a small Kc will yield a better performance. For559

this task, the consensus period Kc should be kept within 5 rounds in order to ensure a reasonable560

convergence. In Figure 5, we plot the communication complexity under the consensus periods of561

1 and 5. We can see that the communication complexity of "cons-5" surpasses "cons-1" during the562

training, indicating that it requires less rounds of communications to achieve better performance. Thus,563

when the communication complexity is high, we may use large Kc to achieve better communication564

complexity. When extending the model to different tasks, we may try different values of Kc to565

balance the sample complexity and communication complexity.566

(a) The sample complexity. (b) The communication complexity.

Figure 5: Ablation study on the consensus periods. The results are averaged over 10 Monte Carlo
runs.

B Algorithm without local action567

In this section, we introduce the variant of Algorithm 1 for preserving the privacy of local actions.568

The main difference is that instead of using a reward estimator to approximate the global reward,569

we now communicate the noisy local rewards for estimating the global rewards. Let rik represents570

rik(sk, ak) for brevity. The reward estimation process goes as follow: for each agent i, we first571

produce a noisy local reward r̃ik = rik(1 + z), with z ∼ N (0, σ2). Thus, the noise level is controlled572

by the variance σ2, which is chosen artificially. To estimate the global reward, each agent i first573

initialize the estimation as r̃it,0 = r̃it. Then, each agent i perform the following consensus step for Kr574

times, i.e.575

r̃it,l+1 =

N∑
j=1

W ij r̃it,l, l = 0, 1, · · · ,Kr − 1. (17)

The reward r̃ik,Kr will be used for estimating global reward for agent i. The error for the reward576

estimation, i.e. |r̄k − r̃ik,Kr | will converge to 0 linearly. Therefore, to reduce the error to ε, we need577

Kr = O(log(ε−1)) rounds of communications.578

The following theorem establishes the sample complexity of Algorithm 2 under Markovian sampling.579

Theorem 3. Suppose Assumptions 1-5 hold. Consider the update of Algorithm 2 under Markovian580

sampling. Let αk = ᾱ√
K

for some positive constant ᾱ, βk = C9

2λϕ
αk, Kc = O(log(K1/4)),581

Kr = log(K1/2). Then, we have582

1

K

K∑
k=1

N∑
i=1

E
[
∥ωik − ω∗(θk)∥2

]
≤ O

(
log2K√

K

)
1

K

K∑
k=1

N∑
i=1

E
[
∥∇θiF (θk)∥2

]
≤ O

(
log2K√

K

)
+O(εapp + εsp), (18)

17



Algorithm 2: Decentralized single-timescale AC (noisy reward version)

1: Initialize: Actor parameter θ0, critic parameter ω0, initial state s0.
2: for k = 0, · · · ,K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (·), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k by (4).
9:

10: for i = 0, · · · , N in parallel do
11: Global reward estimation: Estimate r̄k(sk, ak) by (17).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update: Update θik+1 by (6).
14: end for
15: end for

where C9 and C10 are positive constants defined in proof.583

The Theorem 3 shows that Algorithm 2 has the same sample complexity as Algorithm 1; see584

Appendix E.3 for the proof. Algorithm 2 enjoys the advantage of preserving local actions and requiring585

less parameters since no reward estimator is needed. The cost is that we need to communicate586

O(log(ε−1)) times for each iteration.587

C Auxiliary lemmas588

In this section, we provide some auxiliary lemmas, which serves as the preliminary for the proof of589

main theorems and lemmas.590

Lemma 4 ([40], Lemma 3.2). Suppose Assumption 3 holds, then there exists a positive constant L591

such that for all θ, θ′ ∈ Rdθ , we have ∥∇J(θ)−∇J(θ′)∥ ≤ L∥θ − θ′∥.592

Lemma 5 ([24], Lemma 1). Suppose Assumptions 4 holds, then there exists κ > 0, ρ ∈ [0, 1] such593

that for any θ ∈ RNdθ we have594

sup
s0∈S

dTV (P((sk, ak, sk+1) ∈ ·|s0, πθ), µθ ⊗ πθ,P) ≤ κρk,

where µθ is the stationary distribution induced by πθ and transition kernel P(·|s, a).595

Lemma 6 ([24], Lemma 2). Suppose Assumption 4 holds, then for any θ ∈ Rdθ , we have596

dTV (dθ, µθ) ≤ 2(logρ κ
−1 +

1

1− ρ
)(1− γ).

Lemma 7 ([24], Lemma 4). Suppose Assumption 3 holds, for any θ1, θ2 ∈ Rdθ and s ∈ S, there597

exits a positive constant LV such that598

∥∇Vπθ1 (s)∥ ≤ LV

|Vπθ1 (s)− Vπθ2 (s)| ≤ LV ∥θ1 − θ2∥.

Lemma 8 ([32], Lemma A.1). For any policy θ1 and θ2, it holds that599

dTV (µθ1 , µθ2) ≤ |A|Lπ(logρ κ−1 + (1− ρ)−1)∥θ1 − θ2∥
dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ |A|Lπ(1 + logρ κ

−1 + (1− ρ)−1)∥θ1 − θ2∥
dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P) ≤ |A|Lπ(1 + logρ κ

−1 + (1− ρ)−1)∥θ1 − θ2∥.

We will define Lµ := |A|Lπ(logρ κ−1 + (1− ρ)−1) for the proof of main theorems and lemmas.600

Lemma 9 ([5], Lemma F.3). For a doubly stochastic matrix W ∈ RN×N and the difference matrix601

Q := I − 1
N 11T , it holds that for any matrix H ∈ RN×N , ∥W kH∥F ≤ νk∥QH∥F , where ν is the602

second largest singular value of W .603
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Lemma 10 (descent lemma in high dimension). Consider the mapping F : Rn → Rm. If there exists604

a positive constant L such that605

∥∇F (x)−∇F (y)∥F ≤ L∥x− y∥, ∀x, y ∈ dom(F ), (19)

then the following holds606

∥F (y)− F (x)−∇F (x)(y − x)∥ ≤ L1

2

√
m∥y − x∥2.

Proof. Observe that (19) directly implies the smoothness of each entry Fi:607

∥∇Fi(x)−∇Fi(y)∥ ≤ ∥∇F (x)−∇F (y)∥F ≤ L1∥x− y∥.

Define608

zi(x, y) := Fi(y)− Fi(x)−∇Fi(x)T (y − x).

We have609

∥F (y)− F (x)−∇F (x)(y − x)∥ =

√√√√ m∑
i=1

zi(x, y)2

≤
√
m(

L1

2
∥y − x∥2)2

=
L1

2

√
m∥y − x∥2,

where the inequality follows the descent lemma.610

Lemma 11 (Lipschitz property of multiplication). Suppose f(x) and g(x) are two functions bounded611

by Cf and Cg , and are Lf - and Lg-Lipschitz continuous, then f(x)g(x) is CfLg + CgLf -Lipschitz612

continuous.613

Proof.

∥f(x1)g(x1)− f(x2)g(x2)∥ = ∥f(x1)g(x1)− f(x1)g(x2) + f(x1)g(x2)− f(x2)g(x2)∥
≤ ∥f(x1)∥∥g(x1)− g(x2)∥+ ∥f(x1)− f(x2)∥∥g(x2)∥
≤ (CfLg + CgLf )∥x1 − x2∥.

614

Lemma 12 (invertible property of matrix). If a square matrix A satisfying limt→∞At = 0, or615

equivalently, |λ(A)| < 1, then I −A is invertible.616

Proof.

(I −A) lim
t→∞

t∑
i=0

At = lim
t→∞

[

t∑
i=0

At −
t+1∑
i=1

At]

= I − lim
t→∞

At+1

= I.

Since I is invertible, by the rank inequality rank(AB) ≤ min(rank(A), rank(B)), I − A and617

limt→∞
∑t
i=0A

t will be invertible.618

Lemma 13 (mismatch between Markovian sampling and stationary distribution). Consider the619

Markov chain:620

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z+1−−−−→ ak−z+1 · · ·

θk−1−−−→ ak−1
P−→ sk

θk−→ ak
P−→ sk+1.

Also consider the auxiliary Markov chain with fixed policy:621

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z−−−→ ãk−z+1 · · ·

θk−z−−−→ ãk−1
P−→ s̃k

θk−z−−−→ ãk
P−→ s̃k+1.
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Let ξk := (sk, ak, sk+1) be sampled from chain 1, and ξ̃k := (sk, ak, sk+1) be sampled from chain622

2. Then we have623

dTV (P(ξk ∈ ·|θk−z, sk−z+1),P(ξ̃k ∈ ·|θk−z, sk−z+1)) ≤
1

2

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥.

Proof.

dTV (P(ξk ∈ ·),P(ξ̃k ∈ ·))

=
1

2

∫
s∈S

∫
s′∈S

∑
a∈A

|P(sk = ds, ak = a, sk+1 = ds′)− P(s̃k = ds, ãk = a, s̃k+1 = ds′)|

=
1

2

∫
s∈S

∑
a∈A

|P(sk = ds, ak = a)− P(s̃k = ds, ãk = a)|
∫
s′∈S

P(sk+1 = ds′|sk = ds, ak = a)

=
1

2

∫
s∈S

∑
a∈A

|P(sk = ds, ak = a)− P(s̃k = ds, ãk = a)|

=
1

2

∫
s∈S

∑
a∈A

|P(sk = ds)πθk(a|ds)− P(s̃k = ds)πθk−z (a|ds)|

≤ 1

2

∫
s∈S

∑
a∈A

|P(sk = ds)πθk(a|ds)− P(sk = ds)πθk−z (a|ds)|

+
1

2

∫
s∈S

∑
a∈A

|P(sk = ds)πθk−z (a|ds)− P(s̃k = ds)πθk−z (a|ds)|

≤ 1

2

∫
s∈S

|A|Lπ∥θk − θk−z∥P(sk = ds)

+
1

2

∫
s∈S

|P(sk = ds)− P(s̃k = ds)|
∑
a∈A

πθk−z (a|ds)

=
1

2
|A|Lπ∥θk − θk−z∥+ dTV (P(sk ∈ ·),P(s̃k ∈ ·)). (20)

The second term can be bounded as624

dTV (P(sk ∈ ·),P(s̃k ∈ ·))

=
1

2

∫
s′∈S

|P(sk = ds)− P(s̃k = ds)|

=
1

2

∫
s′∈S

|
∑
a∈A

∫
s∈S

P(sk−1 = ds, ak−1 = a, sk = ds′)− P(s̃k−1 = ds, ãk−1 = a, s̃k = ds′)|

≤ 1

2

∫
s′∈S

∑
a∈A

∫
s∈S

|P(sk−1 = ds, ak−1 = a, sk = ds′)− P(s̃k−1 = ds, ãk−1 = a, s̃k = ds′)|

= dTV (P(ξk−1 ∈ ·),P(ξ̃k−1 ∈ ·)). (21)

Combined (20) and (21), we obtain625

dTV (P(ξk ∈ ·),P(ξ̃k ∈ ·)) ≤ dTV (P(ξk−1 ∈ ·),P(ξ̃k−1 ∈ ·)) + 1

2
|A|Lπ|θk − θk−z∥.

Sum over z − 1 steps, we obtain626

dTV (P(ξk ∈ ·),P(ξ̃k ∈ ·)) ≤ dTV (P(ξk−z ∈ ·),P(ξ̃k−z ∈ ·)) + 1

2

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥

=
1

2

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥.

627
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D Supporting lemmas628

Before proceeding to the analysis of critic variables, we firstly justify the uniqueness of optimal629

solution for critic and reward estimator variables. Define the following notations630

Aθ,ϕ := E[ϕ(s)(γϕ(s′)T − ϕ(s)T )] (22)

Aθ,φ := E[φ(s, a)φ(s, a)T ]
bθ,ϕ := E[ϕ(s)r̄(s, a)]
bθ,φ := E[φ(s, a)r̄(s, a)],

with expectation taken from s ∼ µθ(s), a ∼ πθ, s
′ ∼ P . The optimal critic and reward estimator631

variables given policy θ will satisfy Aθ,ϕω∗(θ) + bθ,ϕ = 0;Aθ,φλ
∗(θ) + bθ,φ = 0. By Assumption632

2, Aθ,ϕ and Aθ,φ are negative definite with largest eigenvalue λϕ and λφ, which ensures the unique633

solution ω∗(θ) = −A−1
θ,ϕbθ,ϕ;λ

∗(θ) = −A−1
θ,ϕbθ,ϕ. Let Rω := rmax

λϕ
, Rλ := rmax

λφ
. Then the norm of634

optimal solutions will be bounded as ∥ω∗(θ)∥ ≤ Rω, ∥λ∗(θ)∥ ≤ Rλ, which justifies the projection635

step of the Algorithm 1.636

To study the error of critic, we introduce the following notations637

δi(ξ, θ) := ri(s, a) + γVθ(s
′)− Vθ(s)

δ(ξ, θ) := r̄(s, a) + γVθ(s
′)− Vθ(s)

δ̃(ξ, ω) := r̄(s, a) + γϕ(s′)Tω − ϕ(s)Tω

δ̂(ξ, ω, λ) := φ(s, a)Tλ+ γϕ(s′)Tω − ϕ(s)Tω, (23)

where we overwrite Vπθ as Vθ for simplicity.638

For the ease of expression, we further define639

gia(ξ, ω, λ) := δ̂(ξ, ω, λ)ψθi(s, a
i)

gic(ξ, ω) := δi(ξ, ω)ϕ(s)

ḡc(ξ, ω) := δ̃(ξ, ω)ϕ(s)

gc(θ, ω) := Eξ∼µθ [ḡc(ξ, ω)]. (24)

We will start with the error of averaged critic parameter first. The following lemma characterizes the640

descent of averaged critic variables under i.i.d. sampling.641

D.1 Error of critic642

We first present several useful lemmas and propositions, which serves as the preliminary for estab-643

lishing the approximate descent property of the critic variables’ optimal gap.644

Proposition 1 (Lipschitz continuity of ω∗(θ) [32]). Suppose Assumptions 2 and 4 hold, then there645

exists a positive constant Lω such that for any θ1, θ2 ∈ RNdθ , we have646

∥ω∗(θ1)− ω∗(θ2)∥ ≤ Lω∥θ1 − θ2∥.
Lemma 14 (smoothness of stationary distribution). Suppose Assumptions 1, 3, and 4 hold, then for647

any θ, θ′ ∈ Rd, there exists a positive constant Lµ,1 such that648

∥∇µθ(s)−∇µθ′(s)∥ ≤ Lµ,1∥θ − θ′∥.

The proof of this Lemma consists of two main steps: 1) Derive the expression of the gradient and 2)649

establish that the gradient is Lipschitz continuous. For the first part, we follow the main idea in [2].650

Proof. For a given policy πθ, we define the transition probability Pθ(s|s′) :=
∑
a πθ(a|s′)P (s|s′, a).651

By the Assumption 4, there exists a stationary distribution µθ(s) which satisfies for all state s652

µθ(s) =
∑
s′∈S

µθ(s
′)Pθ(s|s′) (25)
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Define the following notations653

µθ := [µθ(s1), µθ(s2), · · · , µθ(sn)]T R|S|×1

Pθ(s) := [Pθ(s|s1), Pθ(s|s2), · · · , Pθ(s|sn)]T R|S|×1

P (θ) := [Pθ(s1), Pθ(s2), · · · , Pθ(sn)] R|S|×|S|

∇µθ := [∇µθ(s1),∇µθ(s2), · · · ,∇µθ(sn)] Rdθ×|S|

∇Pθ(s) := [∇Pθ(s|s1),∇Pθ(s|s2), · · · ,∇Pθ(s|sn)] Rdθ×|S|

Upon taking derivative with respect to θ on both sides of (25), we have654

∇µθ(s) =
∑
s′∈S

∇µθ(s′)Pθ(s|s′) + µθ(s
′)∇θPθ(s|s′)

= ∇µθPθ(s) +∇Pθ(s)µθ (26)

(26) can be written in compact form as655

∇µθ = ∇µθP (θ) + [∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ] (27)

Therefore, we have656

[∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ] = ∇µθ(I − P (θ))

= ∇µθ(I − (P (θ)− eµTθ )),

where the second inequality is due to ∇µθe = ∇(µθe) = ∇1 = 0.657

We now show that I−(P (θ)−eµTθ ) is invertible. The first step is to show limt→∞(P (θ)−eµTθ )t = 0.658

Let P, µ represent P (θ), µθ for simplicity, we first show (P − eµT )t = P t −P t−1eµT by induction.659

Observe that when t = 1, this is trivially satisfied. Suppose the equality holds for t = k, then660

(P − eµT )k+1 = (P k − P k−1eµT )P − (P k − P k−1eµT )eµT

= P k+1 − P k−1eµT − P keµT + P k−1(eµT )2

= P k+1 − P keµT ,

where the second equality is due to (25) such that eµTP = eµT and the last equality is due to661

µT e = 1.662

Therefore, we have663

lim
t→∞

(P (θ)− eµTθ )
t = lim

t→∞
(P (θ)t − P (θ)t−1eµTθ ) = eµTθ − eµTθ = 0,

which together with Lemma 12 justifies that I − (P (θ)− eµTθ ) is invertible. Thus, we have664

∇µθ = (I − (P (θ)− eµTθ ))
−1[∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ]. (28)

We will utilize Lemma 11 to prove the Lipschitz property of ∇µθ. We first show the Lipschitz665

continuous of the first term. Let A(θ) to represent I − (P (θ)− eµTθ ), then we have666

∥A(θ1)−A(θ2)∥ = ∥P (θ1)− P (θ2) + e(µθ2 − µθ1)
T ∥

≤ ∥P (θ1)− P (θ2)∥+ ∥e(µθ2 − µθ1)
T ∥

=

√ ∑
s,s′∈S

|
∑
a∈A

(πθ1(a|s′)− πθ2(a|s′))P (s|s′, a)|2 +
√
|S|∥µθ2 − µθ1∥

≤
√ ∑
s,s′∈S

(
∑
a∈A

|(πθ1(a|s′)− πθ2(a|s′))P (s|s′, a)|)2 +
√
|S|∥µθ2 − µθ1∥

≤
√∑
s′∈S

|A|2L2
π∥θ1 − θ2∥2

∑
s∈S

P (s|s′, a)2 +
√
|S|Lµ∥θ1 − θ2∥

=
√

|S|(|A|Lπ + Lµ)∥θ1 − θ2∥.
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where the second inequality uses triangle inequality. The last inequality is due to Lipschitz continuous667

of the policy specified in Assumption 3, and Lipschitz continuous of µθ implied by Lemma 7.668

To see that A−1(θ) is Lipschitz continuous and bounded, observe that669

∥A−1(θ1)−A−1(θ2)∥ = ∥A−1(θ2)(A(θ2)−A(θ1))A
−1(θ1)∥

≤ ∥A−1(θ2)∥∥A−1(θ1)∥∥A(θ2)−A(θ1)∥

≤
√

|S|(|A|Lπ + Lµ)∥A−1(θ2)∥∥A−1(θ1)∥∥θ2 − θ1∥, (29)

where the first inequality uses Cauchy-Schwartz inequality, and the last inequality uses the Lipschitz670

continuous ofA(θ) in (29). Since ∥A(θ)∥ is bounded, ∥A−1(θ)∥ is also bounded (due to invertibility),671

which justifies that the first term in (28) is Lipschitz continuous and bounded.672

We now consider the second term in (28). For any state s673

∥∇Pθ1(s)µθ1 −∇Pθ2(s)µθ2∥ = ∥∇Pθ1(s)(µθ1 − µθ2) + (∇Pθ1(s)−∇Pθ2(s))µθ2∥
≤ ∥∇Pθ1(s)(µθ1 − µθ2)∥+ ∥(∇Pθ1(s)−∇Pθ2(s))µθ2∥
≤ ∥∇Pθ1(s)∥∥µθ1 − µθ2∥+ ∥∇Pθ1(s)−∇Pθ2(s)∥∥µθ2∥

≤
∑
s′∈S

∑
a∈A

∥∇πθ1(a|s′)P (s|s′, a)∥Lµ∥θ1 − θ2∥

+
∑
s′∈S

∑
a∈A

∥(∇πθ1(a|s′)−∇πθ2(a|s′))P (s|s′, a)∥

≤ |S||A|(CπLµ + Lπ)∥θ1 − θ2∥,
which justifies the Lipschitz continuous of ∇Pθ(s)µθ. Define B(θ) :=674

[∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ], we have675

∥B(θ1)−B(θ2)∥ ≤ |S|3/2|A|(CπLµ + Lπ)∥θ1 − θ2∥.

Since ∇µθ = A−1(θ)B(θ), with A−1(θ) and B(θ) being Lipschitz continuous and bounded. There-676

fore, according to Lemma 11, there exists a positive constant Lµ,1 which satisfies677

∥∇µθ1 −∇µθ2∥ ≤ Lµ,1∥θ1 − θ2∥.
678

Proposition 2 (Lipschitz continuity of ∇θω
∗(θ) [4]). Suppose Assumptions 1-4 hold, then there679

exists a positive constant Lω,2 such that680

∥∇θω
∗(θ1)−∇θω

∗(θ2)∥F ≤ Lω,2∥θ1 − θ2∥.

Proof. The proof follows the derivation of Proposition 8 of [4]. However, they make assumption that681

µθ(s) is Lipschitz continuous, which we have justified in Lemma 14. We present the proof for the682

completeness.683

We have ω∗(θ) = −A−1
θ,ϕbθ,ϕ, where Aθ,ϕ is defined in (22). The Jacobian of ω∗(θ) can be calculated684

as685

∇θω
∗(θ) = −∇θ(A

−1
θ,ϕbθ,ϕ)

= −A−1
θ,ϕ(∇θAθ,ϕ)A

−1
θ,ϕbθ,ϕ −Aθ,ϕ(∇θbθ,ϕ). (30)

We can utilize Lemma 11 to show the Lipschitz continuity of ∇ω∗(θ). We have to verify the Lipschitz686

continuity and boundedness of A−1
θ,ϕ, bθ,ϕ,∇θAθ,ϕ, and ∇θbθ,ϕ.687

The Lipschitz continuity and boundedness of A−1
θ,ϕ has been shown in (29. Let b1 and b2 represent688

bθ1,ϕ, bθ2,ϕ, we have689

∥b1 − b2∥ = ∥E[r̄(s, a, s′)ϕ(s)]− E[r(s̃, ã, s̃′)ϕ(s̃)]∥
≤ sup
s,a,s′

∥r(s, a, s′)ϕ(s)∥∥P((s, a, s′ ∈ ·))− P((s̃, ã, s̃′ ∈ ·))∥TV

≤ rmax∥P((s, a, s′ ∈ ·))− P((s̃, ã, s̃′ ∈ ·))∥TV
≤ 2|A|Lπ(1 + logρ κ

−1 + (1− ρ)−1)∥θ1 − θ2∥,
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where the last inequality follows Lemma 8.690

We now analyze ∇θAθ,ϕ. We first define691

A(s, s′) := ϕ(s)(γϕ(s′)− ϕ(s))T , b(s, a, s′) := r(s, a, s′)ϕ(s).

as692

∇θAθ,ϕ = ∇θ

∑
s,a,s′

µθ(s)πθ(a|s)P (s′|s, a)A(s, s′)


=
∑
s,a,s′

[∇θµθ(s)πθ(a|s)P (s′|s, a)A(s, s′) + µθ∇θπθ(a|s)P (s′|s, a)A(s, s′)] .

By Lemma 14 and Lemma 8, and Assumption 3, µθ(s), πθ(a|s),∇θµθ(s), ∇θπθ(a|s) are Lipschitz693

continuous and bounded. Therefore, ∇θAθ,ϕ is Lipschitz and bounded.694

Finally, we analyze ∇θbθ,ϕ by following the same technique.695

∇θbθ,ϕ = ∇θ

∑
s,a,s′

µθ(s)πθ(a|s)P (s′|s, a)b(s, a, s′)


=
∑
s,a,s′

[∇θµθ(s)πθ(a|s)P (s′|s, a)b(s, a, s′) + µθ(s)∇θπθ(a|s)P (s′|s, a)b(s, a, s′)] .

By Lemma 14 and Lemma 8, and Assumption 3, µθ(s), πθ(a|s),∇θµθ(s), ∇θπθ(a|s) are Lipschitz696

continuous and bounded. Thus, ∇θbθ,ϕ is bounded and Lipschitz continuous.697

We have shown the Lipschitz continuity and boundedness of A−1
θ,ϕ, bθ,ϕ, ∇θAθ,ϕ, and ∇θbθ,ϕ.698

Therefore, by applying Lemma 11, we conclude that there exists a positive constant Lω,2 such that699

∇θω
∗(θ) in (30) is Lω,2-Lipschitz continuous.700

Lemma 15 (descent of critic’s optimal gap (i.i.d. sampling)). Suppose Assumptions 1-4 hold, with701

ωk+1 generated by Algorithm 1 given ωk and θk under i.i.d. sampling, then the following holds702

E∥ω̄k+1 − ω∗(θk+1)∥2 ≤ (1 + 4L2
ω,2Nαk +

L2
ω,2

2
C2
θN

2α2
k)E∥ω̄k+1 − ω∗(θk)∥2

+ (
L2
ω,2

2
C2
θN

2 + L2
ωC

2
θN

2)α2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2.

(31)
703

E∥ω̄k+1 − ω∗(θk)∥2 ≤ (1− 2λϕβk)E∥ω̄k − ω∗(θk)∥2 + C2
δβ

2
k. (32)

Proof. We begin with the optimality gap of averaged critic variables704

∥ω̄k+1 − ω∗(θk+1)∥2

= ∥ω̄k+1 − ω∗(θk) + ω∗(θk)− ω∗(θk+1)∥2

= ∥ω̄k+1 − ω∗(θk)∥2 + ∥ω∗(θk)− ω∗(θk+1)∥2 + 2⟨ω̄k+1 − ω∗(θk), ω
∗(θk)− ω∗(θk+1)⟩

≤ ∥ω̄k+1 − ω∗(θk)∥2 +N2L2
ωC

2
θα

2
k + 2⟨ω̄k+1 − ω∗(θk),∇ω∗(θk)

T (θk − θk+1)⟩
+ 2⟨ω̄k+1 − ω∗(θk), ω

∗(θk)− ω∗(θk+1)−∇ω∗(θk)
T (θk − θk+1)⟩, (33)

where the inequality is due to705

∥ω∗(θk)− ω∗(θk+1)∥2 ≤ Lω∥θk − θk+1∥2,

∥θk − θk+1∥2 = ∥
N∑
i=1

δ̂(ξk, ω
i
k, λ

i
k)ψθik(sk, a

i
k)∥2 ≤ N2α2

kC
2
θ , (34)

with Cθ := CδCψ .706
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The third term in (33) can be bounded as707

⟨ω̄k+1 − ω∗(θk),∇ω∗(θk)
T (θk − θk+1)⟩

≤ ∥ω̄k+1 − ω∗(θk)∥∥∇ω∗(θk)
T (θk − θk+1)∥

≤ Lω,2∥ω̄k+1 − ω∗(θk)∥∥θk − θk+1∥

≤
N∑
i=1

Lω,2αk∥ω̄k+1 − ω∗(θk)∥∥gia(ξk, ωik+1, λ
i
k+1)∥

≤
N∑
i=1

(2Lω,2αk∥ω̄k+1 − ω∗(θk)∥2 +
αk
8
∥gia(ξk, ωik+1, λ

i
k+1)∥2), (35)

where the second inequality follows Proposition 1, the third inequality uses triangle inequality, and708

the last inequality uses Young’s inequality.709

The last term in (33) can be bounded as710

E⟨ω̄k+1 − ω∗(θk), ω
∗(θk)− ω∗(θk+1)−∇ω∗(θk)

T (θk − θk+1)⟩

≤
L2
ω,2

2
E∥ω̄k+1 − ω∗(θk)∥∥θk+1 − θk∥2

≤
L2
ω,2

4
E∥ω̄k+1 − ω∗(θk)∥2∥θk+1 − θk∥2 +

L2
ω,2

4
∥θk+1 − θk∥2

≤
L2
ω,2

4
N2C2

θα
2
kE∥ω̄k+1 − ω∗(θk)∥2 +

L2
ω,2

4
N2C2

θα
2
k. (36)

The first inequality uses Lemma 10, and the second inequality is induced by Young’s inequality. The711

last inequality follows (34).712

Plug (35) and (36) into (33) will yield (31).713

We now prove (32).714

∥ω̄k+1 − ω∗(θk)∥2 = ∥
∏
Rω

(ω̄k + βkḡc(ξk, ω̄k))−
∏
Rω

ω∗(θk)∥2

≤ ∥ω̄k + βkḡc(ξ, ω̄k)− ω∗(θk)∥2

= ∥ω̄k − ω∗(θk)∥2 + β2
k∥ḡc(ξk, ω̄k)∥2 + 2βkE[⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)⟩]

≤ ∥ω̄k − ω∗(θk)∥2 + β2
kC

2
δ + 2βk⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)⟩. (37)

The first inequality is due to the non-expansiveness of projection to convex set. The last inequality715

follows716

∥ḡc(ξ, ω)∥ ≤ |r(s, a) + γϕ(s′)Tω − ϕ(s)Tω| ≤ rmax + (1 + γ)Rω := Cδ.

Let ξ ∼ µθ to represent s ∼ µπθ , a ∼ πθ(·|s), s′ ∼ P(·|s, a), the last term in (37) can be bounded as717

E[⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)⟩]
= ⟨ω̄k − ω∗(θk),E[ḡc(ξk, ω̄k)− gc(θk, ω

∗(θk))]⟩
= βk⟨ω̄k − ω∗(θk),Eξ∼µθk [ϕ(s)(γϕ(s

′)− ϕ(s))T |θk](ω̄k − ω∗(θk))⟩
= βk⟨ω̄k − ω∗(θk), Aθk,ϕ(ω̄k − ω∗(θk))⟩
≤ −λϕβk∥ω̄k − ω∗(θk)∥2. (38)

Here the first equality is due to critic’s optimality condition gc(θk, ω
∗(θk)) =718

Eξk∼µθk [ḡc(ξk, ω
∗(θk))|θk] = 0. The last inequality uses the negative definiteness of Aθk,ϕ.719

Plug (38) into (37) gives us (36).720

The next lemma describes the descent property of averaged critic variables under Markovian sampling.721
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Lemma 16 (descent of critic’s optimal gap (Markovian sampling)). Under Assumptions 1-4, with722

ωk+1 generated by Algorithm 1 given ωk and θk under Markovian sampling, then the following holds723

E∥ω̄k+1 − ω∗(θk+1)∥2 ≤ (1 + 4L2
ω,2Nαk +

L2
ω,2

2
C2
θN

2α2
k)E∥ω̄k+1 − ω∗(θk)∥2

+ (
L2
ω,2

2
C2
θN

2 + L2
ωC

2
θN

2)α2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2.

(39)
724

E∥ω̄k+1 − ω∗(θk)∥2 ≤ (1− 2λϕβk)E∥ω̄k − ω∗(θk)∥2 + CK1
βkβk−ZK + CK2

αk−ZKβk. (40)

where CK1
:= 4C2CδZK + C2

δ , CK2
:= 4C1CθZK + 2C3CθZ

2
K + C8, ZK := min{z ∈725

N+|κρz−1 ≤ min{αk, βk, ηk}}.726

Proof. (39) has already been derived in the proof of i.i.d. sampling setting, please check the derivation727

of (31).728

We now prove (40). Follow the derivation of (37), we have729

E∥ω̄k+1 − ω∗(θk)∥2 ≤ ∥ω̄k − ω∗(θk)∥2 + β2
kC

2
δ + 2βkE[⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)⟩]

= ∥ω̄k − ω∗(θk)∥2 + β2
kC

2
δ + 2βkE⟨ω̄k − ω∗(θk), gc(θk, ω̄k)⟩

+ 2βkE⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)− gc(θk, ω̄k)⟩
≤ (1− 2λϕβk)∥ω̄k − ω∗(θk)∥2 + β2

kC
2
δ

+ 2βkE⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)− gc(θk, ω̄k)⟩. (41)

Here, the last inequality bound the third term using the same technique of (38).730

We now bound the last term in (41). By Lemma 17, for any z ∈ N+, we have731

E⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)− gc(θk, ω̄k)⟩

≤ C1E∥θk − θk−z∥+ C2E∥ω̄k − ω̄k−z∥+ C3

z−1∑
m=0

E∥θk−m − θk−z∥+ C8κρ
z−1

(i)

≤ C1

z∑
n=1

E∥θk−n+1 − θk−n∥+ C2

z∑
n=1

E∥ω̄k−n+1 − ω̄k−n∥

+ C3

z−1∑
m=0

z−m∑
n=1

E∥θk−m−n+1 − θk−m−n∥+ C8κρ
z−1

≤ 2C1Cθ

z∑
n=1

αk−n + 2C2Cδ

z∑
n=1

βk−n + C3Cθ

z−1∑
m=0

z−m∑
n=1

αk−m−n + C8κρ
z−1

(ii)

≤ 2C1Cθzαk−z + 2C2Cδzβk−z + C3Cθz(z − 1)αk−z + C8κρ
z−1, (42)

where the (i) uses triangle inequality, (ii) uses the non-increasing property of step sizes.732

Let z = ZK := min{z ∈ N+|κρz−1 ≤ min{αk, βk, ηk}}, we have733

E⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)− gc(θk, ω̄k)⟩
≤ 2C1CθZKαk−ZK + 2C2CδZKβk−ZK + C3CθZ

2
Kαk−ZK + C8αk−ZK . (43)

Plug (43) into (41) will yield734

∥ω̄k+1 − ω∗(θk)∥2 ≤ (1− 2λϕβk)∥ω̄k − ω∗(θk)∥2 + C2
δβ

2
k

+ 4C1CθZKαk−ZK + 4C2CδZKβk−ZK + 2C3CθZ
2
Kαk−ZK + 2C8αk−ZK .

By defining CK1
:= 4C2CδZK + C2

δ , CK2
:= 4C1CθZK + 2C3CθZ

2
K + C8, we complete the735

proof.736
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Lemma 17. Consider the sequence generated by Algorithm 1, for any z ∈ N+, we have737

E⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)− gc(θk, ω̄k)⟩ ≤ C1∥θk − θk−z∥+ C2∥ω̄k − ω̄k−z∥

+ C3

z−1∑
m=0

∥θk−m − θk−z∥+ C8κρ
z−1,

where C1 := 4RωCδ|A|Lπ(1+logρ κ
−1+(1−ρ)−1)+2CδLω, C2 := 4(1+γ)Rω+2Cδ, C3 :=738

4RωCδ|A|Lπ, C8 := 8RωCδ.739

Proof. Consider the Markov chain since timestep k − z:740

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z+1−−−−→ ak−z+1 · · ·

θk−1−−−→ ak−1
P−→ sk

θk−→ ak
P−→ sk+1.

Also consider the auxiliary Markov chain with fixed policy since timestep k − z:741

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z−−−→ ãk−z+1 · · ·

θk−z−−−→ ãk−1
P−→ s̃k

θk−z−−−→ ãk
P−→ s̃k+1.

Throughout the proof of this lemma, we will use θ, θ′, ω̄, ω̄′, ξ, ξ̃ as shorthand notations of742

θk, θk−z, ω̄k, ω̄k−z, ξk, ξ̃k.743

For the ease of expression, define744

∆1(ξ, θ, ω) := ⟨ω − ω∗(θ), ḡc(ξ, ω)− gc(θ, ω)⟩.

Therefore, we have745

⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k)− gc(θk, ω̄k)⟩ = ∆1(ξ, θ, ω̄)

= ∆1(ξ, θ, ω̄)−∆1(ξ, θ
′, ω̄)︸ ︷︷ ︸

I1

+∆1(ξ, θ
′, ω̄)−∆1(ξ, θ

′, ω̄′)︸ ︷︷ ︸
I2

+∆1(ξ, θ
′, ω̄′)−∆1(ξ̃, θ

′, ω̄′)︸ ︷︷ ︸
I3

+∆1(ξ̃, θ
′, ω̄′)︸ ︷︷ ︸

I4

. (44)

I1 can be expressed as746

I1 = ⟨ω̄ − ω∗(θ), ḡc(ξ, ω̄)− gc(θ, ω̄)⟩ − ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄)− gc(θ
′, ω̄)⟩

= ⟨ω̄ − ω∗(θ), ḡc(ξ, ω̄)− gc(θ, ω̄)⟩ − ⟨ω̄ − ω∗(θ), ḡc(ξ, ω̄)− gc(θ
′, ω̄)⟩

+ ⟨ω∗(θ)− ω∗(θ′), ḡc(ξ, ω̄)− gc(θ
′, ω̄)⟩

≤ ∥ω̄ − ω∗(θ)∥∥gc(θ′, ω̄)− gc(θ, ω̄)∥+ ∥ω∗(θ)− ω∗(θ′)∥∥ḡc(ξ, ω̄)− gc(θ
′, ω̄)∥. (45)

The first term can be bounded as747

∥ω̄ − ω∗(θ)∥∥gc(θ′, ω̄)− gc(θ, ω̄)∥ ≤ 2Rω∥Eξ∼µ′
θ
[ḡc(ξ, ω̄)]− Eξ∼µθ [ḡc(ξ, ω̄)]∥

≤ 4Rω sup
ξ

∥ḡc(ξ, ω̄)∥dTV (µ′
θ ⊗ π′

θ ⊗ P, µθ ⊗ πθ ⊗ P)

≤ 4RωCδdTV (µ
′
θ ⊗ π′

θ ⊗ P, µθ ⊗ πθ ⊗ P)

≤ 4RωCδ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1)∥θ − θ′∥, (46)

where the first inequality follows the projection update of each critic step, the third inequality is due748

to ∥ḡc(ξ, ω̄)∥ ≤ Cδ , and the last inequality follows Lemma 8.749

By the Lipschitz conitinuous of ω∗(θ) proposed in Proposition 1, the second term can be bounded as750

∥ω∗(θ)− ω∗(θ′)∥∥ḡc(ξ, ω̄)− gc(θ, ω̄)∥ ≤ 2CδLω∥θ − θ′∥ (47)

Plug (46) and (47) into (45), we can bound I1 as751

I1 ≤ (4RωCδ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1) + 2CδLω)∥θ − θ′∥. (48)
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Next we bound I2 as752

I2 = ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄)− gc(θ
′, ω̄)⟩ − ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄

′)− gc(θ
′, ω̄′)⟩

= ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄)− gc(θ
′, ω̄)⟩ − ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄)− gc(θ

′, ω̄)⟩
+ ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄)− ḡc(ξ, ω̄

′)− gc(θ
′, ω̄) + gc(θ

′, ω̄′)⟩.

The first two terms can be bounded as753

⟨ω̄ − ω̄′, ḡc(ξ, ω̄)− gc(θ
′, ω̄)⟩ ≤ 2Cδ∥ω̄ − ω̄′∥. (49)

The last term can be bounded as754

⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄)− ḡc(ξ, ω̄
′)− gc(θ

′, ω̄) + gc(θ
′, ω̄′)⟩

≤ ∥ω̄ − ω∗(θ′)∥(∥ḡc(ξ, ω̄)− ḡc(ξ, ω̄
′)∥+ ∥gc(θ′, ω̄′)− gc(θ

′, ω̄)∥)
≤ 2Rω(∥ḡc(ξ, ω̄)− ḡc(ξ, ω̄

′)∥+ ∥gc(θ′, ω̄′)− gc(θ
′, ω̄)∥)

≤ 4Rω(1 + γ)∥ω̄ − ω̄′∥, (50)

where the second inequality follows the projection of each critic step. The last inequality is due to755

∥ḡc(ξ, ω̄)− ḡc(ξ, ω̄
′)∥ = ∥ϕ(s)(γϕ(s′)T (ω̄ − ω̄′)− ϕ(s)T (ω̄ − ω̄′))∥

≤ γ∥ϕ(s′)T (ω̄ − ω̄′)∥+ ∥ϕ(s)T (ω̄ − ω̄′)∥
≤ (1 + γ)∥ω̄ − ω̄′∥.

Combine (49) and (50), we can bound I2 as756

I2 ≤ (4(1 + γ)Rω + 2Cδ)∥ω̄ − ω̄′∥. (51)

We bound I3 as757

E[I3|θ′, sk−z+1] = E[∆1(ξ, θ
′, ω̄′)−∆1(ξ̃, θ

′, ω̄′)|θ′, sk−z+1]

≤ 2 sup
ξ

|∆1(ξ, θ
′, ω̄′)| dTV (P(ξ ∈ ·|θ′, sk−z+1),P(ξ̃ ∈ ·|θ′, sk−z+1))

≤ 8RωCδdTV (P(ξ ∈ ·|θ′, sk−z+1),P(ξ̃ ∈ ·|θ′, sk−z+1))

≤ 4RωCδ|A|Lπ
z−1∑
m=0

∥θk−m − θk−z∥. (52)

Here, the second inequality is due to ∥∆1(ξ, θ
′, ω̄′)∥ ≤ ∥ω′ − ω∗(θ′)∥∥ḡc(ξ, ω′) − gc(θ

′, ω′)∥ ≤758

4RωCδ , and the last inequality is according to Lemma 13.759

We now bound I4760

E[I4|θ′, ω̄′, sk+z−1] = E[∆1(ξ̃, θ
′, ω̄′)|θ′, ω̄′, sk−z+1]

≤ sup
ξ

|∆1(ξ, θ
′, ω̄′)∥P(ξ ∈ ·|θ′, sk−z+1)− µθ′ ⊗ πθ′ ⊗ P∥

≤ 8RωCδdTV (P(x̃ ∈ ·|θ′, st−z+1), µθ′ ⊗ πθ′ ⊗ P)

≤ 8RωCδκρ
z−1, (53)

where the last inequality follows Lemma 5.761

Plug (48), (51), (52), and (53) into (44), we get762

E[∆1(ξ, θ, ω̄)] ≤ (4RωCδ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1) + 2CδLω)E∥θk − θk−z∥

+ (4(1 + γ)Rω + 2Cδ)E∥ω̄k − ω̄k−z∥

+ (4RωCδ|A|Lπ)
z−1∑
m=0

E∥θk−m − θk−z∥

+ (8RωCδ)κρ
z−1,

which completes the proof.763
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D.2 Error of reward estimator764

The analysis for the error of reward estimator is similar to critic. To see this, we only need to change765

ḡc(ξ, ω̄) into ḡr(ξ, λ̄) := (r(s, a)− φ(s, a)T λ̄)φ(s, a) to recover most of the proofs. We provide the766

reward estimator’s analysis for the completeness. For the ease of discussion, we define767

gir(ξ, λ) := φ(s, a)(ri(s, a)− φ(s, a)Tλ),

ḡr(ξ, λ) := φ(s, a)(r̄(s, a)− φ(s, a)Tλ),

gr(θ, λ) := Eξ∼µθ [ḡr(ξ, λ)].

Note here gir(ξ, λ) and ḡr(ξ, λ) do not depend on the next state s′. We use ξ for notational convience.768

The following lemma is the counter part of Lemma 15 for reward estimator.769

Lemma 18 (descent of reward estimator’s optimal gap (i.i.d. sampling)). Suppopse Assumptions 1-4770

hold, with λk+1 generated by Algorithm 1 given λk and θk under i.i.d. sampling, then the following771

holds772

E∥λ̄k+1 − λ∗(θk+1)∥2 ≤ (1 + 4L2
λ,2Nαk +

L2
λ,2

2
C2
θN

2α2
k)E∥λ̄k+1 − λ∗(θk)∥2

+ (
L2
λ,2

2
C2
θN

2 + L2
λC

2
θN

2)α2
k +

αk
4

N∑
i=1

∥E[gia(ξk, λik+1, λ
i
k+1)]∥2.

(54)
773

E∥λ̄k+1 − λ∗(θk)∥2 ≤ (1− 2ηkλφ)∥λ̄k − λ∗(θk)∥2 + η2kC
2
λ. (55)

Proof. We begin with the optimal gap774

∥λ̄k+1 − λ∗(θk+1)∥2

= ∥λ̄k+1 − λ∗(θk) + λ∗(θk)− λ∗(θk+1)∥2

= ∥λ̄k+1 − λ∗(θk)∥2 + ∥λ∗(θk)− λ∗(θk+1)∥2 + 2⟨λ̄k+1 − λ∗(θk), λ
∗(θk)− λ∗(θk+1)⟩

≤ ∥λ̄k+1 − λ∗(θk)∥2 +N2L2
λC

2
θα

2
k + 2⟨λ̄k+1 − λ∗(θk),∇λ∗(θk)T (θk − θk+1)⟩

+ 2⟨λ̄k+1 − λ∗(θk), λ
∗(θk)− λ∗(θk+1)−∇λ∗(θk)T (θk − θk+1)⟩

≤ ∥λ̄k+1 − λ∗(θk)∥2 +N2L2
λC

2
θα

2
k + 2αkLλ,2

N∑
i=1

E∥λ̄k+1 − λ∗(θk)∥∥E[gia(ξk, ωik+1, λ
i
k+1)]∥

+ 2⟨λ̄k+1 − λ∗(θk), λ
∗(θk)− λ∗(θk+1)−∇λ∗(θk)T (θk − θk+1)⟩

≤ ∥λ̄k+1 − λ∗(θk)∥2 +N2L2
λC

2
θα

2
k + 4αkNL

2
λ,2E∥λ̄k+1 − λ∗(θk)∥2 +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2

+ 2⟨λ̄k+1 − λ∗(θk), λ
∗(θk)− λ∗(θk+1)−∇λ∗(θk)T (θk − θk+1)⟩. (56)

where the first inequality uses the Lipschitz continuous of λ∗(θ) and ∥θk − θk+1∥2 ≤ N2α2
kC

2
θ . The775

second inequality uses triangle inequality and the Lemma 2. The last inequality is due to Young’s776

inequality.777

The last term in (56) can be bounded as778

E⟨λ̄k+1 − λ∗(θk), λ
∗(θk)− λ∗(θk+1)−∇λ∗(θk)T (θk − θk+1)⟩

≤
L2
λ,2

2
E∥λ̄k+1 − λ∗(θk)∥∥θk+1 − θk∥2

≤
L2
λ,2

4
E∥λ̄k+1 − λ∗(θk)∥2∥θk+1 − θk∥2 +

L2
λ,2

4
∥θk+1 − θk∥2

≤
L2
λ,2

4
N2C2

θα
2
kE∥λ̄k+1 − λ∗(θk)∥2 +

L2
λ,2

4
N2C2

θα
2
k. (57)
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The first inequality uses Lemma 10, and the second inequality is induced by Young’s inequality. Plug779

(57) into (56) will yield (54).780

We now prove (55)781

∥λ̄k+1 − λ∗(θk)∥2 = ∥
∏
Rλ

(λ̄k − ηkḡr(ξk, λ̄k))−
∏
Rλ

λ∗(θk)∥2

≤ ∥λ̄k − ηkḡr(ξk, λ̄k)− λ∗(θk)∥2

≤ ∥λ̄k − λ∗(θk)∥2 + η2k∥ḡr(ξk, λ̄k)∥2 + 2ηkE[⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)⟩]
≤ ∥λ̄k − λ∗(θk)∥2 + Cλη

2
k − 2ηkE[⟨λ̄k + λ∗(θk), ḡr(sk, ak, λ̄k)⟩], (58)

where the last inequality is due to ∥ḡr(ξk, λ̄k)∥ ≤ |r(s, a)− φ(s, a)Tλ| ≤ rmax +Rλ := Cλ.782

The last term can be bounded as783

E[⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)⟩] = ⟨λ̄k − λ∗(θk),E[ḡr(ξk, λ̄k)− gr(θk, λ
∗(θk))]⟩

= ⟨λ̄k − λ∗(θk),Eξ∼µθk [φ(sk, ak)φ(sk, ak)
T |λ̄k](λ∗(θk)− λ̄k)⟩

= ⟨λ̄k − λ∗(θk), Aθ,φ(λ
∗(θk)− λ̄k)⟩

≤ −λφ∥λ̄k − λ∗(θk)∥2, (59)

where the first equality is according to the optimality condition of reward estimator784

Eξ∼µθk [φ(s, a)(r(s, a)− φ(s, a)Tλ∗(θk))] = 0.

Plug (59) into (58) will give us (55), which completes the proof.785

Lemma 19 (descent of reward estimator’s optimal gap (Markovian sampling)). Suppose Assumptions786

1-4 hold, with λk+1 generated by Algorithm 1 given λk and θk under Markovian sampling, then the787

following holds788

E∥λ̄k+1 − λ∗(θk+1)∥2 ≤ (1 + 4L2
λ,2Nαk +

L2
λ,2

2
C2
θN

2α2
k)E∥λ̄k+1 − λ∗(θk)∥2

+ (
L2
λ,2

2
C2
θN

2 + L2
λC

2
θN

2)α2
k +

αk
4

N∑
i=1

∥E[gia(ξk, λik+1, λ
i
k+1)]∥2.

(60)
789

E∥λ̄k+1 − λ∗(θk)∥2 ≤ (1− 2ηkλφ)∥λ̄k − λ∗(θk)∥2 + CK3
ηkηk−ZK + CK4

ηkαk−ZK , (61)

where CK3
:= 4C6CλZK + C2

λ, CK4
:= 4C5CθZK + 2C7CθZ

2
K + C8, ZK := min{z ∈790

N+|κρz−1 ≤ min{αk, ηk, ηk}}.791

Proof. Since analysis of (60) does not involve the update of λ̄k, it can be directly recovered from792

(54).793

We now prove (61). Following the derivation of (58), we obtain794

∥λ̄k+1 − λ∗(θk)∥2 ≤ ∥λ̄k − λ∗(θk)∥2 + C2
λη

2
k + 2ηkE[⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)⟩]

= ∥λ̄k − λ∗(θk)∥2 + C2
λη

2
k + 2ηkE[⟨λ̄k − λ∗(θk), gr(θk, λ̄k)⟩]

+ 2ηkE[⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)− gr(θk, λ̄k)⟩]
≤ (1− 2λφηk)∥λ̄k − λ∗(θk)∥2 + C2

λη
2
k

+ 2ηkE[⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)− gr(θk, λ̄k)⟩], (62)

where the last inequality is obatined by (61).795

We now bound the last term. By Lemma 20, for any z ∈ N+, we have796
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E⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)− gr(θk, λ̄k)⟩

≤ C5E∥θk − θk−z∥+ C6E∥λ̄k − λ̄k−z∥+ C7

z−1∑
m=0

E∥θk−m − θk−z∥+ C8κρ
z−1

(i)

≤ C5

z∑
n=1

E∥θk−n+1 − θk−n∥+ C6

z∑
n=1

E∥λ̄k−n+1 − λ̄k−n∥

+ C7

z−1∑
m=0

z−m∑
n=1

E∥θk−m−n+1 − θk−m−n∥+ C8κρ
z−1

≤ 2C5Cθ

z∑
n=1

αk−n + 2C6Cλ

z∑
n=1

ηk−n + C7Cθ

z−1∑
m=0

z−m∑
n=1

αk−m−n + C8κρ
z−1

(ii)

≤ 2C5Cθzαk−z + 2C6Cλzηk−z + C7Cθz(z − 1)αk−z + C8κρ
z−1, (63)

where the (i) uses triangle inequality, (ii) uses the non-increasing property of step sizes.797

Let z = ZK , recall ZK := min{z ∈ N+|κρz−1 ≤ min{αk, ηk, ηk}}, we have798

E⟨λ̄k − λ∗(θk), ḡr(ξk, λ̄k)− gr(θk, λ̄k)⟩
≤ 2C5CθZKαk−ZK + 2C6CλZKηk−ZK + C7CθZ

2
Kαk−ZK + C8αk−ZK . (64)

Plug (64) into (62) will yield799

∥λ̄k+1 − λ∗(θk)∥2 ≤ (1− 2λϕηk)∥λ̄k − λ∗(θk)∥2 + C2
λη

2
k

+ 4C5CθZKαk−ZK + 4C6CλZKηk−ZK + 2C7CθZ
2
Kαk−ZK + 2C8αk−ZK .

By defining CK3
:= 4C6CλZK + C2

λ, CK4
:= 4C5CθZK + 2C7CθZ

2
K + C8, we complete the800

proof.801

802

Lemma 20. Consider the sequence generated by Algorithm 1, for any z ∈ N+, we have803

E[⟨λ̄k − λ∗(θ), ḡr(ξk, λ̄k)− gr(θk, λ̄k)⟩] ≤ C5∥θk − θk−z∥+ C6∥λk − λk−z∥

+ C7

z−1∑
m=0

∥θk−m − θk−z∥+ C8κρ
z−1, (65)

where C5 := 4RλCλ|A|Lπ(1 + logρ κ
−1 + (1 − ρ)−1) + 2CλLλ, C6 := 4Rλ + 2Cλ, C7 :=804

4RλCλ|A|Lπ, C8 := 8RλCλ.805

Proof. Consider the Markov chain since timestep k − z:806

sk−m
θk−m−−−→ ak−m

P−→ sk−m+1
θk−m+1−−−−−→ ak−m+1 · · ·

θk−1−−−→ ak−1
P−→ sk

θk−→ ak
P−→ sk+1.

Also consider the auxiliary Markov chain with fixed policy since timestep k − z:807

sk−m
θk−m−−−→ ak−m

P−→ sk−m+1
θk−m−−−→ ãk−m+1 · · ·

θk−m−−−→ ãk−1
P−→ s̃k

θk−m−−−→ ãk
P−→ s̃k+1.

Throughout the proof, we will use θ, θ′, λ̄, λ̄′, ξ, ξ̃ to represent θk, θk−z, λ̄k, λ̄k−z, ξk, ξk−z , respec-808

tively.809

For the ease of expression, define810

∆2(ξ, λ, θ) := ⟨λ− λ∗(θ), ḡr(ξ, λ)− gr(θ, λ)⟩.
We have811

⟨λ̄k − λ∗(θ), ḡr(ξk, λ̄k)− gr(θk, λ̄k)⟩ = ∆2(ξ, λ̄, θ)

= ∆2(ξ, λ̄, θ)−∆2(ξ, λ̄, θ
′)︸ ︷︷ ︸

I1

+∆2(ξ, λ̄, θ
′)−∆2(ξ, λ̄

′, θ′)︸ ︷︷ ︸
I2

+∆2(ξ, λ̄
′, θ′)−∆2(ξ̃, λ̄

′, θ′)︸ ︷︷ ︸
I3

+∆2(ξ̃, λ̄
′, θ′)︸ ︷︷ ︸

I4

.
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I1 can be expressed as812

I1 = ⟨λ̄− λ∗(θ), ḡr(ξ, λ̄)− gr(θ, λ̄)⟩ − ⟨λ̄− λ∗(θ′), ḡr(ξ, λ̄)− gr(θ
′, λ̄)⟩

= ⟨λ̄− λ∗(θ), ḡr(ξ, λ̄)− gr(θ, λ̄)⟩ − ⟨λ̄− λ∗(θ), ḡr(ξ, λ̄)− gr(θ
′, λ̄)⟩

+ ⟨λ∗(θ)− λ∗(θ′), ḡr(ξ, λ̄)− gr(θ
′, λ̄)⟩

≤ ∥λ̄− λ∗(θ)∥∥gr(θ′, λ̄)− gr(θ, λ̄)∥+ ∥λ∗(θ)− λ∗(θ′)∥∥ḡr(ξ, λ̄)− gr(θ
′, λ̄)∥. (66)

The first term can be bounded as813

∥λ̄− λ∗(θ)∥∥gr(θ′, λ̄)− gr(θ, λ̄)∥ ≤ 2Rλ∥Eξ∼µ′
θ
[ḡr(ξ, λ̄)]− Eξ∼µθ [ḡr(ξ, λ̄)]∥

≤ 4Rλ sup
ξ

∥ḡr(ξ, λ̄)∥dTV (µ′
θ ⊗ π′

θ ⊗ P, µθ ⊗ πθ ⊗ P)

≤ 4RλCλdTV (µ
′
θ ⊗ π′

θ ⊗ P, µθ ⊗ πθ ⊗ P)

≤ 4RλCλ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1)∥θ − θ′∥, (67)

where the first inequality follows the projection update of each lambda step, the third inequality is814

due to ∥ḡr(ξ, λ̄)∥ ≤ Cλ, and the last inequality follows Lemma 8.815

The second term can be bounded as816

∥λ∗(θ)− λ∗(θ′)∥∥ḡr(ξ, λ̄)− gr(θ, λ̄)∥ ≤ 2CλLλ∥θ − θ′∥ (68)

Plug (67) and (68) into (66), we can bound I1 as817

I1 ≤ (4RλCλ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1) + 2CλLλ)∥θ − θ′∥. (69)

Next we bound I2 as818

I2 = ⟨λ̄− λ∗(θ′), ḡr(ξ, λ̄)− gr(θ
′, λ̄)⟩ − ⟨λ̄′ − λ∗(θ′), ḡr(ξ, λ̄

′)− gr(θ
′, λ̄′)⟩

= ⟨λ̄− λ∗(θ′), ḡr(ξ, λ̄)− gr(θ
′, λ̄)⟩ − ⟨λ̄′ − λ∗(θ′), ḡr(ξ, λ̄)− gr(θ

′, λ̄)⟩
+ ⟨λ̄′ − λ∗(θ′), ḡr(ξ, λ̄)− ḡr(ξ, λ̄

′)− gr(θ
′, λ̄) + gr(θ

′, λ̄′)⟩.
The first two terms can be bounded as819

⟨λ̄− λ̄′, ḡr(ξ, λ̄)− gr(θ
′, λ̄)⟩ ≤ 2Cλ∥λ̄− λ̄′∥. (70)

The last term can be bounded as820

⟨λ̄′ − λ∗(θ′), ḡr(ξ, λ̄)− ḡr(ξ, λ̄
′)− gr(θ

′, λ̄) + gr(θ
′, λ̄′)⟩

≤ ∥λ̄− λ∗(θ′)∥(∥ḡr(ξ, λ̄)− ḡr(ξ, λ̄
′)∥+ ∥gr(θ′, λ̄′)− gr(θ

′, λ̄)∥)
≤ 2Rλ(∥ḡr(ξ, λ̄)− ḡr(ξ, λ̄

′)∥+ ∥gr(θ′, λ̄′)− gr(θ
′, λ̄)∥)

≤ 4Rλ∥λ̄− λ̄′∥, (71)

where the second inequality follows the projection of each lambda step. The last inequality is due to821

∥ḡr(ξ, λ̄)− ḡr(ξ, λ̄
′)∥ = ∥φ(s, a)(φ(s, a)T (λ̄− λ̄′))∥

≤ ∥λ̄− λ̄′∥

Combine (70) and (71), we can bound I2 as822

I2 ≤ (4Rλ + 2Cλ)∥λ̄− λ̄′∥. (72)

We bound I3 as823

E[I3|θ′, sk−z+1] = E[∆2(ξ, θ
′, λ̄′)−∆2(ξ̃, θ

′, λ̄′)|θ′, sk−z+1]

≤ 2 sup
ξ

|∆2(ξ, θ
′, λ̄′)| dTV (P(ξ ∈ ·|θ′, sk−z+1),P(ξ̃ ∈ ·|θ′, sk−z+1))

≤ 8RλCλdTV (P(ξ ∈ ·|θ′, sk−z+1),P(ξ̃ ∈ ·|θ′, sk−z+1))

≤ 4RλCλ|A|Lπ
z−1∑
m=0

∥θk−m − θk−z∥. (73)
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Here, the second inequality is due to ∥∆2(ξ, θ
′, λ̄′)∥ ≤ ∥λ′ − λ∗(θ′)∥∥ḡr(ξ, λ′) − gr(θ

′, λ′)∥ ≤824

4RλCλ, and the last inequality is according to Lemma 13.825

We now bound I4826

E[I4|θ′, λ̄′, sk+z−1] = E[∆2(ξ̃, θ
′, λ̄′)|θ′, λ̄′, sk−z+1]

≤ sup
ξ

|∆2(ξ, θ
′, λ̄′)∥P(ξ ∈ ·|θ′, sk−z+1)− µθ′ ⊗ πθ′ ⊗ P∥

≤ 8RλCλdTV (P(x̃ ∈ ·|θ′, st−z+1), µθ′ ⊗ πθ′ ⊗ P)

≤ 8RλCλκρ
z−1, (74)

where the last inequality follows Lemma 5.827

Plug (69), (72), (73), and (74) into (65), we get828

E[∆2(ξ, θ, λ̄)] ≤ (4RλCλ|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1) + 2CλLλ)E∥θk − θk−z∥

+ (4Rλ + 2Cλ)E∥λ̄k − λ̄k−z∥

+ 4RλCλ|A|Lπ
z−1∑
m=0

E∥θk−m − θk−z∥

+ 8RλCλκρ
z−1,

which completes the proof.829

D.3 Consensus error830

Lemma 21 (bound of consensus error). Suppose Asssumptions 1 and 5 hold. Let ωk,λk be the831

sequence generated by the algorithm 1, then for k ≥ 1, the following hold832

N∑
i=1

∥ωik − ω̄k∥2 ≤ ν2k∥ω0∥F +
16NC2

δ

1− ν
β2
k +

8
√
NCδ∥ω0∥F
1− ν

νkβk. (75)

N∑
i=1

∥λik − λ̄k∥2 ≤ ν2k∥λ0∥F +
16NC2

λ

1− ν
η2k +

8
√
NCλ∥λ0∥F
1− ν

νkηk, (76)

where ν ∈ [0, 1] is the second largest singular value of W . ωk,λk are defined as833

ωk :=

 (ω
1
k)
T

...
(ωNk )T

 , λk :=

 (λ
1
k)
T

...
(λNk )T

 .
Proof. We will prove the bound in (75) for critic variables. The analysis for reward estimator in (76)834

follows the same routine. To simplify the notation, we will use gik to represent gic(ξk, ω
i
k) throughout835

the proof of this lemma. We also use eik to represent the projection error eik :=
∏
Rω

(ωik − βkg
i
k)−836

(ωik−βkgik). Also define ḡk := 1
N

∑N
i=1 g

i
k; ēk := 1

N

∑N
i=1 e

i
k. The corresponding matrix exressions837

are838

Gk :=

(g
1
k)
T ,

...
(gNk )T

 , Ek :=

(e
1
k)
T ,

...
(eNk )T

 .
Then the following equality holds by the update rule of critic variables839

ωk+1 =

{
Wωk − βkGk + Ek, if k mod Kc = 0

ωk − βkGk + Ek, otherwise.
(77)

Let Q := I − 1
N 11T , then the consensus error can be expressed as ∥ωk − 1ω̄Tk ∥F = ∥Qωk∥F .840
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We bound the consensus error of critic’s first841

∥QGk∥ =

√√√√ N∑
i=1

∥gik − ḡk∥
(i)

≤

√√√√ N∑
i=1

2∥gik∥2 + 2∥ḡk∥2 ≤ 2
√
NCδ. (78)

∥QEk∥ =

√√√√ N∑
i=1

∥eit − ēt∥ ≤

√√√√ N∑
i=1

2∥eik∥2 + 2∥ēk∥2
(ii)

≤

√√√√ N∑
i=1

2∥gik∥2 + 2∥ḡk∥2 ≤ 2βk
√
NCδ,

(79)

where (i) is due to ∥gik∥ ≤ Cδ , (ii) is ensured by the convexity of the projection set.842

We now study the consensus error of critic variables. Let k′ = ⌊ k
Kc

⌋ ∗Kc. Without loss of generality,843

assume k mod Kc ̸= 0. We have844

Qωk+1 = QWωk − βkQGk +QEk
=WQωk + βkQGk +QEk

=W k+1Qω0 +

k∑
t=0

βtW
k−tQGt +

k∑
t=0

W k−tQEk, (80)

where the first equality follows (77). The second equality is due to the doubly stochasticity of matrix845

W (see Assumption 5): QW =W − 1
N 11TW =W − 1

NW11T =WQ. The last equality expands846

the recursion of the second equation.847

Take Frobenius norm on each side of (80) and apply triangle inequality, we get848

∥Qωk+1∥F ≤ ∥W kω0∥F +

k∑
t=0

βt∥W k−tQGt∥F +

k∑
t=0

∥W k−tQEk∥F

≤ νk∥ω0∥F + 4

k∑
t=0

βtν
k−t

√
NCδ

≤ νk∥ω0∥F +
4
√
NCδβk
1− ν

. (81)

The ν in (81) denotes the second largest singular value of W , which satisfies ν < 1 as specified by849

Assumption 5. The second inequality uses (78), (79) and Lemma 9.850

Take square on each side, we obtain851

∥Qωk+1∥2F ≤ ν2k∥ω0∥F +
16NC2

δ

1− ν
β2
k +

8
√
NCδ∥ω0∥F
1− ν

νkβk

which completes the proof for (75). The proof of (76) follows similar procedure, we leave it as an852

exercise to reader.853

854

D.4 Error of actor855

Lemma 22. Consider the sequence generated by Algorithm 1, for any z ≥ 1 we have856

∥Eξ∼µθk [δ(ξ, θk)ψθik(sk, a
i
k)]− E[δ(ξk, θk)ψθik(sk, a

i
k)]∥

≤ 2Cθκρ
z−1 + C12

z−1∑
m=0

∥θk−m − θk−z∥+ C13∥θk − θk−z∥+ C14∥θik − θik−z∥, (82)

where C12 := 2Cθ|A|Lπ, C13 := |A|L(logρ κ−1 + (1− ρ)−1)Cθ + 2(1 + γ)LV , C14 := 2CδLψ .857

Proof. Consider the Markov chain since timestep k − z:858

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z+1−−−−→ ak−z+1 · · ·

θk−1−−−→ ak−1
P−→ sk

θk−→ ak
P−→ sk+1.
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Also consider the auxiliary Markov chain with fixed policy since timestep k − z:859

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z−−−→ ãk−z+1 · · ·

θk−z−−−→ ãk−1
P−→ s̃k

θk−z−−−→ ãk
P−→ s̃k+1.

Throughout the proof of this lemma, we wil use ψθi to represent ψθi(sk, aik) for brevity.860

We define the following notation for the ease of discussion861

∆3(ξ, θ) := Eξ∼µθ [δ(ξ, θ)ψθi ]− δ(ξ, θ)ψθi ].

Then our objective is to bound862

E[∥∆3(ξk, θk)∥| θk−z].

We decompose ∥∆3(ξk, θk)∥ by applying triangle inequality863

∥∆3(ξk, θk)∥ ≤ ∥∆3(ξk, θk)−∆3(ξk, θk−z)∥︸ ︷︷ ︸
I1

+ ∥∆3(ξk, θk−z)−∆3(ξ̃k, θk−z)∥︸ ︷︷ ︸
I2

+ ∥∆3(ξ̃k, θk−z)∥︸ ︷︷ ︸
I3

. (83)

We apply triangle inequality again to bound I1 as864

I1 ≤ ∥δ(ξk, θk−z)ψθik−z − δ(ξk, θk)ψθik∥︸ ︷︷ ︸
I
(1)
1

+ ∥Eξ∼µθk [δ(ξ, θk)ψθik ]− Eξ∼µθk−z [δ(ξ, θk−z)ψθik−z ]∥︸ ︷︷ ︸
I
(2)
1

(84)

I
(1)
1 can be bounded as865

I
(1)
1 = ∥δ(ξk, θk−z)ψθik−z − δ(ξk, θk)ψθik∥

≤ ∥δ(ξk, θk−z)ψθik−z − δ(ξk, θk)ψθik−z∥

+ ∥δ(ξk, θk)ψθik−z − δ(ξk, θk)ψθik∥

≤ ∥|γ(Vθk−z (s′)− Vθk(s
′)) + (Vθk−z (s)− Vθk−z (s

′))|ψik−z∥
+ ∥δ(ξk, θk)ψθik−z − δ(ξk, θk)ψθik∥

≤ (1 + γ)LV ∥θk − θk−z∥+ ∥δ(ξk, θk)ψθik−z − δ(ξk, θk)ψθik∥

≤ (1 + γ)LV ∥θk − θk−z∥+ CδLψ∥θik − θik−z∥, (85)

where the second last inequality follows the Lipschitz continuous of value function in Lemma 7, and866

the last inequality uses Lipschitz continuous of ψθi .867

I
(2)
1 can be bounded as868

I
(2)
1 = ∥Eξ∼µθk [δ(ξ, θk)ψθik ]− Eξ∼µθk−z [δ(ξ, θk−z)ψθik−z ]∥

= ∥Eξ∼µθk [δ(ξ, θk−z)ψθik−z ]− Eξ∼µθk−z [δ(ξ, θk−z)ψθik−z ]

+ Eξ∼µθk [δ(ξ, θk)ψθik − δ(ξ, θk−z)ψθik−z ]∥

≤ |A|L(logρ κ−1 + (1− ρ)−1)Cθ∥θk − θk−z∥
+ ∥Eξ∼µθk [δ(ξ, θk)ψθik − δ(ξ, θk−z)ψθik−z ]∥

≤ |A|L(logρ κ−1 + (1− ρ)−1)Cθ∥θk − θk−z∥
+ (1 + γ)LV ∥θk − θk−z∥+ CδLψ∥θik − θik−z∥, (86)
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where the first inequality applies Lemma 8, and the last inequality uses the derivation in (85).869

Combine (85) and (86), we have870

I1 ≤ |A|L(logρ κ−1 + (1− ρ)−1)Cθ∥θk − θk−z∥
+ 2(1 + γ)LV ∥θk − θk−z∥+ 2CδLψ∥θik − θik−z∥ (87)

We now bound I2 as871

E[I2] = E∥δ(ξ̃k, θk−z)ψiθk−z − δ(ξk, θk−z)ψ
i
θk−z

∥

≤ 2 sup
ξ

∥δ(ξ, θk−z)ψθik−z∥dTV (P (ξ̃k ∈ ·|θk−z, sk−z), P (ξk ∈ ·|θk−z, sk−z))

≤ 2Cθ

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥, (88)

where the last inequality follows Lemma 13.872

I3 can be bounded as873

I3 = E∥Eξ∼µθk−z [δ(ξ, θk−z)ψ
i
k−z]− δ(ξ̃k, θk−zψ

i
θk−z

)∥

≤ 2 sup
ξ

∥δ(ξ, θk−z)ψiθk−z∥dTV (P (ξ̃ ∈ ·|θk−z, sk−z), µθk−z ⊗ πθk−z ⊗ P)

≤ 2Cθκρ
z−1, (89)

where the last inequality follows Lemma 5.874

Plug (87), (88), and (89), we have875

∥Eξ∼µθk [δ(ξ, θk)ψθik(sk, a
i
k)]− E[δ(ξk, θk)ψθik(sk, a

i
k)]∥

≤ 2Cθκρ
z−1 + 2CδLψ∥θik − θik−z∥+ 2Cθ

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥

+ (|A|L(logρ κ−1 + (1− ρ)−1)Cθ + 2(1 + γ)LV )∥θk − θk−z∥,

which completes the proof.876

877
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E Proof of main results878

E.1 Proof of Theorem 1879

In this section, we provide the analysis for i.i.d. sampling. By Lemma 4, we have880

E[J(θk+1)]− J(θk) ≥ E[⟨∇J(θk), θk+1 − θk⟩]−
L

2
∥θk+1 − θk∥2

=

N∑
i=1

E[⟨∇θiJ(θk), θ
i
k+1 − θik⟩]−

L

2

N∑
i=1

∥θik+1 − θik∥2

=

N∑
i=1

E[αk⟨∇θiJ(θk), g
i
a(ξk, ω

i
k+1, λ

i
k+1)⟩]−

L

2
α2
k

N∑
i=1

E∥gia(ξk, ωik+1, λ
i
k+1)∥2

≥
N∑
i=1

[
αk
2
∥∇θiJ(θk)∥2 +

αk
2
∥E[gia(ξk, ωik+1, λ

i
k+1)]∥2

− αk
2
∥∇θiJ(θk)− E[gia(ξk, ωik+1, λ

i
k+1)]∥2]−

L

2
NC2

θα
2
k, (90)

where the last inequality is due to ∥gia(ξk, ωik+1, λ
i
k+1)∥ = ∥δ̂(ξk, ωik, λik)ψθik(sk, a

i
k)∥ ≤ CδCψ :=881

Cθ.882

For brevity, we will use ψθik to represent ψθik(sk, a
i
k). The gradient bias can be bounded as883

∥∇θiJ(θk)− E[gia(ξk, ωik+1, λ
i
k+1)|ωik+1, λ

i
k+1]∥2

≤ 4 ∥∇θiJ(θk)− E[δ(ξk, θk)ψθik ]∥
2︸ ︷︷ ︸

I1

+ 4 ∥E[(δ(ξk, θk)− δ̃(ξk, ω
∗(θk)))ψθik ]∥

2︸ ︷︷ ︸
I2

+ 4 ∥E[(δ̃(ξk, ω∗(θk))− δ̃(ξk, ω
i
k+1))ψθik ]∥

2︸ ︷︷ ︸
I3

+ 4 ∥E[(δ̃(ξk, ωik+1)− δ̂(ξk, ω
i
k+1, λ

i
k+1))ψθik ]∥

2︸ ︷︷ ︸
I4

, (91)

where the inequality uses ∥a+ b+ c+ c∥2 ≤ 4∥a∥2 + 4∥b∥2 + 4∥c∥2 + 4∥d∥2.884

From now on, we will use ξ ∼ dθ to denote s ∼ dπθ , a ∼ π(·|s), s′ ∼ P for notational simplicity.885

I1 reflects the sampling error under perfect value function estimation of critic. It can be bounded as886

E[I1|θk] = ∥∇θiJ(θk)− E[δ(ξk, θk)ψθik |θk]∥
2

= ∥Eξ∼dθk [δ(ξ, θk)ψθik |θk]− Eξ∼µθk [δ(ξ, θk)ψθik |θk]∥
2

≤ (2 sup
ξ

|r̄(s, a) + γVθk(s
′)− Vθk(s)| dTV (µθk ⊗ πθk ⊗ P, dθk ⊗ πθk ⊗ P))2

≤ (2rmaxCψdTV (µθk , dθk))
2

≤ 16C2
θ (logρ κ

−1 +
1

ρ
)2(1− γ2),

where the last inequality follows Lemma 6.887

Define εsp := 4C2
θ (logρ κ

−1 + 1
ρ )

2(1− γ2), then I1 can be bounded as888

I1 ≤ 4εsp. (92)
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The term I2 describe the approximation quality of linear function class, it can be bounded as889

I2 = ∥E[(δ(ξk, θk)− δ̃(ξk, ω
∗(θk)))ψθik ]∥

2

(i)

≤ E[|δ(ξk, θk)− δ̃(ξk, ω
∗(θk))|2∥ψθik∥

2]

(ii)

≤ C2
ψE[|γ(Vθk(sk+1)− ϕ(sk+1)

Tω∗(θk)) + (Vθk(sk)− ϕ(sk)
Tω∗(θk))|2]

(iii)

≤ C2
ψ(2E[γ2(Vθk(sk+1)− ϕ(sk+1)

Tω∗(θk))
2] + 2E[(Vθk(sk)− ϕ(sk)

Tω∗(θk))
2])

(iiii)

≤ 2C2
ψ(1 + γ2)εcapp ≤ 4C2

ψε
c
app. (93)

where (i) applies triangle inequality and Cauchy Schwarz inequality, (ii) follows Assump-890

tion 3, (iii) uses ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, and (iiii) follows the definition of εcapp :=891

maxθ,a

√
Es∼µθ [|Vπθ (s)− V̂ω∗(θ)(s)|2].892

I3 can be bounded as893

E[I3] = ∥E[(δ̃(ξk, ω∗(θk))− δ̃(ξk, ω
i
k+1))ψθik ]∥

2

≤ E[|δ̃(ξk, ω∗(θk))− δ̃(ξk, ω
i
k+1)|2∥ψθik∥

2]

≤ C2
ψE[|γϕ(sk + 1)T (ω∗(θk)− ωik+1)− ϕ(sk)

T (ω∗(θk)− ωik+1)|2]
≤ C2

ψ(2E[|γϕ(sk+1)
T (ω∗(θk)− ωik+1)|2] + 2E[|ϕ(sk)T (ω∗(θk − ωik+1))|2])

≤ C2
ψ(2γ

2E[∥ϕ(sk+1)∥2∥ω∗(θk)− ωik+1∥2] + 2E[∥ϕ(sk)∥2∥ω∗(θk)− ωik+1∥2])
(i)

≤ 2C2
ψ(1 + γ2)∥ω∗(θk)− ωik+1∥2 ≤ 4C2

ψ∥ω∗(θk)− ωik+1∥2. (94)

where the last inequality is due to ∥ϕ(s)∥ ≤ 1, as specified by Assumption 1.894

I4 can be bounded as895

E[I4] = ∥E[(δ̃(ξk, ωik+1)− δ̂(ξk, ω
i
k+1, λ

i
k+1))ψθik |λ

i
k+1]∥2

≤ E[|δ̃(ξk, ωik+1)− δ̂(ξk, ω
i
k+1, λ

i
k+1)|2∥ψθik∥

2|λik+1]

≤ C2
ψE[|r̄(sk, ak)− φ(sk, ak)

Tλik+1|2|λik+1]

≤ C2
ψ(2E[|r̄(sk, ak)− φ(sk, ak)

Tλ∗(θk)|2] + 2E[|φ(sk, ak)Tλ∗(θk)− φ(sk, ak)
Tλik+1|2|λik+1])

≤ 2C2
ψε

r
app + 2C2

ψ∥λ∗(θk)− λik+1∥2 (95)

Thus, the gradient bias for ith agent can be bounded as896

∥∇θiF (θk)− E[gia(ξk, ωik+1, λ
i
k+1)]∥2

≤ 16εsp + 16C2
ψε

c
app + 16C2

ψ∥ω∗(θk)− ωik+1∥2

+ 8C2
ψε

r
app + 8C2

ψ∥λ∗(θk)− λik+1∥2

≤ 16(εsp + C2
ψεapp) + 16C2

ψ∥ω∗(θk)− ωik+1∥2 + 8C2
ψ∥λ∗(θk)− λik+1∥2, (96)

where the last inequality follows the definition of εapp.897

Plug (96) into (90) gives us898

E[J(θk+1)]− J(θk) ≥
N∑
i=1

(
αk
2
E∥∇θiJ(θk)∥2 +

αk
2
E∥gia(ξk, ωik+1, λ

i
k+1)∥2

− 8C2
ψαkE∥ω∗(θk)− ωik+1∥2 − 4C2

ψαkE∥λ∗(θk)− λik+1∥2)

− L

2
NC2

θα
2
k − 8(εsp + C2

ψεapp)Nαk. (97)

Consider the Lyapunov function899

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2 + ∥λ̄k − λ∗(θk)∥2.
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The difference between two Lyapunov functions will be900

E[Vk+1]− E[Vk] = E[J(θk)]− E[J(θk+1)] + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

+ E∥λ̄k+1 − λ∗(θk)∥2 − E∥λ̄k − λ∗(θk)∥2

≤
N∑
i=1

(−αk
2
∥∇θiJ(θk)∥2 −

αk
2
E∥gia(ξk, ωik+1)∥2) +

L

2
NC2

θα
2
k + 8(εsp + C2

ψεapp)Nαk

+

N∑
i=1

8C2
ψαkE∥ω∗(θk)− ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2︸ ︷︷ ︸

I5

+

N∑
i=1

4C2
ψαkE∥λ∗(θk)− λik+1∥2 + E∥λ̄k+1 − λ∗(θk+1)∥2 − E∥λ̄k − λ∗(θk)∥2︸ ︷︷ ︸

I6

(98)

The first two terms of I5 can be bounded as901

N∑
i=1

8C2
ψαkE∥ω∗(θk)− ω̄k+1 + ω̄k+1 − ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2

=

N∑
i=1

8C2
ψαkE∥ω̄k+1 − ωik+1∥2 + 8C2

ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2

≤ 8C2
ψαk(ν

2k∥ω0∥F +
16NC2

δ

1− ν
β2
k +

8
√
NCδ∥ω0∥
1− ν

νkβk)

+ 8C2
ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2, (99)

where the second equality is due to902

N∑
i=1

⟨ω∗(θk)− ω̄k+1, ω̄k+1 − ωik+1⟩ = ⟨ω∗(θk)− ω̄k+1, ω̄k+1 − ω̄k+1⟩ = 0,

and the last inequality follows the Lemma 21.903

For the ease of expression, we define904

Mk1 := 8C2
ψ(ν

2k∥ω0∥F +
16NC2

δ

1− ν
β2
k +

8
√
NCδ∥ω0∥F
1− ν

νkβk). (100)

Plug (100) into (99), we have905

I5 ≤ 8C2
ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 + αkMk1

≤ (1 + 4L2
ω,2Nαk + 8C2

ψαk +
L2
ω,2

2
C2
θN

2α2
k)E∥ω̄k+1 − ω∗(θk)∥2

+ (
L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 , (101)

where the second inequality follows (31) in Lemma 15.906
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Let C9 := min{c | 4L2
ω,2Nαk + 8C2

ψαk +
L2
ω,2

2 C2
θN

2α2
k ≤ cαk}. Plug the definition into (101),907

we get908

I5 ≤ (1 + C9αk)E∥ω̄k+1 − ω∗(θk)∥2 + (
L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k

+
αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1

≤ (1 + C9αk)(1− 2λϕβk)E∥ω̄k+1 − ω∗(θk)∥2 + (1 + C9αk)C
2
δβ

2
k

+ (
L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 , (102)

where the last inequality follows (32) in Lemma 15.909

By letting βk = C9

2λϕ
αk, we can ensure910

(1 + C9αk)(1− 2λϕβk) < 0.

Therefore, I5 can be bounded as911

I5 ≤ (1 + C9αk)C
2
δβ

2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 + (

L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k.

(103)

By applying Lemma 18 and following the similar procedure, we can bound I6 as912

I6 ≤ (1 + C10αk)C
2
λη

2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk2 + (

L2
λ,2C

2
θN

2

2
+ L2

λ)α
2
k,

(104)

with ηk = C10

2λφ
αk and913

C10 := min{c | 4
L2
λ,2

2
C2
θαk + 8C2

ψαk +
L2
λ,2C

2
δ

2
α2
k ≤ cαk},

Mk2 := 8C2
ψ(ν

2k∥λ0∥F +
16NC2

λ

1− ν
η2k +

8
√
NCλ∥λ0∥F
1− ν

νkηk). (105)

Plug (103) and (104) into (98), we have914

E[Vk+1]− E[Vk] ≤
N∑
i=1

(−αk
2
∥∇θiJ(θk)∥2 −

αk
2
E∥gia(ξk, ωik+1)∥2) +

αk
2

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2

+ (1 + C9αk)C
2
δβ

2
k + (1 + C10αk)C

2
λη

2
k + (

L

2
NC2

θ + C11)α
2
k

+ (Mk1 +Mk2)αk + 8(εsp + C2
ψεappN)αk,

=

N∑
i=1

(−αk
2
∥∇θiJ(θk)∥2) + (Mk1 +Mk2)αk + 8(εsp + C2

ψεappN)αk

+ (1 + C9αk)C
2
δβ

2
k + (1 + C10αk)C

2
λη

2
k + (

L

2
NC2

θ + C11)α
2
k, (106)

where C11 :=
L2
ω,2C

2
θN

2

2 +
L2
λ,2C

2
θN

2

2 + L2
ω + L2

λ.915

By telescoping (106), we get916

1

K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤ 2E[V0]

Kαk
+ 16(εsp + C2

ψεappN) +
2

K

K∑
k=0

(Mk1 +Mk2)

+ (1 + C9αk)C
2
δ

β2
k

αk
+ (1 + C10αk)C

2
λ

η2k
αk

+ (
L

2
NC2

θ + C11)αk.

(107)
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The third term can be bounded as917

2

K

K∑
k=0

(Mk1 +Mk2)

=
16C2

ψ

K
(∥ω0∥F + ∥λ0∥F )

K∑
k=1

ν2k +
256NC2

ψ

(1− ν)K

K∑
k=0

(C2
δβ

2
k + C2

λη
2
k)

+
128

√
NC2

ψ

(1− ν)K
(

K∑
k=1

Cδ∥ω0∥F νkβk +
K∑
k=1

Cλ∥λ0∥F νkηk)

≤
16C2

ψ

K(1− ν2)
(∥ω0∥F + ∥λ0∥F ) +

256NC2
ψ

(1− ν)
(C2

δβ
2
k + C2

λη
2
k)

+
128

√
NC2

ψ

(1− ν)2K
(Cδ∥ω0∥Fβk + Cλ∥λ0∥F ηk)

= o(
1√
K

), (108)

where we use
∑K
k=0 ν

k ≤ 1
1−ν for the inequality.918

Plug (108) back into (107) and let αk = ᾱ√
K

for some positive constant ᾱ, βk = C9

2λϕ
αk, ηk = C10

2λφ
αk,919

we obtain the desired result.920

E.2 Proof of Theorem 2921

Following the proof under i.i.d. sampling in (90), we have922

E[J(θk+1)]− J(θk)

≥
N∑
i=1

[
αk
2
∥∇θiJ(θk)∥2 +

αk
2
∥E[gia(ξk, ωik+1, λ

i
k+1)]∥2

− αk
2
∥∇θiJ(θk)− E[gia(ξk, ωik+1, λ

i
k+1)]∥2 −

L

2
NC2

θα
2
k. (109)

By following the derivation of (91), the gradient bias can be bounded as (crf. ψθik := ψθik(sk, a
i
k))923

∥∇θiJ(θk)− E[gia(ξk, ωik+1, λ
i
k+1)|ωik+1, λ

i
k+1]∥2

≤ 4 ∥∇θiJ(θk)− E[δ(ξk, θk)ψθik ]∥
2︸ ︷︷ ︸

I1

+ 4 ∥E[(δ(ξk, θk)− δ̃(ξk, ω
∗(θk)))ψθik ]∥

2︸ ︷︷ ︸
I2

+ 4 ∥E[(δ̃(ξk, ω∗(θk))− δ̃(ξk, ω
i
k+1))ψθik ]∥

2︸ ︷︷ ︸
I3

+ 4 ∥E[(δ̃(ξk, ωik+1)− δ̂(ξk, ω
i
k+1, λ

i
k+1))ψθik ]∥

2︸ ︷︷ ︸
I4

, (110)
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We bound I1 as924

I1 = ∥∇θiJ(θk)− E[δ(ξk, θk)ψθik |θk]∥
2

= ∥Eξ∼dθk [δ(ξ, θk)ψθik |θk]− E[δ(ξk, θk)ψθik |θk]∥
2

≤ 2 ∥Eξ∼dθk [δ(ξ, θk)ψθik |θk]− Eξ∼µθk [δ(ξ, θk)ψθik |θk]∥
2︸ ︷︷ ︸

I
(1)
1

+ 2 ∥Eξ∼µθ [δ(ξ, θk)ψθik |θk]− E[δ(ξk, θk)ψθik |θk]∥
2︸ ︷︷ ︸

I
(2)
1

(111)

Follow the derivation of (92), we have925

I
(1)
1 ≤ 4εsp.

By Lemma 22, I(2)1 can be bounded as926

I
(2)
1 ≤ (2Cθκρ

z−1 + C12

z−1∑
m=0

∥θk−m − θk−z∥+ C13∥θk − θk−z∥+ C14∥θik − θik−z∥)2

≤ (2Cθκρ
z−1 + C12

z−1∑
m=0

z−m∑
n=1

∥θk−m−n+1 − θk−m∥+ C13

z∑
n=1

∥θk−n+1 − θk−n∥+ C14

z∑
n=1

∥θik−n+1 − θik−n∥)2

≤ (2Cθκρ
z−1 + C12NCθ

z(z + 1)

2
αk−z + C13NzCθαk−z + C14zCθαk−z)

2

≤ 16C2
θκ

2ρ2z−2 + 2C2
12C

2
θz

2α2
k−z + 4C2

13N
2z2C2

θα
2
k−z + 4C2

14z
2C2

θα
2
k−z, (112)

where the second inequality uses triangle inequality, and the last inequality applies (a+ b+ c+d)2 ≤927

4a2 + 4b2 + 4c2 + 4d2.928

Let z = ZK . Recall ZK is defined as ZK := min{z ∈ N+|κρz−1 ≤ min{αk, βk, ηk}}. Then we929

have930

I
(2)
1 ≤ CK5

α2
k−ZK , (113)

where we define CK5
:= 16C2

θ + 2C2
12C

2
θZ

2
K + 4C2

13N
2Z2

KC
2
θ + 4C2

14Z
2
KC

2
θ .931

Thus, we have932

I1 ≤ 4εsp + CK5
α2
k−ZK . (114)

The bound of I2, I3, and I4 follows the analysis under i.i.d. sampling. Plug in (93), (94), and (95)933

will give us the bound of gradient bias934

∥∇θiF (θk)− E[gia(ξk, ωik+1, λ
i
k+1)]∥2

≤ 16(εsp + C2
ψεapp) + 16C2

ψ∥ω∗(θk)− ωik+1∥2

+ 8C2
ψ∥λ∗(θk)− λik+1∥2 + 4CK5

α2
k−ZK .

Thus, we have935

E[J(θk+1)]− J(θk) ≥
N∑
i=1

(
αk
2
E∥∇θiJ(θk)∥2 +

αk
2
E∥gia(ξk, ωik+1, λ

i
k+1)∥2

− 8C2
ψαkE∥ω∗(θk)− ωik+1∥2 − 4C2

ψαkE∥λ∗(θk)− λik+1∥2)

− L

2
NC2

θα
2
k − 2NCK5

α2
k−ZK − 8(εsp + C2

ψεapp)Nαk. (115)

Consider the Lyapunov function936

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2 + ∥λ̄k − λ∗(θk)∥2. (116)
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The difference between two Lyapunov functions will be937

E[Vk+1]− E[Vk] = E[J(θk)]− E[J(θk+1)] + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

+ E∥λ̄k+1 − λ∗(θk)∥2 − E∥λ̄k − λ∗(θk)∥2

≤
N∑
i=1

(−αk
2
∥∇θiJ(θk)∥2 −

αk
2
E∥gia(ξk, ωik+1)∥2)

+ 2NCK5
αk−ZK +

L

2
NC2

θα
2
k + 8(εsp + C2

ψεapp)Nαk

+

N∑
i=1

8C2
ψαkE∥ω∗(θk)− ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2︸ ︷︷ ︸

I5

+

N∑
i=1

4C2
ψαkE∥λ∗(θk)− λik+1∥2 + E∥λ̄k+1 − λ∗(θk+1)∥2 − E∥λ̄k − λ∗(θk)∥2︸ ︷︷ ︸

I6

.

(117)

The first two terms of I5 can be bounded as938

N∑
i=1

8C2
ψαkE∥ω∗(θk)− ω̄k+1 + ω̄k+1 − ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2

=

N∑
i=1

8C2
ψαkE∥ω̄k+1 − ωik+1∥2 + 8C2

ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2

≤ 8C2
ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 + αkMk1

≤ (1 + 4L2
ω,2Nαk + 8C2

ψαk +
L2
ω,2

2
C2
θN

2α2
k)E∥ω̄k+1 − ω∗(θk)∥2

+ (
L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 , (118)

where the equality is due to939

N∑
i=1

⟨ω∗(θk)− ω̄k+1, ω̄k+1 − ωik+1⟩ = ⟨ω∗(θk)− ω̄k+1, ω̄k+1 − ω̄k+1⟩ = 0.

The first inequality follows the Lemma 21, with Mk1 is defined in (100). The last inequality follows940

(39) in Lemma 16.941

Plug (118) into (117), and recall C9 := min{c | 4L2
ω,2Nαk + 8C2

ψαk +
L2
ω,2

2 C2
θN

2α2
k ≤ cαk}, we942

get943

I5 ≤ (1 + C9αk)E∥ω̄k+1 − ω∗(θk)∥2 + (
L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k

+
αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1

≤ (1 + C9αk)(1− 2λϕβk)E∥ω̄k+1 − ω∗(θk)∥2

+ (1 + C9αk)(CK1
βkβk−ZK + CK2

βkαk−ZK )

+ (
L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k +

αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 , (119)

where the last inequality follows (40) in Lemma 16.944
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By letting βk = C9

2λϕ
αk, we can ensure945

(1 + C9αk)(1− 2λϕβk) < 0.

Therefore, I5 can be bounded as946

I5 ≤ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 + (

L2
ω,2C

2
θN

2

2
+ L2

ω)α
2
k

+ (1 + C9αk)(CK1βkβk−ZK + CK2βkαk−ZK ). (120)

By applying Lemma 19 and following the similar procedure, we can bound I6 as947

I6 ≤ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk2 + (

L2
λ,2C

2
θN

2

2
+ L2

λ)α
2
k

+ (1 + C10αk)(CK3
ηkηk−ZK + CK4

ηkαk−ZK ). (121)

with ηk = C10

2λφ
αk, and Mk2 defined in (105).948

Plug (120) and (121) into (117), we have949

E[Vk+1]− E[Vk] ≤
N∑
i=1

−αk
2
∥∇θiJ(θk)∥2 + (Mk1 +Mk2)αk

+ (1 + C9αk)(CK1
βkβk−ZK + CK2

βkαk−ZK )

+ (1 + C10αk)(CK3
ηkηk−ZK + CK4

ηkαk−ZK )

+ (
L

2
NC2

θ + C11)α
2
k + 8(εsp + C2

ψεappN)αk, (122)

where we recall C11 :=
L2
ω,2C

2
θN

2

2 +
L2
λ,2C

2
θN

2

2 + L2
ω + L2

λ.950

By letting αk = ᾱ√
K

for some positive constant ᾱ, and recall βk = C9

2λϕ
αk, ηk = C10

2λφ
αk, we can951

telescope (122) as952

1

K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤ 2E[V0]

Kαk
+ 16(εsp + C2

ψεappN) +
2

K

K∑
k=0

(Mk1 +Mk2)

+ (1 + C9αk)(CK1

βk
αk
βk−ZK + CK2

βk
αk
αk−ZK )

+ (1 + C10αk)(CK3

ηk
αk
ηk−ZK + CK4

ηk
αk
αk−ZK )

+ (
L

2
NC2

θ + C11)αk. (123)

The third term can be bounded as953

2

K

K∑
k=0

(Mk1 +Mk2) =
16C2

ψ

K
(∥ω0∥F + ∥λ0∥F )

K∑
k=1

ν2k +
256NC2

ψ

(1− ν)K

K∑
k=0

(C2
δβ

2
k + C2

λη
2
k)

+
128

√
NC2

ψ

(1− ν)K
(

K∑
k=1

Cδ∥ω0∥F νkβk +
K∑
k=1

Cλ∥λ0∥F νkηk)

≤
16C2

ψ

K(1− ν2)
(∥ω0∥F + ∥λ0∥F ) +

256NC2
ψ

(1− ν)
(C2

δβ
2
k + C2

λη
2
k)

+
128

√
NC2

ψ

(1− ν)2K
(Cδ∥ω0∥Fβk + Cλ∥λ0∥F ηk)

= o(
1√
K

), (124)
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where we use
∑K
k=0 ν

k ≤ 1
1−ν for the inequality.954

Plug (124) back into (123). By noticing CK1
= O(log 1

αk
), CK2

= O(log2 1
αk

), CK3
=955

O(log 1
αk

), CK4 = O(log2 1
αk

), we obtain the desired result.956

E.3 Proof of Theorem 3957

Define the update of actor i using the noisy reward as958

gia(ϵk, ω
i
k+1) := r̃ik,Kr (sk, ak) + γϕ(s′)Tωik+1 − ϕ(s)Tωik+1. (125)

Following the derivation of (90), we have959

E[J(θk+1]− J(θk) ≥
N∑
i=1

[
αk
2
∥∇θiJ(θk)∥2 +

αk
2
∥E[gia(ξk, ωik+1)]∥2

− αk
2
∥∇θiJ(θk)− E[gia(ξk, ωik+1)]∥2]−

L

2
NC2

θα
2
k. (126)

Similarly to the proof of Theorem 1 and 2, the gradient bias term can be decomposed as as960

∥∇θiJ(θk)− E[gia(ξk, ωik+1)]∥2 ≤ 4 ∥∇θiJ(θk)− E[δ(ξk, θk)ψθik ]∥
2︸ ︷︷ ︸

I1

+ 4 ∥E[(δ(ξk, θk)− δ̃(ξk, ω
∗(θk)))ψθik ]∥

2︸ ︷︷ ︸
I2

+ 4 ∥E[(δ̃(ξk, ω∗(θk))− δ̃(ξk, ω
i
k+1))ψθik ]∥

2︸ ︷︷ ︸
I3

+ 4 ∥E[(r̄k(sk, ak)− r̃k,Kr (sk, ak))ψθik ]∥
2︸ ︷︷ ︸

I4

(127)

I1, I2, I3 can be bounded following the derivation of (114), (91), and (96), respectively. Plug these961

bounds into (127), we have962

E[J(θk+1)]− J(θk) ≥
N∑
i=1

(
αk
2
E∥∇θiJ(θk)∥2 +

αk
2
E∥gia(ξk, ωik+1)∥2 − 8C2

ψαkE∥ω∗(θk)− ωik+1∥2)

−
N∑
i=1

αk
2
C2
ψ∥r̄k(sk, ak)− r̃ik,Kr (sk, ak)∥

2 − L

2
NC2

θα
2
k

− 2NCK5α
2
k−ZK − 8(εsp + C2

ψεapp)Nαk. (128)

Define r̃k,Kr := [r1k,Kr , · · · , r
N
k,Kr

]T . The reward bias can be bounded as963

N∑
i=1

∥r̄k(sk, ak)− r̃ik,Kr (sk, ak)∥
2 = ∥Qr̃k,Kr∥2

= ∥QWKr r̃k,0(sk, ak)∥2

≤ ν2Kr∥r̃k,0(sk, ak)∥2

= ν2Kr
N∑
i=1

(∥r̃ik,0(sk, ak)− r̄k(sk, ak)∥2 + ∥r̄k(sk, ak)∥2)

≤ ν2KrN(σ2 + rmax), (129)

where σ2 is the variance of the reward noise. Let Kr = 1
2 logν αk and define C15 := σ2 + r2max.964

Plug (128) back to (127), we have965

E[J(θk+1)]− J(θk) ≥
N∑
i=1

(
αk
2
E∥∇θiJ(θk)∥2 +

αk
2
E∥gia(ξk, ωik+1)∥2 − 8C2

ψαkE∥ω∗(θk)− ωik+1∥2)

+
N

2
(C15 + C2

θL)α
2
k − 2NCK5

α2
k−ZK − 8(εsp + C2

ψεapp)Nαk.
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Consider the Lyapunov function966

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2.

The difference between two Lyapunov functions is967

E[Vk+1]− E[Vk] ≤
N∑
i=1

(−αk
2
∥∇θiJ(θk)∥2 −

αk
2
E∥gia(ξk, ωik+1)∥2)

+
N

2
C16α

2
k − 2NCK5

α2
k−ZK − 8(εsp + C2

ψεapp)Nαk

+

N∑
i=1

8C2
ψαkE∥ω∗(θk)− ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2︸ ︷︷ ︸

I5

.

I5 can be bounded by following the derivation of (120). Thus, we have968

E[Vk+1]− E[Vk]

≤
N∑
i=1

−αk
2
∥∇θiJ(θk)∥2 +

N

2
C16α

2
k − 2NCK5

α2
k−ZK − 8(εsp + C2

ψεapp)Nαk

+ (1 + C9αk)(CK1
βkβk−ZK + CK2

βkαk−ZK ) +Mk1αk, (130)

where C16 := C15 + C2
θL+

L2
ω,2C

2
θN

2

2 + L2
ω .969

Telescoping (130), we have970

1

K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤ 2E[V0]

Kαk
+ 16(εsp + C2

ψεappN) +
2

K

K∑
k=0

Mk1 + C16αk

+ (1 + C9αk)(CK1

βk
αk
βk−ZK + CK2

βk
αk
αk−ZK ).

The term 2
K

∑K
k=0Mk1 has been bounded in (124). Let αk = ᾱ√

K
for some positive constant ᾱ,971

βk = C9

2λϕ
αk will yield the desired rate.972

F Natural AC variant and its convergence973

In this section, we propose a natural Actor-Critic variant of Algorithm 1, where the approach of974

calculating the natural policy graident under the decentralized setting is mainly inspired by [6]. We975

show that the gradient norm square of such an algorithm will convergence with the optimal sample976

complexity of Õ(ε−3). Moreover, the algorithm will converge to the global optimum with the sample977

complexity of Õ(ε−4). In the rest of this section, we first explain the update of the algorithm, and978

then prove its convergence.979

F.1 Decentralized natural Actor-Critic980

The natural policy gradient (NPG) algorithm [12] can be viewed as a preconditioned policy gradient981

algorithm, which updates as follow:982

θk+1 = θk − αkF (θk)
−1∇J(θk), (131)

where F (θ) := Es∼dπθ ,a∼πθ
[
ψθ(s, a)ψθ(s, a)

T
]

is the Fisher information matrix (FIM).3 The983

natural Actor-Critic (NAC) uses the critic variable to estimate the gradient. The main challenge984

for implementing NAC lies in the estimation of the inverse matrix-vector product F (θk)−1∇J(θk),985

3Throughout the discussion, we assume that FIM is invertible and thus positive-definite.
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Algorithm 3: Decentralized single-timescale NAC

1: Initialize: Actor parameter θ0, critic parameter ω0, reward estimator parameter λ0, initial state s0, natural
policy gradient estimation hk,0.

2: for k = 0, · · · ,K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (·), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k and λ̃i
k by (4) and (7).

9:
10: for i = 0, · · · , N in parallel do
11: Reward estimator update: Update λi

k+1 by (8).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update:
14: Collect Na transition samples based on Markovian/i.i.d sampling.
15: for k′ = 1, · · · ,Ka do
16: Estimate z̄k′,n, ∀n ∈ [Na] using (133).
17: Update hk,k′+1 by (135).
18: end for
19: Update θik+1 by (136).
20: end for
21: end for

especially under the decentralized setting. The work [6] proposes to solve the following strongly986

convex problem in order to estimate the product in a decentralized way987

h(θk) = argmin
h

fθk(h) :=
1

2
hTF (θk)h−∇J(θk)Th. (132)

Such a problem can be solved by using (stochastic) gradient descent, where the gradient is calculated988

by F (θk)h−∇J(θk). For the centralized setting, the gradient w.r.t. each agent can be approximated989

as 1
Na

∑Na
n=1 ψ

i
θk
(sn, a

i
n)ψθk(sn, an)

Th − gia(ξn, ωk+1, λk+1). However, when considering the990

decentralized setting, the term z̄n := ψθk(sn, an)
Th =

∑N
i=1 ψ

i
θk
(sn, an)

Thi is not accessible for991

each agent. Therefore, to approximate this value, agents compute zin,0 := ψiθk(sn, an)
Thi locally992

and then perform the following communication step for Kz steps993

zin,k′+1 =

N∑
j=1

W ijzin,k′ , ∀n ∈ [Na], k
′ = 0, · · · ,Kz − 1. (133)

As we will see, Nzin,k′ converges to z̄n linearly. Thus, the gradient of agent i can be approximated as994

∇̃f iθk(hk,k′) :=
N

Na

Na∑
n=1

ψiθk(sn, a
i
n)z

i
n,Kz − gia(ξk, ωk+1, λk+1). (134)

Then, each agent i performs the following update for Ka steps to estimate the natural policy gradient995

direction as996

hik,k′+1 = ΠCh(h
i
k,k′ − ϱ∇̃f iθk(hk,k′)), (135)

where ϱ is a positive constant step size. Since the norm of optimal direction is bounded by Ch :=997

λmax(F (θ)
−1)Cθ, we project the vector into a ball of norm Ch for each update. Finally, we perform998

the approximate natural policy gradient step as999

θik+1 = θik − αkh
i
k,Ka . (136)

F.2 Convergence of natural Actor-Critic1000

In this section, we establish the sample complexity of Algorithm 3. We first introduce an additional1001

assumption.1002
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Assumption 6. (invertible FIM) There exists a positive constant λF such that for all policy θ,1003

λmin(F (θ)) ≥ λF .1004

Assumption 6 ensures that F (θ) is positive definite so that the problem (132) is strongly convex.1005

Such an assumption is commonly adopted; see [6, 36, 17].1006

We now show the sample complexity of the Algroithm 3 in terms of gradient norm square and the1007

global optimal gap. We consider the i.i.d. sampling to simplify the proof. We remark that the proof1008

for Markovian sampling follows the similar analysis, with additional O(log(ε−1)) error terms caused1009

by Markov chain mixing.1010

Theorem 4. Suppose Assumptions 1-6 hold. Consider the update of Algorithm 3 under i.i.d. sampling.1011

Let αk = ᾱ√
K

for some positive constant ᾱ, βk = C9

2λϕ
αk, ϱ ≤ 1

2C2
ψ

, Na = O(
√
K), Ka =1012

O(log(K1/2)),Kc = O(log(K1/4)). Then, the following hold1013

1

K

K∑
k=1

N∑
i=1

E
[
∥∇θiF (θk)∥2

]
≤ O

(
1√
K

)
+O(εapp + εsp) (137)

1

K

K∑
k=0

J(θ∗)− J(θk) ≤ O
(

1

K1/4

)
+O(εapp + εsp + εactor). (138)

Based on Theorem 4, Algorithm 3 needs K = O(ε−2) iterations to achieve ε-error for gradient norm1014

square, and thus attains sample complexity of KNaKa = Õ(ε−3), which matches the best existing1015

sample complexity of NAC [35, 6]. In terms of the global optimality gap, the algorithm requires1016

K = O(ε−4) iterations to achieve ε-error, and thus has KNaKa = Õ(ε−6) sample complexity.1017

Such a sample complexity is much worse than the best existing sample complexity of Õ(ε−3) [35, 6].1018

We now explain the intuition of the gap for the sample complexity. Mimicking the analysis of [6]1019

allows to establish the following inequality1020

1

K

K∑
k=0

J (θ∗)− E[J(θk)] ≤ O

(
1

K

K∑
k=1

N∑
i=1

E[∥∇θiJ(θk)∥2]

)

+O

(
1

K

K∑
k=1

N∑
i=1

∥ωik − ω∗(θk)∥

)
+O

(
1

Kαk

)
.

While our analysis can obtain the iteration complexity of O( 1√
K
) for ∥∇J(θk)∥2, we can only achieve1021

O( 1
K1/4 ) iteration complexity for critic’s error ∥ωk − ω∗(θk)∥. This is because our algorithm uses1022

single-timescale update, where the critic’s error inevitably converges slower than that of double-loop1023

based algorithms which have O( 1√
K
) complexity for the critic’s error at each iteration. Therefore,1024

the sample complexity in terms of global optimality gap of our single-timescale NAC is dominated1025

by this critic’s error term, resulting in the final complexity of Õ(ε−6).1026

We remark that this sample complexity result is based on a straightforward application of the analysis1027

of [6], which is designed for double-loop algorithm. Therefore, such a proof technique may not be the1028

tightest one for our single-timescale NAC (intuitively, the result is not tight). We leave the research1029

on the improvement of such highly suboptimal results of single-timescale NAC as a future work.1030

F.3 Proof of Theorem 41031

By Lemma 4, we have1032

E[J(θk+1)]− J(θk) ≥
N∑
i=1

E⟨∇θiJ(θk), θ
i
k+1 − θik⟩ −

L

2

N∑
i=1

∥θik+1 − θik∥2

(i)

≥
N∑
i=1

αkE⟨∇θiJ(θk), h
i
k⟩ −

L

2
NC2

hα
2
k
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=

N∑
i=1

[αkE⟨∇θiJ(θk), F (θk)
−1gia(ξk, ω

i
k+1, λ

i
k+1)⟩

+ αkE⟨∇θiJ(θk), h
i
k − F (θk)

−1gia(ξk, ω
i
k+1, λ

i
k+1)⟩]−

L

2
NC2

hα
2
k

(ii)
=

N∑
i=1

[αkE⟨F (θk)−1/2∇θiJ(θk), F (θk)
−1/2gia(ξk, ω

i
k+1, λ

i
k+1)⟩

+ αkE⟨∇θiJ(θk), h
i
k − F (θk)

−1gia(ξk, ω
i
k+1, λ

i
k+1)⟩]−

L

2
NC2

hα
2
k

=

N∑
i=1

[
αk
2
∥F (θk)−1/2∇θiJ(θk)∥2 +

αk
2
∥F (θk)−1/2E[gia(ξk, ωik+1, λ

i
k+1)]∥2

− αk
2
∥F (θk)−1/2∇θiJ(θk)− F (θk)

−1/2E[gia(ξk, ωik+1, λ
i
k+1)]∥2

+ αkE⟨∇θiJ(θk), h
i
k − F (θk)

−1gia(ξk, ω
i
k+1, λ

i
k+1)⟩]−

L

2
NC2

θα
2
k

(iii)

≥
N∑
i=1

[
αk
4
C−2
ψ ∥∇θiJ(θk)∥2 +

αk
2
λF ∥F (θk)−1E[gia(ξk, ωik+1, λ

i
k+1)]∥2

− αk
2
λ−1
F ∥∇θiJ(θk)− E[gia(ξk, ωik+1, λ

i
k+1)]∥2︸ ︷︷ ︸

I1

− αkC
2
ψ ∥E[hik]− F (θk)

−1E[gia(ξk, ωik+1, λ
i
k+1)]∥2︸ ︷︷ ︸

I2

]− L

2
NC2

θα
2
k,

(139)

where (i) is due to ∥θik+1 − θik∥ ≤ Ch := λFCθ. Note that we use hik to represent hik,Ka for1033

simplifying the notation. (ii) uses decomposition of positive definite (PD) matrix. Specifically,1034

let A be PD matrix, then by eigenvalue decomposition, A = V ΛV T for some orthonormal matrix1035

V . Define A−1/2 := V Λ1/2V T , then ⟨x,Ay⟩ = ⟨A1/2x,A1/2y⟩ for any x and y. (iii) uses1036

λF ≤ λ(F (θ)) ≤ C2
ψ, ∀θ.1037

I1 represents the error of gradient bias, which we have bounded when analyzing the error of AC. By1038

(96), we have1039

I1 ≤ 16(εsp + C2
ψεapp) + 16C2

ψ∥ω∗(θk)− ωik+1∥2 + 8C2
ψ∥λ∗(θk)− λik+1∥2. (140)

To bound I2, we need to bound the error of hk,k′ . We start with the gradient bias when estimating1040

hk,k′ . Define ∇fk,k′(hk,k′) := ∇F (θk)hk,k′ − E[ga(ξk, ωik+1, λ
i
k+1)], then it is easy to see that1041

∇fk,k′(hk,k′) is the unbiased gradient of the following problem1042

1

2
hTk,k′∇F (θk)hk,k′ − E[ga(ξk, ωik+1, λ

i
k+1)]

Thk,k′ .

Define the following notation for the ease of expression1043

∇̂f ik,k′(hk,k′) :=
1

Na

Na∑
n=1

ψθik(sn, a
i
n)ψθk(sn, an)

Thk,k′ − gia(ξk,k′ , ω
i
k+1, λ

i
k+1)

∇̂fk,k′(hk,k′) := [∇̂f1k,k′(hk,k′), · · · , ∇̂fNk,k′(hk,k′)]

∇̃f ik,k′(hk,k′) :=
N

Na

Na∑
n=1

ψθik(sn, a
i
n)z

i
n,Kz − gia(ξk,k′ , ω

i
k+1, λ

i
k+1)

∇̃fk,k′(hk,k′) := [∇̃f1k,k′(hk,k′), · · · , ∇̃fNk,k′(hk,k′)].

We now analyze the error at outer-loop iteration k. For notational simplicity, we omit the subscript1044

k for the prementioned notations, e.g. we use ∇̂f ik′(hk′), ∇̂fk′(hk′), ∇̃f ik′(hk′), ∇̃fk′(hk′) to1045

represent the above notations, respectively.1046
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∥∇fk′(hk′)− ∇̃fk′(hk′)∥2 ≤ 2 ∥∇fk′(hk′)− ∇̂fk′(hk′)∥2︸ ︷︷ ︸
I3

+2 ∥∇̂fk′(hk′)− ∇̃fk′(hk′)∥2︸ ︷︷ ︸
I4

.

I3 can be bounded as1047

I3 = ∥
Na∑
n=1

(
1

Na
ψθ(sn, an)ψθ(sn, an)

T − F (θ))hk′∥2

≤ ∥
Na∑
n=1

(
1

Na
ψθ(sn, an)ψθ(sn, an)

T − F (θ))∥2C2
h

≤ 1

Na
C4
ψC

2
h. (141)

I4 can be bounded as1048

I4 =

N∑
i=1

∥∥∥∥∥ψθi(sn, ain)
(

1

Na

Na∑
n=1

Nzin,Kz − ψθ(sn, an)
Thk′

)∥∥∥∥∥
2

≤ 1

Na
NC2

ψ

N∑
i=1

Na∑
n=1

∥zin,Kz − z̄n,Kz∥2

=
NC2

ψ

Na

Na∑
n=

∥QWKzzn,0∥2

≤
NC2

ψ

Na

Na∑
n=1

νKz∥zn,0∥2 ≤ NC4
ψC

2
hν

Kz . (142)

Let Kz = min{c ∈ N+|νc ≤ 4
NaN

}, then Kz = O(log 1
Na

). Combine (141) and (142) gives us1049

∥∇fk′(hk′)− ∇̃fk′(hk′)∥2 ≤
4C4

ψC
2
h

Na
.

We now analyze the error of hk,k′ . Note that we omit the subscript k here for simplifying notation.1050

Define1051

h∗ = argmin
h

f̄θ(h) := hTF (θ)h := −Eξ∼µθ [ga(ξ, ω, λ)]Th. (143)

It is easy to see that the function on the RHS is strongly convex, since F (θ) is positive definite w.r.t.1052

h. We bound the optimal gap by1053

E∥hk′+1 − h∗∥2 = E∥hk′ − ϱ∇̃fk′(hk′)− h∗∥2

= E∥hk′ − h∗∥2 − 2ϱE⟨hk′ − h∗, ∇̃fk′(hk′)⟩+ ϱ2∥∇̃fk′(hk′)∥2

≤ E∥hk′ − h∗∥2 − 2ϱE⟨hk′ − h∗,∇fk′(hk′)⟩+ 2ϱE⟨hk′ − h∗,∇fk′(hk′)− ∇̃fk′(hk′)⟩
+ 2ϱ2∥∇fk′(hk′)∥2 + 2ϱ2∥∇̃fk′(hk′)−∇fk′(hk′)∥2

(i)

≤ (1− ϱλF )E∥hk′ − h∗∥2 − 2ϱ(fk′(hk′)− f
∗
) + 2ϱE⟨hk′ − h∗,∇fk′(hk′)− ∇̃fk′(hk′)⟩

+ 2ϱ2∥∇fk′(hk′)∥2 + 2ϱ2∥∇̃fk′(hk′)−∇fk′(hk′)∥2

(ii)

≤ (1− ϱλF )E∥hk′ − h∗∥2 − 2ϱ(1− 2ϱC2
ψ)(fk′(hk′)− f

∗
)

+ 2ϱE⟨hk′ − h∗,∇fk′(hk′)− ∇̃fk′(hk′)⟩+ 2ϱ2∥∇̃fk′(hk′)−∇fk′(hk′)∥2

(iii)

≤ (1− ϱλF )E∥hk′ − h∗∥2 + 2ϱE⟨hk′ − h∗,∇fk′(hk′)− ∇̃fk′(hk′)⟩
+ 2ϱ2∥∇̃fk′(hk′)−∇fk′(hk′)∥2

(iiii)

≤ (1− ϱλF
2

)E∥hk′ − h∗∥2 + (
2ϱ

λF
+ 2ϱ2)∥∇̃fk′(hk′)−∇fk′(hk′)∥2,
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where f
∗

is the optimal value of f(h) defined in (143), and the inequality follows the property of1054

λF -strongly convex function: f(h2) ≥ f(h1) + ⟨∇f(h1), h2 − h2⟩+ λF
2 ∥h1 − h2∥2, ∀h1, h2. (ii)1055

uses the PL condition implied by λF -strong convexity: f(h∗)− f(h) ≤ − 1
2λF

∥∇f(h)∥2, ∀h. (iii)1056

is due to step size rule that ϱ ≤ 1
2C2

ψ
. (iiii) applies Young’s inequality.1057

Use the above induction, we have1058

E∥hKa − h∗∥2 ≤ (1− ϱλF
2

)Ka∥h0 − h∗∥2 +
Ka∑
t=0

(1− ϱλF
2

)t(
2ϱ

λF
+ 2ϱ2)∥∇fKa−t(hKa)− ∇̃fKa(hKa)∥2

≤ 4C2
h(1−

ϱλF
2

)Ka + (
4ϱ

ϱλ2F
+

4ϱ

λF
)C4

ψC
2
h

4

Na
.

Let Ka = min{c ∈ N+|4C2
h(1−

ϱλF
2 )c = ( 4ϱ

ϱλ2
F
+ 4ϱ

λF
)C4

ψC
2
h

1
Na

}, then Ka = O(log( 1
Na

)). Define1059

C18 := ( 16ϱ
ϱλ2
F
+ 16ϱ

λF
)C4

ψC
2
h, we have1060

I2 = E∥hKa − h∗∥2 ≤ 2C18

Na
. (144)

Plug (140) and (144) back to (139), we have1061

E[J(θk+1)]− J(θk) ≥
N∑
i=1

[
αk
4
C−2
ψ ∥∇θiJ(θk)∥2 +

αk
2
λF ∥F (θk)−1E[gia(ξk, ωik+1, λ

i
k+1)]∥2 + αkC

2
ψ

2C18

Na

+ 8λ−1
F (εsp + C2

ψεapp) + 8λ−1
F C2

ψ∥ω∗(θk)− ωik+1∥2 + 4λ−1
F C2

ψ∥λ∗(θk)− λik+1∥2]

Consider the Lyapunov function1062

Vk = −J(θk) + λ−1
F (∥ωk − ω∗(θk)∥2 + ∥λk − λ∗(θk)∥2).

The difference of the Lyapunov function is1063

E[Vk+1]− E[Vk] = E[J(θk)]− E[J(θk+1)] + λ−1
F (E∥ωk+1 − ω∗(θk+1)∥2 − E∥ωk − ω∗(θk)∥2

+ E∥λk+1 − λ∗(θk+1)∥2 − E∥λk − λ∗(θk)∥2)

≤
N∑
i=1

[
αk
4
C−2
ψ E∥∇θiJ(θk)∥2 +

αk
2
λF ∥F (θk)−1E[gia(ξk, ωik+1, λ

i
k+1)]∥2 + αkC

2
ψ

2C18

Na

]

+ λ−1
F

[
N∑
i=1

8C2
ψαkE∥ω∗(θk)− ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

]
︸ ︷︷ ︸

I5

+ λ−1
F

[
N∑
i=1

4C2
ψαkE∥λ∗(θk)− λik+1∥2 + E∥λ̄k+1 − λ∗(θk+1)∥2 − E∥λ̄k − λ∗(θk)∥2

]
︸ ︷︷ ︸

I6

+ 8Nλ−1
F (εsp + C2

ψεapp). (145)

By following the similar procedures through (98) to (106), we can bound I5 and I6 as1064

I5 ≤ (1 + C19αk)C
2
δβ

2
k +

αk
4
λ−1
F

N∑
i=1

E∥F (θk)−1gia(ξk, ω
i
k+1, λ

i
k+1)∥2 + αkMk1 + C20α

2
k

(146)

I6 ≤ (1 + C21αk)C
2
λη

2
k +

αk
4
λ−1
F

N∑
i=1

E∥F (θk)−1gia(ξk, ω
i
k+1, λ

i
k+1)∥2 + αkMk2 + C22α

2
k,

(147)
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where C19, C20, C21, C22 are some positive constants. Plug (146) and (147) back to (145), we have1065

E[Vk+1]− E[Vk] ≤
N∑
i=1

[
αk
4
C−2
ψ E∥∇θiJ(θk)∥2 + αkC

2
ψ

2C18

Na
+O(α2

k + β2
k + η2k)

+ (Mk1 +Mk2)αk +O(εsp + εapp)αk]. (148)

By telescoping (148), we can get1066

1

K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤
4C2

ψV0

Kαk
+O(εsp + εapp) +

8C2
ψC18

Na
+O(αk +

β2
k

αk
+
η2k
αk

)

+ 4C2
ψ(Mk1 +Mk2)

By (108), Mk1 +Mk2 = O( 1√
K
) when Kc ≤ O(K1/4). Therefore, let C, ᾱ be some positive1067

constants. Set Na = C
√
K, αk = ᾱ√

K
, βk = C9

2λϕ
αk, ηk = C10

2λφ
αk, we obtain the desired result of1068

(137).1069

We now prove (138). Let Eθ∗ denote the expectation over s ∼ dπθ∗ , a ∼ πθ∗(·|s). We begin with the1070

descent of policy gap as1071

Eθ∗ [log πθk+1
(a|s)− log πθk(a|s)]

≥ αkEθ∗ [ψθk(s, a)Thk]−
Lψα

2
k

2
C2
h

≥ αkEθ∗ [ψθk(s, a)T (hk − h∗(θk))] + αkEθ∗ [ψθk(s, a)Th∗(θk)−Aθk(s, a)]

+ αkEθ∗ [Aθk(s, a)]−
Lψα

2
k

2
C2
h

≥ −αkCψ∥hk − h∗(θk)∥ − αk
√
εactor + αk(J(θ

∗)− J(θk))−
Lψα

2
k

2
C2
h.

By telescoping the above inequality and rearranging terms, we have1072

1

K

K∑
k=1

(J(θ∗)− J(θk)) ≤
1

Kαk
Eθ∗ [log πK(a|s)− log π0(a|s)] +

√
εactor

+
1

K

K∑
k=1

Cψ∥hk − h∗(θk)∥+
1

K

K∑
k=1

Lψαk
2

.

The term ∥hk − h∗(θk)∥ ≤ ∥hk − F (θk)
−1E[ga(ξk, ωk+1, λk+1]∥ + ∥E[ga(ξk, ωk+1, λk+1] −1073

F−1∇J(θk)∥. Since by the (144) and (96), these two terms are of order O( 1

N
1/2
a

) and O(∥ωk −1074

ωk+1∥+ εapp), respectively, we conclude that ∥hk − h∗(θk)∥ is of order O(∥ωk − ω∗(θk)∥+ εapp).1075

By following the step size rule as suggested by Theorem 4, we obtain the desired result.1076
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G Overview of communication complexity1077

The Table 1 compares related works in terms of sample complexity and communication complexity.1078

Setting Paper Update Sampling
Sample

complexity

Communication

complexity

Single-agent AC
[32] Two-timescale Markovian Õ(ε−

5
2 ) -

[35] Double-loop Markovian Õ(ε−2) -

Decentralized AC

[42] Two-timescale Markovian Asymptotic -

[38] Two-timescale i.i.d. O(ε−
5
2 ) O(ε−

5
2 )

[6] Double-loop Markovian Õ(ε−2) Õ(ε−1)

[11] Double-loop Markovian Õ(ε−2) Õ(ε−1)

This work Single-timescale Markovian Õ(ε−2) Õ(ε−
3
2 )

Table 1: Comparison of some existing sample complexity results. The symbol Õ(·) hides the
logarithmic terms.

H Policy gradient theorem1079

The following derivation establishes the policy gradient update of our algorithm.1080

∇Es0∼µ0 [Vπθ (s0)] = Es0∼µ0

[
∇
∑
a0

πθ (a0|s0)Qπθ (s0, a0)

]

= Es0∼µ0


∑
a0

∇πθ(a0|s0)Qπθ (s0, a0)

1st term on RHS of (7)

+
∑
a0

πθ(a0|s0)∇Qπθ (s0, a0)

2nd term on RHS of (7)


= Es0∼µ0

[∑
a0

πθ(a0|s0)∇ log πθ(a0|s0)Qπθ (s0, a0)

]

+ Es0∼µ0

[∑
a0

πθ(a0|s0)∇

(
r(s0, a0) + γ

∑
s1

P (s1|s0, a0)Vπθ (s1)

)]

= Es0∼µ0

[∑
a0

πθ(a0|s0)∇ log πθ(a0|s0)Qπθ (s0, a0) + γ
∑
a0,s1

πθ(a0|s0)∇Vπθ (s1)

]
= Eτ [Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ [∇Vπθ (s1)],

where the (7) in the second inequality refers to equation (7) of [4], and the expectation on τ is taken1081

over a trajectory: a0 ∼ πθ(·|s0), s1 ∼ P (s1|s0, a0), · · · . By expanding the above recursion, we can1082

derive the policy gradient1083

∇Es0∼µ0
[Vπθ (s0)] = Eτ

[ ∞∑
k=0

γkQπθ (sk, ak)∇ log πθ(ak, sk)

]

=
1

1− γ
Es∼dπθ ,a∼πθ [Qπθ (s, a)∇ log πθ(a|s)] .

1084
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