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Abstract

Decentralized Actor-Critic (AC) algorithms have been widely utilized for multi-
agent reinforcement learning (MARL) and have achieved remarkable success.
Apart from its empirical success, the theoretical convergence property of decen-
tralized AC algorithms is largely unexplored. The existing finite-time convergence
results are derived based on either double-loop update or two-timescale step sizes
rule, which is not often adopted in real implementation. In this work, we introduce
a fully decentralized AC algorithm, where actor, critic, and global reward estimator
are updated in an alternating manner with step sizes being of the same order, namely,
we adopt the single-timescale update. Theoretically, using linear approximation for
value and reward estimation, we show that our algorithm has sample complexity of

O(e~2) under Markovian sampling, which matches the optimal complexity with

double-loop implementation (here, O hides a log term). The sample complexity
can be improved to O(e~?2) under the i.i.d. sampling scheme. The central to
establishing our complexity results is the hidden smoothness of the optimal critic
variable we revealed. We also provide a local action privacy-preserving version
of our algorithm and its analysis. Finally, we conduct experiments to show the
superiority of our algorithm over the existing decentralized AC algorithms.

1 Introduction

Multi-agent reinforcement learning (MARL) [16, 30] has been very successful in various models of
multi-agent systems, such as robotics [14], autonomous driving [37], Go [25], etc. MARL has been
extensively explored in the past decades; see, e.g., [18, 20, 41, 26, 8, 22]. These works either focus
on the setting where an central controller is available, or assuming a common reward function for all
agents. Among the many cooperative MARL settings, the work [42] proposes the fully decentralized
MARL with networked agents. In this setting, each agent maintains a private heterogeneous reward
function, and agents can only access local/neighboring information through communicating with its
neighboring agents on the network. Then, the objective of all agents is to jointly maximize the average
long-term reward through interacting with environment modeled by multi-agent Markov decision
process (MDP). They proposed the decentralized Actor-Critic (AC) algorithm to solve this MARL
problem, and showed its impressive performance. However, the theoretical convergence properties
of such class of decentralized AC algorithms are largely unexplored; see [41] for a comprehensive
survey. In this work, our goal is to establish the strong finite-time convergence results under this fully
decentralized MARL setting. We first review some recent progresses on this line of research below.

Related works and motivations. The first fully decentralized AC algorithm with provable con-
vergence guarantee was proposed by [42], and they achieved asymptotic convergence results under
two-time scale step sizes, which requires actor’s step sizes to diminish in a faster scale than the critic’s
step sizes. The sample complexities of decentralized AC were established recently. In particular, [6]
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and [11] independently propose two communication efficient decentralized AC algorithms with opti-
mal sample complexity of O(e~21og(¢7!)) under Markovian sampling scheme. Their analysis are
based on double-loop implementation, where each policy optimization step follows a nearly accurate
critic optimization step (a.k.a. policy evaluation), i.e., solving the critic optimization subproblem to
e-accuracy. Such a double-loop scheme requires careful tuning of two additional hyper-parameters,
which are the batch size and inner loop size. In particular, the batch size and inner loop size need to be
of order O(¢71) and O(log(¢~1)) in order to achieve their sample complexity results, respectively.
In practice, single-loop algorithmic framework is often utilized, where one updates the actor and
critic in an alternating manner by performing only one algorithmic iteration for both of the two
subproblems; see, e.g., [23, 18, 15, 39]. The work [38] proposes a new decentralized AC algorithm
based on such a single-loop alternative update. Nevertheless, they have to adopt two-timescale step
sizes rule to ensure convergence, which requires actor’s step sizes to diminish in a faster scale than
the critic’s step sizes. Due to the separation of the step sizes, the critic optimization sub-problem
is solved exactly when the number of iterations tends to co. Such a restriction on the step size will
slow down the convergence speed of the algorithm. As a consequence, they only obtain sub-optimal
sample complexity of O (s~ 3 ). In practice, most algorithms are implemented with single-timescale
step size rule, where the step sizes for actor and critic updates are of the same order. Though there
are some theoretical achievements for single-timescale update in other areas such as TDC [31] and
bi-level optimization [4], similar theoretical understanding under AC setting is largely unexplored.

Indeed, even when reducing to single-agent setting, the convergence property of single-timescale
AC algorithm is not well established. The works [9, 10] establish the finite-time convergence result
under a special single-timescale implementation, where they attain the sample complexity of O(e~2).
However, their analysis is based on an algorithm where the critic optimization step is formulated as a
least-square temporal difference (LSTD) at each iteration, where they need to sample the transition
tuples for @(5_1) times to form the data matrix in the LSTD problem. Then, they solve the LSTD
problem in a closed-form fashion, which requires to invert a matrix of large size. Later, [4] obtains the
same sample complexity using TD(0) update for critic variables under i.i.d. sampling. Nonetheless,
their analysis highly relies on the assumption that the Jacobian of the stationary distribution is
Lipschitz continuous, which is not justified in their work.

The above observations motivate us to ask the following question:

Can we establish finite-time convergence result for decentralized AC algorithm with single-timescale
step sizes rule?

Main contributions. By answering this question positively, we have the following contributions:

e We design a fully decentralized AC algorithm, which employs a single-timescale step sizes
rule and adopts Markovian sampling scheme. The proposed algorithm allows communication

between agents for every K, iterations with K. being any integer lies in [1, O(¢~2 )], rather
than communicating at each iteration as adopted by previous single-loop decentralized AC
algorithms [38, 42].

e Using linear approximation for value and reward estimation, we establish the finite-time
convergence result for such an algorithm under the standard assumptions. In particular, we

show that the algorithm has the sample complexity of O(z~2), which matches the optimal
complexity up to a logarithmic term. In addition, we show that the logarithmic term can be
removed under the i.i.d. sampling scheme. Note that these convergence results are valid for
all the above mentioned choices for K.

e To preserve the privacy of local actions, we propose a variant of our algorithm which utilizes
noisy local rewards for estimating global rewards. We show that such an algorithm will
maintain the optimal sample complexity at the expense of communicating at each iteration.

The underlying principle for obtaining the above convergence results is that we reveal the hidden
smoothness of the optimal critic variable, so that we can derive an approximate descent on the
averaged critic’s optimal gap at each iteration. Consequently, we can resort to the classic convergence
analysis for alternating optimization algorithms to establish the approximate ascent property of the
overall optimization process, which leads to the final sample complexity results.

! As convention [9], when we use "single-timescale”, it means we utilize a single-loop algorithmic framework
with single-timescale step sizes rule.
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Another technical highlight is the Lyapunov function we construct for measuring the progress of our
algorithm. Such a construction is motivated by [4], which analyzes bi-level optimization algorithm.
However, our Lyapunov function is different from theirs as it involves the additional optimal gap of
averaged critic and reward estimator, which is necessary for dealing with the decentralized setting.

We finish this section by remarking that our convergence results are even new for single agent AC
algorithms under the setting of single-timescale step sizes rule.

2 Preliminary

In this section, we introduce the problem formulation and the policy gradient theorem, which serves
as the preliminary for the analyzed decentralzed AC algorithm.

Suppose there are multiple agents aiming to independently optimize a common global objective, and
each agent can communicate with its neighbors through a network. To model the topology, we define
the graph as G = (N, £), where N is the set of nodes with |[A| = N and & is the set of edges with
|€] = E. In the graph, each node represents an agent, and each edge represents a communication
link. The interaction between agents follows the networked multi-agent MDP.

2.1 Markov decision process

A networked multi-agent MDP is defined by a tuple (G, S, {A"}ienr, P, {7 }ic(n],7)- G denotes the

communication topology (the graph), S is the finite state space observed by all agents, A’ represents
the finite action space of agent i. Let A := A x --- x AN denote the joint action space and
P(s'|s,a) : S x A x S — [0, 1] denote the transition probability from any state s € S to any state
s’ € S for any joint action a € A. r® : S x A — R is the local reward function that determines the
reward received by agent ¢ given transition (s, a); vy € [0, 1] is the discount factor.

For simplicity, we will use a := [a',--- ,a’V] to denote the joint action, and 6 := [#1,--- ,0N] €
R% >N to denote joint parameters of all actors, with #° € R% . Note that different actors may have
different number of parameters, which is assumed to be the same for our paper without loss of
generality. The MDP goes as follows: For a given state s, each agent make its decision a’ based
on its policy a’ ~ my: (+|s). The state transits to the next state s’ based on the joint action of all the
agents: s’ ~ P(-|s, a). Then, each agent will receive its own reward 7% (s, a). For the notation brevity,
we assume that the reward function mapping is deterministic and does not depend on the next state
without loss of generality. The stationary distribution induced by the policy 7y and the transition
kernel is denoted by (i, ().

Our objective is to find a set of policies that maximize the accumulated discounted mean reward
received by agents

0" = argmax J(0) :==E
6

ZVkT(Sk,ak)l : (D
k=0

Here, k represents the time step. 7(sy, ax) := Zi\; (g, ay) is the mean reward among agents
at time step k. The randomness of the expectation comes from the initial state distribution z(s), the
transition kernel P, and the stochastic policy mgi (|s).

2.2 Policy gradient Theorem

Under the discounted reward setting, the global state-value function, action-value function, and
advantage function for policy set 0, state s, and action a, are defined as

Vio(s) :=E Z’ykf(sk,akﬂso = s] (2)
k=0
Qr,(s,a) :=FE nykf(sk,ak.ﬂso =s,a9 = a]
k=0

Ar,(s,a) := Qnr,(8,a) — Vi, (3).
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To maximize the objective function defined in (1), the policy gradient [28] can be computed as follow

1 ,YATFG (87 a’)wﬂ'e (87 CL):| )

VOJ(H) = ESNd.,\-H ,a~Tg |:1_

where dr, (s) == (1 — 7)Y pey V" P(sy = s) is the discounted state visitation distribution under
policy mp, and ¢, (s, a) := Vlog my(s, a) is the score function.

Following the derivation of [42], the policy gradient for each agent under discounted reward setting
can be expressed as

1 )
Vf?“](e) = ESNdvr97aN770 |:,,YATF9 <87 a)wﬂ'gi (Sa az):| . (3)

1

3 Decentralized single-timescale actor-critic

Algorithm 1: Decentralized single-timescale AC (reward estimator version)

1: Initialize: Actor parameter 0o, critic parameter wo, reward estimator parameter Ao, initial state s¢.
2: fork=0,--- ,K —1do

3:  Option 1: i.i.d. sampling:

4 sk~ ey (1), ak ~ moy (+[sk), sk ~ P([sk, ar).
5:  Option 2: Markovian sampling:

6: Ak Nﬁgk(~‘8k),sk+1 NP(~|sk,ak).

7:

8:  Periodical consensus: Compute &}, and 5\}; by (4) and (7).
9:
10: for:=0,---, N in parallel do

11: Reward estimator update: Update )\ZH by (8).
12: Critic update: Update wj, ,, by (5).
13: Actor update: Update 6% 11 by (6).

14:  end for
15: end for

We introduce the decentralized single-timescale AC algorithm; see Algorithm 1. In the remaining
parts of this section, we will explain the updates in the algorithm in details.

In fully-decentralized MARL, each agent can only observe its local reward and action, while trying
to maximize the global reward (mean reward) defined in (1). The decentralized AC algorithm solves
the problem by performing online updates in an alternative fashion. Specifically, we have N pairs of
actor and critic. In order to maximize J(6), each critic tries to estimate the global state-value function
Vi, (s) defined in (2), and each actor then updates its policy parameter based on approximated policy
gradient. We now provide more details about the algorithm.

Critics’ update. We will use w’ € R% to denote the iy, critic’s parameter and @ := +; Efil w' to
represent the averaged parameter of critic. The ¢4, critic approximates the global value function as

Vi (8) = Vi (8).

As we will see, the critic’s approximation error can be categorized into two parts, namely, the
N ; _ . e

consensus error % > ieq lw" — @], which measures how close the critics” parameters are; and the

approximation error || — w*(#)]|, which measures the approximation quality of averaged critic.

In order for critics to reach consensus, we perform the following update for all critics

N i g )
i {Zj—]WJW'; if £k mod K. =0 @

wk - ’L .
Wy, otherwise.

where W € R™*™ is a weight matrix for communication among agents, whose property will be
specified in Assumption 5; K. denotes the consensus frequency.

To reduce the approximation error, we will perform the local TD(0) update [29] as
Whp1 = Mg, (@F + Brgt(&r, wi)), (5)
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where & := (s, a, s') represents a transition tuple, g (&, w) := 6" (£,w)VV,,(s) is the update direction,
§1(€,w) := (s, a) + YV, (s') — Vi, (s) is the local temporal difference error (TD-error). 3y, is the
step size for critic at iteration k. IIz_ projects the parameter into a ball of radius of R, containing
the optimal solution, which will be explained when discussing Assumption 1 and 2.

Actors’ update. We will use stochastic gradient ascent to update the policy’s parameter, and the
stochastic gradient is calculated based on policy gradient theorem in (3). The advantage function
Ay, (s,a) can be estimated by

5(&,0) :==7T(s,a) +yV(s") = V(s),

with a sampled from 7y (+|s). However, to preserve the privacy of each agents, the local reward
cannot be shared to other agents under the fully decentralized setting. Thus, the averaged reward
7(sk, ar) is not directly attainable. Consequently, we need a strategy to approximate the averaged
reward. In this paper, we will adopt the strategy proposed in [42]. In particular, each agent ¢ will have
a local reward estimator with parameter \' € R%, which estimates the global averaged reward as
F(sk, ar) = Fxi(sk, ak).

Thus, the update of the ¢4, actor is given by
H;chrl = ezk: + akS(&k? w;@«kla )‘z+1)wﬂ9}'€ (Ska a?@)a (6)

where 8(&,w, \) := (s, a) + Vi, (s') — Vi, (s) is the approximated advantage function. o, is the
step size for actor’s update at iteration k.

Reward estimators’ update. Similar to critic, each reward estimator’s approximation error can be
decomposed into consensus error and the approximation error.

For each local reward estimator, we perform the consensus step to minimize the consensus error as

)

{Z]il Wiixl  ifk mod K, =0
Ak - J

)\fC otherwise.

To reduce the approximation error, we perform a local update of stochastic gradient descent.
Mgt = Tay (N + mgn (€ ML), ®)

where g2 (£,\) := (ri(s,a) — 7x(s,a))V#r(s,a) is the update direction. 7y is the step size for
reward estimator at iteration k. Note the calculation of g¢ (&, \) does not require the knowledge of s';
we use £ in (8) just for notation brevity. Similar to critic’s update, I, projects the parameter into a
ball of radius of R containing the optimal solution.

In our Algorithm 1, we will use the same order for «y, S, and 7, and hence, our algorithm is in
single-timescale.

Linear approximation for analysis. In our analysis, we will use linear approximation for both critic
and reward estimator variables, i.e. V,,(s) := ¢(s)Tw; 7r(s,a) := ¢(s,a)T\, where ¢(s) : S —
R% and ¢(s,a) : S x A — R are two feature mappings, whose property will be specified in the
discussion of Assumption 1.

Algorithm for preserving the local action. Note that in Algorithm 1, the reward estimators need
the knowledge of joint actions in order to estimate the global rewards. To preserve the privacy of
local actions, we further propose a variant of Algorithm 1, which estimates the global rewards by
communicating noisy local rewards; see [6] for the original idea. However, to maintain the optimal
sample complexity, such an approach requires O (log(¢~!)) communication rounds for each iteration.
We postpone the detailed design and analysis of such an algorithm scheme into Appendix B.

Remarks on sampling scheme. The unbiased update for critic and actor variables requires sampling
from ., and dr,, respectively. However, in practical implementations, states are usually collected
from an online trajectory (Markovian sampling), whose distribution is generally different for 1i,
and d.,. Such a distribution mismatch will inevitably cause biases during the update of critic and
actor variables. One has to bound the corresponding error terms when analyzing the algorithm. In
this work, we will provide the analysis for both sampling schemes.
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4 Main Results

In this section, we first introduce the technical assumptions used for our analysis, which are standard
in the literature. Then, we present the convergence results for both actor and critic variables under
ii.d. sampling and Markovian sampling.

4.1 Assumptions

Assumption 1 (bounded rewards and feature vectors). All the local rewards are uniformly bounded,
i.e., there exists a positive constants rmax such that | r*(s,a) | < rmax, for all feasible (s, a) and
i € [N]. The norm of feature vectors are bounded such that for all s € S, a € A, ||¢(s)| <
Llle(s,a)|l < L.

Assumption 1 is standard and commonly adopted; see, e.g., [3, 35, 38, 24, 21]. This assumption can
be achieved via normalizing the feature vectors.

Assumption 2 (negative definiteness of Ag 4 and Ag ). There exists two positive constants Ay, Ay
such that for all policy 0, the following two matrices are negative definite

App = By () [0(5)(70(s)T = 6(5)")]

AG,(p = ESN[LQ(S),G.N#Q(“S) [_@(87 a)<p(s, a)T]7
With Amax(Ag,¢) < Aps Amax(Ao,o) < Ay, Where Amax(+) represents the largest eigenvalue.

Assumption 2 can be achieved when the matrices ®4 := [¢(s1),---,¢(s|s))] and P, :=
[o(s1,a1),- -+ ,©(5|s],a.4))] have full row rank, which ensures that the optimal critic and reward
estimator are unique; see also [24, 34]. Together with Assumption 1, we can show that the norm of
w*(#) and A\*(0) are bounded by some positive constant, which justifies the projection steps.
Assumption 3 (Lipschitz properties of policy). There exists constants Cy,, Ly, L such that for
all 0,0',s € S and a € A, we have (1). |mp(al|s) — mo (a|s)| < L]0 — 0'||; (2). ||o(s,a) —
Yo (s,a)[| < Lyll0 = 0'[]; (3)- [[¢a(s, a)l| < Cy.

Assumption 3 is common for analyzing policy-based algorithms; see, e.g., [33, 32, 11]. The assump-
tion ensures the smoothness of objective function J(#). It holds for a large range of policy classes
such as tabular softmax policy [1], Gaussian policy [7], and Boltzman policy [13].

Assumption 4 (irreducible and aperiodic Markov chain). The Markov chain under 7y and transition
kernel P(:|s, a) is irreducible and aperiodic for any 6.

Assumption 4 is a standard assumption, which holds for any uniformly ergodic Markov chains and
any time-homogeneous Markov chains with finite-state space. It ensures that there exists constants
k> 0and p € (0,1) such that

sup dry (P(sg € -|so = s,m9), o) < kp", V.

sES
Assumption 5 (doubly stochastic weight matrix). The communication matrix W is doubly stochastic,
i.e. each column/row sum up to 1. Moreover, the second largest singular value v is smaller than 1.

Assumption 5 is a common assumption in decentralized optimization and multi-agent reinforcement
learning; see, e.g., [27, 5, 6]. It ensures the convergence of consensus error for critic and reward
estimator variables.

4.2 Sample complexity under i.i.d. sampling

Theorem 1 (sample complexity under i.i.d. sampling). Suppose Assumptions 1-5 hold. Consider

the update of Algorithm 1 under i.i.d. sampling. Let o, = —= for some positive constant Q,
Br = (’;\ ag, and N, = Cw s, K. < O(K1/4) where K denotes the total number of iterations.

Then, we have

LSS [l - o G0IP] <0 (=)

ko 1
ZZ (Ve F(0,)%] < <\/I?) + O(€app + €sp); 9)

N \

@)}
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where Cy, Cq are positive constants defined in the proof.

The proof of Theorem 1 can found in Appendix E.1. It establishes the iteration complexity of
O(1/VK), or equivalently, sample complexity of O(e~2) for Algorithm 1. Note that actors, critics,
and reward estimators use the step sizes of the same order. The sample complexity matches the
optimal rate of SGD for general non-convex optimization problem. To explain the errors in (9), let us
define the approximation error as the following:

comm = 05 Bamy [V (5) — Vo) (9 4 17(5,0) — P (5, )]

The error .y, captures the approximation power of critic and reward estimator. Similar terms
also appear in the literature (see e.g., [35, 1, 21]). Such an approximation error becomes zero in
tabular case. The error €, is inevitably caused by the mismatch between discounted state visitation
distribution d, and stationary distribution (., ; see, e.g., [38, 24]. It is defined as

1
€sp = 2Cy(log,, K+ ;)(1 —).
When 7 is close to 1, the error becomes small. This is because d, approaches to .., when -y goes to

1. In the literature, some works assume that sampling from d., is permitted, thus eliminate this error;
see, e.g., [4].

4.3 Sample complexity under markovian sampling

Theorem 2 (sample complexity under Markovian sampling). Suppose Assumptions 1-5 hold. Con-
sider the update of Algorithm I under Markovian sampling. Let o, = \/% for some positive constant

a, B = %ak, and n,, = 20;:: ay, K. < O(K1/4), where K is the total number of iterations. Then,
we have

1 e log? K
& 2 Y B[k~ @I) < 0 ()
Kk:l =1 \/E
K N 9
1 log” K
?;;E Vi F(01)|%] < < NI >+0(sa,,,,+esp), (10)

where Cy, C1 are positive constants defined in proof.

We put the proof of Theorem 2 in Appendix E.2. In Markovian sampling, the updates are biased for
critics, actors, and reward estimators. The error will decrease as the Markov chain mixes, and the
logarithmic term is due to the cost for mixing.

Theorem 2 establishes the iteration complexity of O(log? K /v/K), or equivalently, sample complex-

ity of o (€72) for Algorithm 1. It matches the state-of-the-art sample complexity of decentralized AC
algorithms, which are implemented in double-loop fashion [11, 6].

4.4 Proof sketch

We present the main elements for the proof of Theorem 2, which helps in understanding the difference
between classical two-timescale/double-loop analysis and our single-timescale analysis. The proof of
Theorem 1 follows the same framework with simpler sampling scheme.

Under Markovian sampling, it is possible to show the following inequality, which characterizes the
ascent of the objective.

Ak i i i
ELJ(O41)] = 7 (00) >Z[ E|[ Vo J (60|12 + SElgh (€ whgr M) I

— 8C7 arEllw* (0r) — Wiy 1> — 4CTaREl A" (0k) — Ny |?]
- O(logQ(K)ai) — O((Eapp + Esp)ak)- (1)
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To analyze the errors of critic [lw* (0) — w}, 4 ||* and reward estimator [|\*(6),) — A}, ||*, the two-
timescale analysis requires O (o) < min{O(Sx), O(nx)} in order for these two errors to converge.
The double-loop approach runs lower-level update for O(log(¢~1)) times with batch size O(¢~!)
to drive these errors below € and hence, they cannot allow inner loop size and bath size to be O(1)
simultaneously. To obtain the convergence result for single-timescale update, the idea is to further
upper bound these two lower-level errors by the quantity O (o E| gk (&k, wj 1, Aj, 1) [|?) (through a

series of derivations), and then eliminate these errors by the ascent term S| g% (&, wj 1, by )12

We mainly focus on the analysis of critic’s error through the proof sketch. The analysis for reward
estimator’s error follows similar procedure. We start by decomposing the error of critic as

N N
D lwipr = O =D (lwirr = @rrt | + @1 — " (600)11%)- (12)
i=1 i=1
The first term represents the consensus error, which can be bounded by the next lemma.
Lemma 1. Suppose Assumptions 1 and 5 hold. Consider the sequence {w}c} generated by Algorithm 1,
then the following holds

k
K k' —1—t
Qi1 < v ol +4 3 v =T8N G,

=0
where wy = [w!, -+ ,wNT,Q =1 - L1117} = LKLCJ * K. The constant v € (0,1) is the

second largest singular value of W.

Based on Lemma 1 and follow the step size rule of Theorem 2, it is possible to show ||Qwy11]|% =

. -1 .
Sy @iy = @rll? = O(KZB}). Let Ko = OB *), we have || Qi1 ]|} = O(Bx), which
maintains the optimal rate.

To analyze the second term in (12), we first construct the following Lyapunov function

Vi = —J(0k) + @k — w0 (01 + %k — A (B0 % (3)

Then, it remains to derive an approximate descent property of the term ||@), — w*(6x)||? in (13).
Towards that end, our key step lies in establishing the smoothness of the optimal critic variables
shown in the next lemma.

Lemma 2 (smoothness of optimal critic). Suppose Assumptions 1-3 hold, under the update of
Algorithm 1, there exists a positive constant L,, 1 such that for all 0,0, it holds that

IVw™(8) = V™ (0] < Luallo — 6],

where Vw*(0) denotes the Jacobian of w*(0) with respect to 0.

This smoothness property is essential for achieving our @(1 /v/K) convergence rate.

To the best of our knowledge, the smoothness of w*(#) has not been justified in the literature.
Equipped with Lemma 2, we are able to establish the following lemma.

Lemma 3 (Error of critic). Under Assumptions 1-5, consider the update of Algorithm 1. Then, it
holds that

Ef[lor+1 —w* (Orr1)[1%] < (1 + Coap)l|n1 — w* (61)]1?
N
e . . .
+ 5 D Bl € i Mo )IIP + OR). (14)
=1

Elll@re1 — w*(06) 7] < (1 = 2Xg8k) |k — w* (0x) 12
+ Cr, BrBr—zi + Cry0k—z4 B- (15)

Here, Z = min{z € NT|kp*~t < min{oy, Bk, mk}}, Co, Ay are constants specified in appendix,
and C, and Cr, are of order O(log(K)) and O(log*(K))d respectively.
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Figure 1: Averaged reward versus sample complexity and communication complexity. The vertical
axis is the averaged reward over all the agents.

Plug (15) into (14), we can establish the approximate descent property of ||@y — w* (6 )| in (13):
Efllo+1 — w* (Or+1)[1%] < (1 + Coauw) (1 — 209 85) [ @r — w* (8 ||

N
€95 i i i
+ > IE[GE (ks whop 1, A O
i=1

+ O(Ck, BiBr—zx + Cryti—z4 Br)- (16)

Finally, plugging (11), (14), and (16) into (13) gives the ascent of the Lyapunov function, which leads
to our convergence result through steps of standard arguments.

5 Numerical results

In this section, our objective is to illustrate the empirical sample complexity and communication
complexity of the proposed algorithms. We also implement the algorithm in [6] to serve as a baseline,
which employs double-loop algorithmic framework. Our simulation is based on the grounded
communication environment proposed in [19]; see Appendix A for detailed set up. Through the
discussion, we refer the algorithm in [6] as "DLDAC", the Algorithm 1 as "SDAC-re", the Algorithm 2
as "SDAC-noisy" (see Appendix B). We also provide the result which assumes full reward is available
to serve as baseline, which we refer as "SDAC-full". We set K,, = 5 for "SDAC-noisy"; K. = 1
for "SDAC-re", "SDAC-noisy", and "SDAC-full". We choose T, = 5 (loop size), T, = 1 (critic
consensus number every iteration), 7’ = 5 (reward consensus number every iteration) for "DLDAC".

The sample complexity and communication complexity are shown in Figure 1. The results are
averaged over 10 Monte Carlo runs. As we can see, the proposed two algorithms achieve significantly
higher reward than "DLDAC" in terms of both sample complexity and communication complexity.
Moreover, their performances approach the baseline “SDAC-full", where the global reward is assumed
to be available, indicating that the reward approximation is nearly accurate. Due to space limit, we
will put additional experiments on the comparison with existing decentralized AC algorithms and the
ablation study of hyper-parameters to Appendix A.

6 Conclusion and future direction

In this paper, we studied the convergence of fully decentralized AC algorithm under practical single-
timescale update for the first time. We designed such an algorithm which maintains the optimal

sample complexity of O(s~2) under less communications. We also proposed a variant to preserve the
privacy of local actions by communicating noisy rewards. Extensive simulation results demonstrate
the superiority of our algorithms’ empirical performance over existing decentralized AC algorithms.
One limitation of our work is that we only study the convergence to stationary point. Thus, we leave
the research on the avoidance of saddle points and convergence to global optimum as promising
future directions.
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A Experiment settings and additional simulation results

In this section, we first introduce the experimental setting. Then, we present more experiments on the
comparison between the proposed algorithms and existing decentralized AC algorithms. Additionally,
we conduct ablation study on different consensus frequencies of the proposed algorithm.

Experiment setting. We adopt the grounded communication environment proposed in [19]. Our
task consists of [V agents and the corresponding N landmarks inhabited in a two-dimension world,
where each agent can observe the relative position of other agents and landmarks. For every discrete
time step, agents take actions to move along certain directions, and receive their rewards. Agents
are rewarded based on the distance to their own landmark, and penalized if they collide with other
agents. The objective is to maximize the long-term averaged reward over all agents. Since we focus
on decentralized setting, each agent shall not know the target landmark of others, i.e., the reward
function of others. To exchange information, each agent is allowed to send their local information via
a fixed communication link. Through all the experiments, the agent number N is set to be 5, and the
discount factor 7 is set to be 0.95.

Comparison to double-loop decentralized AC under mini-batch update. Since the algorithm
in [6] uses mini-batch update to reduce the variance during the update, we will compare the proposed
algorithms with [6] under different choices of actor’s batch sizes, critic’s batch sizes, and inner loop
sizes, respectively. Since their algorithm communicates noisy reward to achieve consensus, we will
use "SDAC-noi" to serve as baseline.

1. Actor’s batch size. We fix T, = 50, T, = 10, N, = 10, 2 which is adopted by [6]. We
examine values of N in {10, 50,100}. The results are in Figure 2a. We observe that the best
choice of actor’s batch size N is 50, and the proposed "SDAC-noi" converges faster than it
in terms of sample complexity.

2. Critic’s batch size. We fix 7. = 50, T/ = 10, N = 100, which is adopted by [6]. We
examine values of N, in {2,10,50}. The results are shown in Figure 2b. As we can see,
"DLDAC" with smaller critic’s batch sizes can achieve better sample complexity, indicating
that the variance of critic’s update is relatively small and the mini-batch update is not needed
for this task. Our proposed "SDAC-noi" achieves better convergence compared with the
double-loop decentralized AC under different choices of V..

3. Inner loop size. We fix 7, = 10, N = 100, N, = 10, which is adopted by [6]. We examine
values of T in {5,20}. The results are shown in Figure 3. We can see that the proposed
"SDAC-noi" enjoys a better convergence in terms of sample complexity.

4]

Average Reward
i

Average Reward
i

SDAC-noi SDAC-noi

—— DLDAC-bza-10 —— DLDAC-bzc-2
10 —— DLDAC-bza-50 —— DLDAC-bzc-10
Bl —— DLDAC-bza-100 -10 —— DLDAC-bzc-50
0 2 4 6 8 le4 0 2 1 6 8 led
Sample Complexity Sample Complexity
(a) Different actor’s batch sizes. (b) Different critic’s batch sizes.

Figure 2: Comparison between the proposed algorithms and the double-loop decentralized AC
algorithm that uses mini-batch update. The results are averaged over 10 Monte Carlo runs.

*Note that we adopt the notations in [6]. Here, T is the inner loop size, T}, is the communication number for
each outer loop, N is the batch size for actor’s update, and N, is the batch size for critic’s update.
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Figure 3: Comparison between the proposed algorithm and the double-loop decentralized AC
algorithm under different inner loop sizes. The results are averaged over 10 Monte Carlo runs.

Comparison to two-timescale decentralized AC. Next, we compare the empirical performance
between single-timescale and two-timescale implementations. The baseline we compare here is the
existing decentralized two-timescale AC algorithm [38].

We use "TDAC-re" to denote the algorithm proposed in [38]. To compare with our proposed
Algorithm 2, we also implement a noisy reward version of "TDAC-re" and denote it by "TDAC-noi".
We fix K. = 1, K, = 5 for this experiment. We set a, = 0.01(k + 1)7%%, 8, = 0.1(k + 1)7%2,
and n = 0.1(k + 1)7°5 for "SDAC-re" and "SDAC-noi"; we set a, = 0.01(k + 1)7%¢, g, =
0.1(k + 1)=%4, and 7, = 0.1(k + 1)~%* for "TDAC-re" and "TDAC-noi". The sample complexity
complexity is presented in Figure 4. We can see that the convergence speed of "TDAC-noi" is
comparable to its single-timescale counterpart "SDAC-noi". However, when using reward estimator
for the global reward estimation, we observe that "SDAC-re" has much more stable convergence
behavior than "TDAC-re", and achieves significantly higher rewards.

Average Reward
|

12 4 SDAC-noi
—— SDAC-re
—— TDAC-noi
—— TDAC-re

0 2 4 6 8 led
Sample Complexity

Figure 4: Comparison between the proposed algorithms and two-timescale decentralized AC algo-
rithms [38]. The results are averaged over 10 Monte Carlo runs.

Ablation on different consensus periods. We compare the performance of "SDAC-noi" under
different choices of consensus periods K.. In particular, we let o, = 0.01(k + 1)7%5, 3, =
0.1(k + 1)’0'5, K, =1 and examine the consensus periods K, of 1, 5, 10, and 20, respectively.
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The corresponding sample complexities and are summarized in Figure 5. Evidently, as the consensus
period K. increases, the convergence becomes slower and become relatively unstable. Therefore,
when the communication cost is low, choosing a small K, will yield a better performance. For
this task, the consensus period K, should be kept within 5 rounds in order to ensure a reasonable
convergence. In Figure 5, we plot the communication complexity under the consensus periods of
1 and 5. We can see that the communication complexity of "cons-5" surpasses "cons-1" during the
training, indicating that it requires less rounds of communications to achieve better performance. Thus,
when the communication complexity is high, we may use large K to achieve better communication
complexity. When extending the model to different tasks, we may try different values of K. to
balance the sample complexity and communication complexity.

o
24 -
kel - o 619
@ @
= 64 =
L L
o o -8
v 8 [
o o
. o
g g ]
< ] <
121
-14 1 —— cons-10 cons-1
—— cons-20 — cons-5
0 2 4 6 8 1led 0 4 8 12 16 le3
Sample Complexity Communication Complexity
(a) The sample complexity. (b) The communication complexity.

Figure 5: Ablation study on the consensus periods. The results are averaged over 10 Monte Carlo
runs.

B Algorithm without local action

In this section, we introduce the variant of Algorithm 1 for preserving the privacy of local actions.
The main difference is that instead of using a reward estimator to approximate the global reward,
we now communicate the noisy local rewards for estimating the global rewards. Let 7} represents
71 (sk, ay) for brevity. The reward estimation process goes as follow: for each agent i, we first
produce a noisy local reward 7 = 7 (1 + z), with z ~ N(0,0?). Thus, the noise level is controlled
by the variance o2, which is chosen artificially. To estimate the global reward, each agent ¢ first
initialize the estimation as 7} ;, = r;. Then, each agent ¢ perform the following consensus step for K
times, i.e.

N
G :Zw”ﬁ,z, 1=0,1,--- K, —1. (17
j=1

The reward 7, k, Will be used for estimating global reward for agent ¢. The error for the reward
estimation, i.e. |7 — Wk KT| will converge to O linearly. Therefore, to reduce the error to €, we need
K, = O(log(¢~ 1)) rounds of communications.

The following theorem establishes the sample complexity of Algorithm 2 under Markovian sampling.

Theorem 3. Suppose Assumptions 1-5 hold. Consider the update of Algorithm 2 under Markovian
sampling. Let oy = %for some positive constant a, B, = <>, K, = O(log(K'/*)),

K, =log(K'/?). Then, we have

LY B[t -] <0 (EK)

k=1 1i=1
K N 9

1 log” K

K Y D E[IVaF@R)*] <O < Wie ) + O(app + €sp), (18)
k=1 1:1=1
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Algorithm 2: Decentralized single-timescale AC (noisy reward version)

1: Initialize: Actor parameter 6y, critic parameter wp, initial state so.
2: fork=0,--- , K —1do

3:  Option 1: i.i.d. sampling:

4 s~ e (1), ak ~ moy (+[sk), sk ~ P sk, ar).
5:  Option 2: Markovian sampling:

6: ax ~ 7o, (-|sk), Sk+1 ~ P(-|sk, ar)-

7:

8:  Periodical consensus: Compute &} by (4).

9:

10:  for: =0, .-, N in parallel do

11: Global reward estimation: Estimate 71 (s, ax) by (17).
12: Critic update: Update wj, ,, by (5).

13: Actor update: Update 0j,__, by (6).
14:  end for

15: end for

where Cy and Ch are positive constants defined in proof.

The Theorem 3 shows that Algorithm 2 has the same sample complexity as Algorithm 1; see
Appendix E.3 for the proof. Algorithm 2 enjoys the advantage of preserving local actions and requiring
less parameters since no reward estimator is needed. The cost is that we need to communicate
O(log(e71)) times for each iteration.

C Auxiliary lemmas

In this section, we provide some auxiliary lemmas, which serves as the preliminary for the proof of
main theorems and lemmas.

Lemma 4 ([40], Lemma 3.2). Suppose Assumption 3 holds, then there exists a positive constant L
such that for all 0,0 € R, we have |V.J(0) — VJ(0")| < L||60 — ¢'|.

Lemma 5 ([24], Lemma 1). Suppose Assumptions 4 holds, then there exists k > 0, p € [0, 1] such
that for any 6 € RN we have

sup drv (P((8k, ak, Sk+1) € *|S0, o), o @ 79, P) < kipF,
ENS

where g is the stationary distribution induced by 7y and transition kernel P(-|s, a).
Lemma 6 ([24], Lemma 2). Suppose Assumption 4 holds, then for any 6 € R%, we have
_ 1
drv (dg, pg) < 2(log, k™" + ﬂ)(l =)

Lemma 7 ([24], Lemma 4). Suppose Assumption 3 holds, for any 61,0, € R% and s € S, there
exits a positive constant Ly such that

[VVa, (8)| < Lv
Vo, (8) = Virg, (s)| < Ly [|61 — 62]].
Lemma 8 ([32], Lemma A.1). For any policy 61 and 05, it holds that
drv (pe,, o,) < |AlLz(log, s~ + (1= p)~")||61 — 62|
drv (1o, © 7oy, f10, ® To,) < [A|Lx (1 +1log, k71 4 (1= p)~1)[|61 — bs
drv (pe, ®@ mo, @ P, pg, @ me, @ P) < |A|Lr(1 + log, k(1= p) Y101 — 6|
We will define Ly, := | A|Lr(log, x~" + (1 — p)~") for the proof of main theorems and lemmas.

Lemma 9 ([5], Lemma F.3). For a doubly stochastic matrix W € RN*Y and the difference matrix
Q := I — £117, it holds that for any matrix H € RN*N, |[W*H || p < v*||QH ||, where v is the
second largest singular value of W.

18



604
605

606

607

608

609
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618

619
620

621

Lemma 10 (descent lemma in high dimension). Consider the mapping F' : R™ — R™. If there exists
a positive constant L such that

IVE(z) = VEY)|r < Lllz = yll, Yo,y € dom(F), (19)
then the following holds

|F(y) ~ F(a) ~ VE@)(y — )] < vl

Proof. Observe that (19) directly implies the smoothness of each entry Fj:
IVEi(x) = VE(y)l| < [VF(x) = VE)llr < Laflz - yl|

Define
zi(x,y) = Fi(y) — Fi(z) = VFi(2)" (y — 2).
We have
IF(y) — F(x) = VE()(y — 2)| = | Y zi(,)?
i=1
Ly
< Sy - ol
Ly
= 2 mlly - o),
where the inequality follows the descent lemma. O

Lemma 11 (Lipschitz property of multiplication). Suppose f(x) and g(x) are two functions bounded
by Cy and Cy, and are Ly- and L4-Lipschitz continuous, then f(x)g(x) is CyLg + CyL p-Lipschitz
CcoOntinuous.

Proof.

1 (z1)g(er) = f(z2)g(2)ll = [ f(21)g(21) — f@1)g(w2) + f(21)g(22) — f(22)g(22)]
|f

|
< If@O)lllg@r) = g(@2)ll + 1 f (1) — fz2)|llg(z2)]]
< (CtLg+ CyLy)|lx1 — 22|

O

Lemma 12 (invertible property of matrix). If a square matrix A satisfying lim;_, ., At = 0, or
equivalently, |\(A)| < 1, then I — A is invertible.

Proof.
¢ t+1
_ . t_ t t)
I TS o) I o
1=
=1- hm Attt
t—o0
=1
Since I is invertible, by the rank inequality rank(AB) < min(rank(A),rank(B)), I — A and
limy 0 Yr_y A? will be invertible. O

Lemma 13 (mismatch between Markovian sampling and stationary distribution). Consider the
Markov chain:

Ok—2 P 9k7z+1 Ok—1 P 01 P
Sk—z — 7 Qk—z —> Sk—z41 — 7 Qg—z41" " — > Q-1 —> S —> Ak —> Sk41-

Also consider the auxiliary Markov chain with fixed policy:

[ P Ok—= . P Ok —
Sk—z —2 Qf—y —> Sk—241 — Qf—241 " —> ak 1 — Sk —) ak ——> 5k+1-
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622 Let & := (S, g, Sp+1) be sampled from chain 1, and {-:k = (S, ak, Sk+1) be sampled from chain
623 2. Then we have

l\3\>—~

dTV(P(gk S '|9k—Z75k—z+1)aP( S ‘ok 2y Sk— z+1 Z A‘LwHok—m - 0k—z||~

Proof.
drv (P(& € ), P(éx € )

/ ~ ~ ~ ’
/ / P(sp =ds,ar = a,sg+1 =ds') —P(3 = ds,ar = a, 841 = ds’)|
seS JS'ES

= / Z |P(sk = ds,ar, = a) — P(5; = ds,a), = a)|/ P(sgy1 = ds'|sp = ds,ar, = a)
aG.A s'eS
1

2

= / Z |P(sr = ds)my, (a|ds) — P(5 = ds)my,__(alds)|

SacAa

/ Z\P s =ds,ar, = a) — P(5; = ds, a, = a)

SacAa

1
<= / Z |P(s = ds)my, (a|ds) — P(s = ds)my, __(alds)|
2
S acAa
+ 7/ |P(sg = ds)me,__ (a|ds) — P(5; = ds)my,__(a]ds)]
2 sES(;A
1
sES
1
+ 7/ [P(sp = ds) — P(, = ds)| Y _ m,__(alds)
2 sES
acA
1 -
= S0k = Ozl + drv (P(sy € ), P(5) € ). (20)

624 The second term can be bounded as

dry (P(s € -),P(5x € +))

1 -
- /s'es [P(sy, = ds) — P(3), = ds)|
1

= 5/ | Z/ P(sk_1 =ds,ak_1 = a,s = ds') —P(5y_1 = ds,a_1 = a, 8§ = ds’)|
a€A €s

< / / P(sk—1 =ds,ar_1 = a,s = ds') —P(5_1 = ds,a_1 = a, 8 = ds’)|
2 s'ES SES

=dpy (P (fkq €),P(§_1 €)). 2D
625 Combined (20) and (21), we obtain
. . 1
dry (P& € -), P&k € +)) < dpv(P(&k—1 € ), P(§k—1 € 7)) + §|«4\L7r|9k — Ok—2]|-

626 Sum over z — 1 steps, we obtain
z—1

dry (P(& € ), P(é € ) < drv (P(€—z € ), P(Sk—z € ) + % D AL ]|k = Or—||
1 -
=5 D AL Ok — Oz
627 " O
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650

651

D Supporting lemmas

Before proceeding to the analysis of critic variables, we firstly justify the uniqueness of optimal
solution for critic and reward estimator variables. Define the following notations

Agg = E[p(s)(vd(s)" — ¢(s)7)] (22)
A, =Elp(s,a)p(s,a)]

bo,p := E[p(s)7(s,a)]

bo,, := E[p(s,a)7(s,a)],

with expectation taken from s ~ pg(s),a ~ mp,s’ ~ P. The optimal critic and reward estimator
variables given policy 6 will satisfy Ay sw*(6) + b,y = 0; Ao ,A*(8) + bg,, = 0. By Assumption
2, Ap 4 and Ay , are negative definite with largest eigenvalue Ay and A, which ensures the unique
solution w*(f) = _Ae_,}pb(f@? A (0) = —A;;b(,@. Let R, := ’“;\“f, Ry = T;‘\‘ﬁ Then the norm of

optimal solutions will be bounded as ||w*(0)|| < R,,, ||A\*(6)|| < Rx, which justifies the projection
step of the Algorithm 1.

To study the error of critic, we introduce the following notations
51(€.0) = ri(s,a) +7Vo(s') — Va(s)
8(8,0) :=7(s,a) +yVa(s") — Va(s)
8(€,w) = 7(s,0) +70(s')Tw — ¢(s)Tw
6(6,w,\) = p(s,0) A+ 79(s) w — d(s)w, (23)
where we overwrite V., as Vp for simplicity.

For the ease of expression, we further define

ga (& w, N) i= 8(&,w, \)tbgi (s, a’)
gc<§, w) = 0'(&,w)d(s)
,w) = 0(&,w)e(s)
( w) =E W[gc(g, w)]. (24)

We will start with the error of averaged critic parameter first. The following lemma characterizes the
descent of averaged critic variables under i.i.d. sampling.

D.1 Error of critic

We first present several useful lemmas and propositions, which serves as the preliminary for estab-
lishing the approximate descent property of the critic variables’ optimal gap.

Proposition 1 (Lipschitz continuity of w*(6) [32]). Suppose Assumptions 2 and 4 hold, then there
exists a positive constant Ly, such that for any 01,0y € RN%% we have

[w™(61) — w™(62)] < Lel|61 — 02

Lemma 14 (smoothness of stationary distribution). Suppose Assumptions 1, 3, and 4 hold, then for
any 0,0" € RY, there exists a positive constant L, 1 such that

IV k0(s) = Vo ()] < L ]16 - 9'].

The proof of this Lemma consists of two main steps: 1) Derive the expression of the gradient and 2)
establish that the gradient is Lipschitz continuous. For the first part, we follow the main idea in [2].

Proof. For a given policy g, we define the transition probability Py(s|s’) := Y mg(a|s')P(s|s’, a).
By the Assumption 4, there exists a stationary distribution iy (s) which satisfies for all state s

= > po(s') Po(s]s) (25)

s'eS
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653

654

655

656

657

658

659
660

661
662

663

664

665
666

Define the following notations

= [uo(s1), ta(s2), -+, pro(sn)]” RISIx1

( ) [Po(s]s1), Py(s|s2), - ,P9(3|3n)]T RISIX1
P(9) := [Py(s1), Po(s2), -+, Po(sn)] RISIXIS]
Vo :=[Vpg(s1), Vig(s2), -+, Vig(sn)] RoxIS]
VPy(s) :=[VPy(s|s1), VPs(s|s52), -, VPs(s|5n)] R xIS|

Upon taking derivative with respect to 6 on both sides of (25), we have

Ve (s Z Vi (s')Py(s|s") + po(s")VoPo(s|s')
s'eS
= VugPy(s) + VPy(s)ue (26)

(26) can be written in compact form as
Vg = VigP(0) + [VPy(s1)pe, -+ VPs(5n) 0] 27

Therefore, we have
[VPy(s1)po,- -+ s VPy(sn)po]l = Vie(l — P(0))
= V(I — (P(0) — epq)),
where the second inequality is due to Vge = V(uge) = V1 = 0.

We now show that I — (P(6) —epl’) is invertible. The first step is to show lim;_, o (P(6) —eul )t = 0.
Let P, uu represent P(6), j1g for simplicity, we first show (P — ep®)t = P* — P*~leu™ by induction.
Observe that when ¢ = 1, this is trivially satisfied. Suppose the equality holds for ¢ = &, then

(P* ep )k+1 (Pk Pk*leuT)Pi (Pk . Pk*leuT)eluT
— Pk+1 _ Pk_lel,LT —PkCMT +Pk—1(euT)2
— Pk+1 kae,uT,

where the second equality is due to (25) such that eu” P = eu” and the last equality is due to
T
pwre=1.

Therefore, we have
Jim (P(0) = eprg)* = lim (P(0)" — P(0)' " epf) = ey — epy =0,
—00 —00
which together with Lemma 12 justifies that I — (P(6) — eu]) is invertible. Thus, we have

Vg = (I = (P(0) —epg ) [V Pa(s1)pg, -+, VPa(sn) ). (28)

We will utilize Lemma 11 to prove the Lipschitz property of Vyug. We first show the Lipschitz
continuous of the first term. Let A() to represent I — (P(0) — eul'), then we have

IA(01) = A(B2)]| = [|P(61) — P(02) + e(po, — pe,)" |
< 1P(61) = P(02)| + (o, — 1) " |

D 1D (mai(als’) = ma,(als) P(sls’,a)2 + /ISl o, — e

s5,8'€S acA

> (O [(ma, (als') = o, (als)) P(s]s", a)])? + /18]l 0, — o, |
s,8’€S acA

D APL2(6: = 02]2 D P(s]s', a)? + /[S|Ly[|61 — 6|

s’eS seS

ISI(AI L + L) |01 = 62
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689

where the second inequality uses triangle inequality. The last inequality is due to Lipschitz continuous
of the policy specified in Assumption 3, and Lipschitz continuous of tiy implied by Lemma 7.

To see that A=1() is Lipschitz continuous and bounded, observe that
[A7H(61) = A1 (6a)]| = [[ A7 (82)(A(62) — A(6:))A™H (61)]]
< ATHO)IIATH(G1) [ A(82) — A1) ]|
< VISI(AIL: + L) AT @) ATHO0)1602 = 0], (29)

where the first inequality uses Cauchy-Schwartz inequality, and the last inequality uses the Lipschitz
continuous of A(6) in (29). Since || A(8)|| is bounded, || A~1(6)]| is also bounded (due to invertibility),
which justifies that the first term in (28) is Lipschitz continuous and bounded.

We now consider the second term in (28). For any state s

||VP91 (s)lu‘el - VP92 (8)/1,92 ” = ||VP91 (s)(/‘l’al - /1‘92) + (VP91 (8) - VP92 (8))/1,92 ”
< VP, () (1o, — poo)ll + [[(V P, (s) = VPo, (s)) o, |
< ||VP91 (s)||Hp“91 - N92|| + ||VP61 (S) - VP02 (S)H”//'%”

<N Vs, (als') P(sls’,a) || L,]|61 — 62

s'€SacA
+ > > (Vs (als’) — Vg, (als) P(s|s’, a))|
s'€SacA
< S|JA(Cr Ly + L) |61 — 02,
which justifies the Lipschitz continuous of VPy(s)ug. Define B(6) =

[VPy(s1)pg, -+, VPy(sn)pe], we have
IB(61) — B(82)|| < |S1*?|A[(Cr Ly + Lr) |61 — 62

Since Vg = A=1(0)B(0), with A=1(0) and B(0) being Lipschitz continuous and bounded. There-
fore, according to Lemma 11, there exists a positive constant L, ; which satisfies

Vo, — Vo, || < L1601 — 62|
O

Proposition 2 (Lipschitz continuity of Vew*(0) [4]). Suppose Assumptions 1-4 hold, then there
exists a positive constant L, o such that

[Vow™(61) — Vow™ (02)||F < L2

61 — 05]|.

Proof. The proof follows the derivation of Proposition 8 of [4]. However, they make assumption that
1o (s) is Lipschitz continuous, which we have justified in Lemma 14. We present the proof for the
completeness.

We have w*(0) = —A;’(lj)be’(p, where Ay 4 is defined in (22). The Jacobian of w* (@) can be calculated
as

Vow*(0) = =V (A;;b9,¢)
= —Ay s (VoAo.g)Ag 4bo.o — Ag.s(Vobo,s)- (30)
We can utilize Lemma 11 to show the Lipschitz continuity of Vw* (). We have to verify the Lipschitz
continuity and boundedness of A;}b, bo,¢, Vo As,4, and Vgbg .

The Lipschitz continuity and boundedness of A, ;, has been shown in (29. Let by and b represent
bg,.6» bo, 4, We have

|61 — b2l

|E[F(s,a,s")p(s)] — E[r(s,
sup [|r(s, a,s")p(s)[|IP((s,

s,a,s’

< Tmax”P((Saaa Sl € )) - P((55a7§/ € ))”TV
< 2JA|LA (1 +log, k™" + (1 —p) 1)1 — 62],

a,3)o(3)]|l
a,s’ €))—P((5,a,8 €))||rv

IN
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690 where the last inequality follows Lemma 8.

691 We now analyze Vg Ay 4. We first define
A(s,s') = d(s) (v (s') — d(s))",  b(s,a,8") :=1(s,a,8)P(s).

Vodoy=Vo | D no(s)mo(als)P(s'|s,a)Als, ")

= Z [Voug(s)mg(als)P(s'|s,a)A(s,s") + peVema(als)P(s'|s,a)A(s,s")] .

ss By Lemma 14 and Lemma 8, and Assumption 3, ug(s), mg(als), Vaue(s), Vome(a|s) are Lipschitz
o4 continuous and bounded. Therefore, Vg Ay 4 is Lipschitz and bounded.

695 Finally, we analyze Vybg 4 by following the same technique.

Vobg,s = Vo Z po(s)ma(als)P(s'|s,a)b(s,a,s")

s,a,s’

= Z [Voug(s)ma(als)P(s'|s,a)b(s,a,s’) + pa(s)Vema(als)P(s'|s,a)b(s,a,s’)].

s,a,s’

es6 By Lemma 14 and Lemma 8, and Assumption 3, pg(s), mo(als), Vaue(s), Vome(a|s) are Lipschitz
97 continuous and bounded. Thus, Vby 4 is bounded and Lipschitz continuous.

698 We have shown the Lipschitz continuity and boundedness of A;;, bo,¢, VAg 4, and Vgbg 4.
690 Therefore, by applying Lemma 11, we conclude that there exists a positive constant L, » such that
700 Vew*(0) in (30) is L, o-Lipschitz continuous. O

o

701 Lemma 15 (descent of critic’s optimal gap (i.i.d. sampling)). Suppose Assumptions 1-4 hold, with
702 wyy1 generated by Algorithm 1 given wy, and 0y, under i.i.d. sampling, then the following holds

2

Ell@rs1 — @ (Ore)| < (1+4LE ;N SN OR)E|@r1 — w” (01)]

L2, o & : , .
+ (=GN + LECGN?)af + > IELg (Ers whgrs Mer )T
i=1

3D

Ell@r1 — w*(00)lI* < (1 = 22p85)Ellor — w™ (0:)]1 + CF 5z (32)
704 Proof. We begin with the optimality gap of averaged critic variables

r41 = @™ (Ors) 1
= @1 — " (0r) + w* (k) — " (Ors) 1
= @1 = w O + llw (Ok) — & Orr1)|” + 2(@rs1 — w* (1), w" (0) — w* (O41))
< @1 = W (O0)II” + N2LECFai + 2(@hi1 — w*(0k), Vo™ (1) Ok — Or41))
+ 2{@g g1 — W (Ok), w* (Ok) — w* (Ory1) — YV (06)T (0 — Or11)), (33)
705 where the inequality is due to

lw* (0r) — w*(O41)[|* < Lo ||9k — Okt |?,
165 — Ol = Z (&> wir L) Voi (sksap)|* < N*ai.CF, (34)

706 with Cg := CsCly.
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707 The third term in (33) can be bounded as

(@rt1 — w*(Ok), Vo™ (0k)" (O — Ok11))
< l@rr1 —w* @)1V (01)T (0 — i) |

< Ly 2||l@kg1 — w™ (06) |10k — Ot
N
< ZLw,ZQkH‘Dk+1 - W*(9k)||\\92(§k,wi+17>\2+1)||
i=1
N Q
_ * k 7 7 i
< 2Ly sonl|l@kr — w* (0k)]1 + gllga(ﬁk,wm&kﬂ)ll?)? (35)
=1

708 where the second inequality follows Proposition 1, the third inequality uses triangle inequality, and
709 the last inequality uses Young’s inequality.

710 The last term in (33) can be bounded as
E(@p 11— w*(0k),w*(0k) — w* (Or11) — Vo (k)" (O — Ory1))

LZJQ _ * 2
< 27 El|0g+1 — w™ (0r) [||0k+1 — Okl

L2 L2
w,2 - * 2 2 w,2 2
<~ Elloksr =" (007 10k+1 = Oull” + == 110k+1 — Ok
L2, L2,
< ENICZAE|Gpyr — w(0r)]]* + %Nzcgai. (36)

711 The first inequality uses Lemma 10, and the second inequality is induced by Young’s inequality. The
712 last inequality follows (34).

713 Plug (35) and (36) into (33) will yield (31).
714 We now prove (32).

lon1 —w O)1° = I T[@x + Brge(&e @) = [ (00)11?
R..

R,
< @k + Brge(&, @) — w* (0x) ||
= |lox — w* (O[> + BillGe (&, @r)|* + 2BKE[(@r — w* (0k), Ge &k, @r))]
< |k — w*(0k)||* + BRCE + 2Bk @k — w* (Ok), e (Ek, @r))- (37)

715 The first inequality is due to the non-expansiveness of projection to convex set. The last inequality
716 follows

[1e(&, W)l < |r(s,a) + 'YQb(SI)TW - ¢(3)TW| < Tmax + (L +79) Ry, := Cs.

717 Let & ~ pg to represent s ~ fir,,a ~ my(:|s), s ~ P(:|s, a), the last term in (37) can be bounded as
El{wr — w" (0k), ge &k, wr))]
= (@k — W (0k), E[ge(&r, @) — ge(Or, " (0k))])
= Brlor — @ (k) Egpo, [6(5) (70(s') — ()T |0k] (@r — ™ (01)))
= Br(@r — W (Ok), Ag, o (@r — w* (0k)))

< = Ao Bill@n — w (O] (38)
718 Here the first equality is due to critic’s optimality condition ¢.(0,w*(0;)) =
719 B¢y, [Ge(§k,w™(0k))|0k] = 0. The last inequality uses the negative definiteness of Ay, o.
720 Plug (38) into (37) gives us (36). O]

721 The next lemma describes the descent property of averaged critic variables under Markovian sampling.
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733
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736

Lemma 16 (descent of critic’s optimal gap (Markovian sampling)). Under Assumptions 1-4, with
w41 generated by Algorithm 1 given wy, and 0, under Markovian sampling, then the following holds

2

- * 2 2 Lis fo a2 2vm - * 2
Ellopts — ™ (Oer)l” = (L +4LG s Naw + —=Cg N o )E [ w1 — w™ (01)

2

L5 5 Ak al i i i
+ (—=CGN? + LLCGN?)of + 1 > Bl (ks wWhop 1> My DI

2 -
=1

(39)

El|@r+1 — w* (0r)I? < (1 — 22680 E||l@k — w* (0k)|1* + Cky BeBr—zic + CreyQioe 24 Bi- (40)

where C, = 4C2CsZk + C3, Cg, = 4C1CoZx + 2C5CpZ% + Cs, Zx = min{z €
Nt[kp*~! < min{ag, Br, nx}}-

Proof. (39) has already been derived in the proof of i.i.d. sampling setting, please check the derivation
of (31).

We now prove (40). Follow the derivation of (37), we have

Ell@ps1 — w*(06)))* < llow — w*(0c)|” + BRC5 + 2B1E[(wr — w* (0k), Ge(Ek, @r))]

= [lor — w* (Ok)[I” + BECS + 28k E(0k — w* (0k); ge(Ok, O))
+ 2Bk E(@r, — w* (0k), Ge(§ks k) — ge(Ok, k)

< (1= 2Xg85) |0 — w*(0k)|I* + BRCS
+ 2Bk E(0r — W™ (0k); Ge (ks k) — ge(Ok, Ok))-

Here, the last inequality bound the third term using the same technique of (38).

We now bound the last term in (41). By Lemma 17, for any z € N, we have

E(wr — w*(0k), G &k, Ox) — ge(Ok, Ox))

< 1|0k — Ox—- || + CoB|l @ — @zl + C5 Y Ells—m — Op—-|| + Carp™ ™"

z—1

m=0

0 & :
< C1 Y E[0k—nt1 = Ohnl + Co Y Ell@r—ns1 — Drnl

n=1 n=1

z—1 z—m

+ CS Z Z Euekfmfn«kl - kaman + 08502_1

m=0 n=1

z—1 z—m

<2C1Cy Z Q—n + 20205 Z Br—n + C3Cy Z Z Qh—m—n + Cskip® !

(@)

1
<

n=1 n=1 m=0 n=1

2C1Cyzag—, + 2CoCs20k—» + C3Cyz(z — Vag—, + Cgrp” 1,

where the (7) uses triangle inequality, (i¢) uses the non-increasing property of step sizes.

Let 2 = Z := min{z € N¥|kp*~! < min{ay, Bk, nx}}, we have

E{wr, — w*(0k), ge (&> @r) — ge(Or, @)
<2C1CoZx a7y +2C2C5 Zx Br—zyc + C3CoZ5 s 74 + Csti— 7.

Plug (43) into (41) will yield
[@ri1 — w* (01> < (1= 2XgB) [@r — w* (0n)|1> + C3 67
+4C,CoZrc 7, +4C0s5 21 Br— 7, +2C3Co Z% 7, + 2C80%_ 7, -

(41)

(42)

(43)

By defining C, := 4C2CsZk + C2, Ck, = 4C1CyZk + 2C3CpZ% + Cs, we complete the

proof.

26

O



737

740

741

742
743

744

745

746

747

748
749

751

Lemma 17. Consider the sequence generated by Algorithm 1, for any z € N, we have

E(wr — w*(0k), G (Exs Or) — ge(Ok, Wr)) < Ch]|0k — Op .|| + Callor — wr—. ||
z—1

+C3 > [NOk—m — Ok—]| + Csrp™ ",

m=0
where Cy := 4R,Cs| A| L (141log, s~ 4+ (1 —p)~') +2C; Ly, Cy := 4(1+7)R,, +2C5, Cs :=
4R, Cs5|A| L, Cs :=8R,Cs.
Proof. Consider the Markov chain since timestep k — z:

Or—= P Ok—241 Or—1 P Ok P
Sk—z — 7 Qk—z —> Sk—z41 — 7 Qg—z41" " —> Q-1 —> S —> Ak —> Sk+1-

Also consider the auxiliary Markov chain with fixed policy since timestep k — z:

[ P Ok—z -~ Ok—z -~ P o~ Oz . P .

Sk—z — 7 Qk—z =7 Sk—z+41 —2 Qk—z41 """ —> Q-1 —> Sk ——> Ak — Sk+1-
Throughout the proof of this lemma, we will use 0,0 w,o ¢ ,f as shorthand notations of
Ok, Ok—z, Wiy Wr— 2, ks, Ei-

For the ease of expression, define
A€, 0,w) = (w —w*(0),ge(§, w) — ge(0, w)).
Therefore, we have
(W — W™ (Ok), Ge &k k) — ge(Or, wr)) = A1(€,0,0
= A1(§797a}) - Al(€7 9/7(;]) +A1 (ga 9/,(11) - Al(€7 elvw/)
Il 12

+ Al(f? 0/5 (:J/) - A1 (ga 9/7&/) + Al(éa 9/7[1}/) . (44)

I3 Iy

~

I can be expressed as

Il = <‘D - W*(G)agc(&@) - gc(evw» - <(D - w*(ol)vgc(ng) - gc(elvw»
= <‘D - W*(9)7gc(§>w) - gc(evw» - <a) - W*(Q)’gc(&a}) - 90(9/7@»
+ (W (0) —w™(0"),9:(&, @) — g.(¢', @)

(
< o = w* (O)lllge(0', @) — ge(0, @)[| + [|w™(0) — w*(O)[|ge (&, @) — ge (0", D). (45)
The first term can be bounded as

[@ = w* () lge(0”,@) = ge(0, @) < 2Ry [[Bemps [Ge(§, @)] — Egrpiy [Ge (€, D)
<4R, sgp 1Gc(&, @) |drv (1 ® Tp @ P, 1o @ 19 @ P)

< 4ch5dTV(,u/9 ® 7T{9 ® 7)7 Ho @ g & P)
< AR,Cs|A|lLx(1+1og, "+ (1 —p)~")[|0 — 0|, (46)

where the first inequality follows the projection update of each critic step, the third inequality is due
to || (&, )| < Cs, and the last inequality follows Lemma 8.

By the Lipschitz conitinuous of w*(é) proposed in Proposition 1, the second term can be bounded as

lw (0) — w* (01119 (&, @) — ge(0, @) < 2C5 Lo, |10 — 6| (47)

Plug (46) and (47) into (45), we can bound I; as
I < (ARWCS AL (1 + log, k™" + (1 — p) ™) +2C5 L) |0 — /)| (48)
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752 Next we bound I as

Iy = (0 —w™(0'), §e(& @) — ge(0',@)) — (@& — w™(0'), ge (& &) — ge(0', &)
= (@ = w (), §c(& @) — ge(0', @) — (&' = w™(0), Ge(& @) — ge (0, @))
(@ = w(0'), 9e (& @) — Ge(§, &) — g (0", @) + ge (0, 0")).
753 The first two terms can be bounded as
(0—&" g€, @) — ge(0',0)) < 2Cs||w — &' (49)

754 The last term can be bounded as
<‘D/ - W*(G/)v gc(fa ‘D) - gc(&vw/) - gc(gla ‘D) + 96(0/? ‘D/)>
< @ = @™ (@)1(117(8, @) = ge(& @ + llge(0", ) — go (6", @)1)
< 2Ry (19e(&, @) — 3e(§, @) + [lge (0", ") — ge(6", @)]))
< AR, (L+7) @ = '), (50)
755 where the second inequality follows the projection of each critic step. The last inequality is due to
19¢(€, @) = ge(&, @)l = l6(s)(v0(s) T (@ — &) = o(5)" (@ — &)
<llé(s) (@ = &) + ll(s) " (@ — &)
< (T +)|w -]

756  Combine (49) and (50), we can bound I as
I < (4(1 + 7) Ry + 2C5) ||l — &' (51)

757 We bound I3 as
E[I3|6/7 Sk—2+1] = E[Al (gﬂ 9/7(‘:}/) - Al(év 9/5 OT}/)|9l7 Sk:—z-‘rl]
< legp |A1(§79/7@/)| dTV(P(f € '|9/a3k—z+1)7p(£ S '|9l75k—z+1))

< 8R,Csdry (P(§ € 10", sk—211), P(€ € 10, sk—241))
z—1
< 4RWC5|A|L7T Z ||9k—m — Gk,z||. (52)

m=0

758 Here, the second inequality is due to ||A1(€,0",@")|| < |lw' — w*(@)]||]|gc(§,w') — g (6", 0)] <
759 4R, C's, and the last inequality is according to Lemma 13.

760  We now bound I4
E[L|0,&', skso1] = B[AL(§,0/,&)[0, &, 52 41]
< Slglp |AL(&,0,&")|[P(E € 10", sp—11) — por @ o QP

< 8R,Csdry (P(Z € -0, St—241), por @ T9r @ P)
<8R, Csrp 1, (53)
761 where the last inequality follows Lemma 5.
762 Plug (48), (51), (52), and (53) into (44), we get
E[A1(€,0,0)] < (4R, Cs|A|Lx (1 +1log, k7" + (1 — p) ™) + 205 Lo, ) E[|0k — Or—|
+ (41 + )Ry + 2C5)E| @ — wp—z||

z—1
+ (4R, Cs| Al L) Z E|0k—m — Ok— |

m=0

+ (SRwC5)’€pZ_17

763 which completes the proof. O
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764 D.2  Error of reward estimator

765 The analysis for the error of reward estimator is similar to critic. To see this, we only need to change
766 go(&, @) into g,.(&, N) == (r(s,a) — ¢(s,a)T\)¢(s, a) to recover most of the proofs. We provide the
767 reward estimator’s analysis for the completeness. For the ease of discussion, we define

91 (€)= ¢(s,a)(r'(s,a) — ¢(s,a)TN),

9r(&A) = 0(s,a)(7(s,a) — p(s,a)N),

gr(0,A) := Eerps [9-(§, A)]-
768 Note here g (&, \) and g,.(€, \) do not depend on the next state s”. We use ¢ for notational convience.
769 The following lemma is the counter part of Lemma 15 for reward estimator.

770 Lemma 18 (descent of reward estimator’s optimal gap (i.i.d. sampling)). Suppopse Assumptions 1-4
771 hold, with A1 generated by Algorithm 1 given \y, and 0y, under i.i.d. sampling, then the following
772 holds

] 2, ]
EXes1 — X (Org1) > < (1 +4L5 ;Noy + - CiN?0)E|[Ap1 — A (0k) |

3, o , , 4
+ (52 CEN? + IZCEN?)a} + =5 D IBlga (€ Mewr Mes )11

=1
(54)
773
El[Aet1 = A (06)]1* < (1= 2mAg) [ Ak — A (0x) |1 + 17C (55)
774 Proof. We begin with the optimal gap
ka1 = A (Or)|1?
= [[Ae1 = X (Ok) + X (0k) = X (Or1) |2
= [IAer = X012 + [N (k) = A" Orr) P + 20011 = A*(01), X (Bk) = X (O141))
<A1 = X (0| + N?LYCFaf + 2(Ae1 — A" (61), VA" (0)" (O — O141))
+ 2041 = A (01), A" (0) — A (Or41) = VA (01) T (0 — Ox11))
N
< Aerr = X (O6)|% + N?L3CF0f + 205 La2 Y ElAers — A" (0) [IIE[g €k whprs M)
=1

2Nt = A (0k), X (0r) = A" (O1) — VA" ()T (0 — Or1))

N
_ N < " Qg i i i
<A1 = A (ORI + N2 L3Chai + 4ar N L3 5E || A1 — A (05)[° + e Z [ E[ge (&s Wig 15 M)

+ 20 kst — AN (0k), N (0) — X (O11) — VN (0)T (01, — Ok y1))- (56)

775 where the first inequality uses the Lipschitz continuous of A* () and ||0; — 01]|* < N2a;C%. The
776  second inequality uses triangle inequality and the Lemma 2. The last inequality is due to Young’s
777 inequality.

778 The last term in (56) can be bounded as

E(Xep1 — A (0k), A (0k) — X (Ok41) — VA (0)T (01 — Oxq1))

Li,Q * 2
< = N (O0)[10k41 — Ol
L2 L2
< ﬁEIIAkH X (Ol 10r+1 = Oxl® + — Ok
L2 L2
< 22 — X (0| + 2’2 Cial. (57)
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The first inequality uses Lemma 10, and the second inequality is induced by Young’s inequality. Plug
(57) into (56) will yield (54).

We now prove (55)

N = X O 12 = 11 TTOw = medr (& An)) HA* ?
Ry

< | A6 = Mg (Eks M) — )‘*(ek)HQ
<Ak = N O + miall g (ks M) 1P 4 206 B[k — A* (08, G (Eks Ak))]
< Xk = X (O00)|1” + Canp — 20kE[(A + X*(0k), Gr (Sks a, M), (58)

where the last inequality is due to ||g, (€, A\x)|| < |7(s,a) — ©(s,a)TA| < rmax + Ry := Ch.

The last term can be bounded as

E[(Ax — X (0k), Gr (s )] = Ak — X (0k), E[Gr (ks M) — g0 (Or, X (61))])
= (A = X (0k), Egropug, [(sk an)p(sh, ar) | AI (A" (Bk) — Ak))
= Ak = A (0k), Ag, o (A" (01) — M)

Al Ak = A (0017, (59)

where the first equality is according to the optimality condition of reward estimator

Ecg, [0(5,0)(r(s,a) — p(s,a)"X* (6k))] = 0.
Plug (59) into (58) will give us (55), which completes the proof. O
Lemma 19 (descent of reward estimator’s optimal gap (Markovian sampling)). Suppose Assumptions

1-4 hold, with A1 generated by Algorithm 1 given Ay, and 0y, under Markovian sampling, then the
following holds

_ L? _
El[Ae1 = A (Os1)[? < (1 +4L3 ,Nay, ;’2 s N2AR)E[ A1 — X (0r)]|

3, & , , ,
+ (T’C§N2 + L3CiN?)aj + e Z IElge, (ks M1 M )]
i=1

(60)

E[[Agt1 — AN (06) 1> < (1= 2020 | M — N O06) 17 + Creymitie—zic + Creasi—z,c,  (61)

where Ck, = 4CsCxZk + C3, Ck, = 4C5CoZy + 2C7CyZ} + Cs,Zk = min{z €
N+|:‘€p2_1 < min{ak7nk7nk}}'

Proof. Since analysis of (60) does not involve the update of A, it can be directly recovered from
(54).

We now prove (61). Following the derivation of (58), we obtain

Aksr = X O < 1Ak = A (06)17 + O30 + 2mE[(Ak — A" (0, Gr (€5 k)
= A = X (00)11 + CXni + 20k B[Nk — X*(0k), 9r (0K, Ar))]
+ 20k E[(Ax — X (0k), Gr (€ k) — g (Oks Ak)))
< (1= 2X0m0) [ Ak — A (60)]1% + C3ni

+ 20k E[( Ak — X*(0k), G (&, M) — 97 (O, Ak))], (62)

where the last inequality is obatined by (61).

We now bound the last term. By Lemma 20, for any z € N*, we have
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797

798
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801

802

803

804
805

806

807

808
809

810

811

E(A\k — X (0k), r (Eks M) — 9r (O, M)

z—1

< C5E||0 — Op—2 || + CEl|Ar — Ap—- || + C7 Z Ell0k—m — Ok + Csrp™"
m=0

(2)

< @ZEHG;C 1 — O n||+CGZEHAk 1 — Me—n|

n=1 n=1

z—1 z—m

+ CV7 Z Z E”ekfmfnJrl - ekfman + CSKJPZ_l

m=0 n=1

z—1 z—m
< QCrconék n+2C6C)\Z77k nt+CrCo Y > hmon+ Carip™ !
n=1 n=1 m=0 n=1
(74)
< 205Czag_ . + 205Cr2np—» + C7Coz(2 — Vag_. + Csrp® 1, (63)

where the (7) uses triangle inequality, (i7) uses the non-increasing property of step sizes.
Let z = Zg, recall Z := min{z € N*|rkp*~! < min{ag, nx, n}}, we have
E(\k — X (0k), §r (s M) — 9r(0k, Ak))
< 2C5C) Zx -z, +2C6CAZxMi—z, + C1CoZ5c 7, + Cstu— 7, (64)
Plug (64) into (62) will yield
[Akrr = X (O)[17 < (1= 20gmm) A — A (80) 1> + CRui
+4C5CpZi a7, +4CsONZRMh—z,c + 2C1Co Zic 7, + 205k 7,

By defining C, := 4CsC\Zx + C3%, Ck, = 4C5CyZk + 2C7CpZ% + Cs, we complete the
proof.

O
Lemma 20. Consider the sequence generated by Algorithm 1, for any z € N, we have
E[(Ak = A"(0), 9r (&> Ak) = 9r(Ok, Ak))] < Csl0k — Oz | + Col|Ar — Az
z—1
+Cr Y Ok—m — O] + Csrp™ ', (65)
m=0

where C5 := 4R\C\|A|L(1 + log, K14+ (1= p)7 ) + 20\Ly,Cs := 4Ry + 20,07 =
4R,\C)\|A‘L7r, CS = 8R,\C>\.

Proof. Consider the Markov chain since timestep k — z:

P Ok —mt1 Or—1 P P
Skm—>akm—>8k m+1 — Qk—m+1 " —>ak 1—>Sk—>ak—>8k+1

Also consider the auxiliary Markov chain with fixed policy since timestep k — z:

Ok—m P Ok—m  ~ Ok—m P P
Sk—m — Gk—m —* Sk—m+1 — Gk—m+1 """ — Qk—1 —> Sk —> Gk — Sk+41.

Throughout the proof, we will use 6,0", X\, X', £, é to represent Oy, O -, Ay MNo—z, s Ep— 2, TESPEC-
tively.
For the ease of expression, define
Ax(& A, 0) := (A= A7(0),5r (& A) — gr (0, ).

We have
M = A*(0), 9r (Ek, Ak) = 90 (01, A)) = A2 (€, N, 6)

= DNo(§,0,0) — Ag(&0,0') + Ag(E,1,0) — Ag(E, N, 6)

I I
+ Ao (E,N,0) — Ao(E,X,0') + Ao (E,N,0).

13 I4
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I can be expressed as

= (A= X(0),5:(&A) = (0, 2)) = (A= X7(0), 50 (&: ) — g (0, 1))
= (A= X(0),5:(&A) = (0, 2)) — (A = X*(0),3:(§, A) — g0 (0, 1))
+ (N(0) = N (0),3(&,A) — 90 (0", )
< X=X O)lllgr (0", X) = g2 (0, )] + A (0) = X (@) 11 (&, X) — g0 (0" M. (66)

The first term can be bounded as
IA =X (O)[llg-(0", %) = gr(0, M| < 2RA|[Eempir (376, N)] — Bempiy [30 (€, M|
< 4R\ sup 13- (& Mlldrv (1 @ 1 @ P, 1o @ 19 @ P)

< ARNChdry (g @ Ty @ P, g @ m9 @ P)
<ARNCALA| L (1 +log, &1 + (L= p)"H)[10 = &[], (67)

where the first inequality follows the projection update of each lambda step, the third inequality is
due to ||g,(&, A)|| < C,, and the last inequality follows Lemma 8.

The second term can be bounded as
IX“(0) = X013 (&, A) — g (8, M| < 2C5LA]16 — 6| (68)

Plug (67) and (68) into (66), we can bound I; as
< (4R\CAA|L (1 +log, k™" + (1= p) ") +2C5Ly) |16 — 6']]. (69)

Next we bound I as
= (A= X(0),9:(6A) = g: (0, ) = (N = X(0'),3:(&,N) — 9o (0", )
= (A= X(0),5:(6A) = 9o (0, ) = (N = X(60),5:(€, A) — 906, 1))
+ (N =X(0),5:(60) = G0 (&X) = 900", 2) + g0, V).
The first two terms can be bounded as
(A =X,5r(&,X) = gr (8", 1)) < 2C5[|A = X (70)
The last term can be bounded as
N =X(0),5-(6,X) = 3o (&, X) — g (0", ) + g,(0", X))
< A=A @)I1g (€ A) = g (&N + 1lgr (07, ) = g (0, M)
< 2B (19 (6, A) = 9, (& N) | + lg- (0, X) = g0 (¢, M)
<ARMIA =N, (71)
where the second inequality follows the projection of each lambda step. The last inequality is due to
19:-(&, A) = 9o (&, )] = llp(s,a)(e(s,a) (A = X))
< A=

Combine (70) and (71), we can bound 15 as
I, < (4Ry +2C3)||A = V. (72)

‘We bound I5 as
E[Is]0', sp—zt1] = E[As(&, 0", X) — Aa(&,0", X0, 55— 241]
< QSlgp [Ao(&,0", X)) dry (P(E € 10, sp—z41), P(E € [0/, 55—211))

< 8RACxdry (P(€ € 110, 55—211), P(§ € [0, 5k—211))
z—1
< 4R)\C)\|A|L.,r Z ||9k,m — ek,zH. (73)

m=0
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Here, the second inequality is due to || Az (&, 0, M) < [N — X (0)]|[|g-(&,N) — g (0", \)|| <
4R, C), and the last inequality is according to Lemma 13.

‘We now bound 14
E[I4|0/7 ;\/7 Sk+z—1} = E[AQ(éa o', ;\’)W, ;\,7 Sk—z-‘rﬂ
< SLQP 1A2(&,0", N)|P(E €16, Sk—z41) — por @ Tor @ P|

< 8R\Cadry (P(Z € -|0', 51— 211), por @ Tor @ P)
< 8R>\C’,\np271, (74)
where the last inequality follows Lemma 5.
Plug (69), (72), (73), and (74) into (65), we get
E[A2(&,0,N)] < (4RACAA|Lx(1 +1og, 57" + (1= p)7") + 20K LA)E[ 6 — Op— |
+ (4R + 2C)E|Ae — M|

z—1
+4AR\CA ALz Y El|0k—m — O]

m=0

+ 8R\Crrp* 1,
which completes the proof. O
D.3 Consensus error

Lemma 21 (bound of consensus error). Suppose Asssumptions 1 and 5 hold. Let wy, A be the
sequence generated by the algorithm 1, then for k > 1, the following hold

N

P 16NC? 8V NCs||w
3 llok — @l < vl + 2o gp 4 SN Cololle g, as)
i=1
N

PR 16NC? 8V NCA || Aol »
S I Aull2 < ool + OV SR 76)
i=1

where v € [0, 1] is the second largest singular value of W. wy, Ag, are defined as
(wi)” (AT
Wg = , AL = :
(W) )"
Proof. We will prove the bound in (75) for critic variables. The analysis for reward estimator in (76)

follows the same routine. To simplify the notation, we will use g, to represent g’ (&, w§) throughout
the proof of this lemma. We also use e}, to represent the projection error e}, := [| R, (W}, — Brygr) —

; ; _ N i N : . .
(wi —Brygp). Also define gj, ==+ >_;0; ghs €, := % >_;_; €k The corresponding matrix exressions
are

(91)" (ex)”
Gy = JEy = :
(92" (er)"
Then the following equality holds by the update rule of critic variables

Wwy — 8.G Ey, if k dK.=0
wk+1:{ wp — BeGr + By, i mo a7

wi — BrGy + By, otherwise.

Let@:=1— %IIT, then the consensus error can be expressed as [|wy, — 1o} || = [|Qwy | .
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841 We bound the consensus error of critic’s first

N NN
) (@) )
QG = | D llgh — akll < (| D 2llgilI? + 2/lgx 1> < 2V/NCs. (78)
i=1 i=1
N N _ ay | N ‘
IQEK = ([ D et —edll < | D 2leill +2llenl < 4| D 20gil2 +2[1gxl[? < 26:VNCs,
i—1 i=1 i—1
(79

ss2  where (i) is due to ||gi|| < Cs, (i4) is ensured by the convexity of the projection set.

843 We now study the consensus error of critic variables. Let k' = LKLJ x K .. Without loss of generality,
ga4 assume k mod K, # 0. We have )
Quit1 = QWwi — BrQGy + QEy
=WQwy + QG + QE)

k k
=W Quo + > BWH QG + > WHQE, (80)

t=0 t=0
845 where the first equality follows (77). The second equality is due to the doubly stochasticity of matrix
s46 W (see Assumption 5): QW =W — L117W = W — L W11" = WQ. The last equality expands
847 the recursion of the second equation.

s4s Take Frobenius norm on each side of (80) and apply triangle inequality, we get

k k
|Qwitille < [WHwollr + > BlIWF QG r + > W' QEk|r
t=0 t=0

k
< VF|wollF + 425Wk7t\/ﬁc§
t=0
4VNC,
< V¥ ol + D 0% @)

g4 The v in (81) denotes the second largest singular value of W, which satisfies v < 1 as specified by
850 Assumption 5. The second inequality uses (78), (79) and Lemma 9.

851 Take square on each side, we obtain

16N VNCs||w
|Qwii1lF < v**||lwollr + j”y O”FVkﬂk

1-— 1

852 which completes the proof for (75). The proof of (76) follows similar procedure, we leave it as an
853 exercise to reader.

854 O

C? 8
651%
v

ss5  D.4  Error of actor

ss6 Lemma 22. Consider the sequence generated by Algorithm 1, for any z > 1 we have
Eenua, [0(€, 0r)tg; (sk, ak)] — EO(Ek, Ox)tbg; (sn, a )]

z—1
<2Cprp™ '+ Cra > [|0k—m — k2|l + CusllOk — Ok | + Crall6f — 6;_.[,  (82)

m=0
857 where Co := 2Cy|A| Ly, Ci3 := |A|L(logp KP4+ (1—p) HCy+2(1 +7)Ly, Crq :=2Cs5Ly.
858 Proof. Consider the Markov chain since timestep k£ — z:

Ok—2 P Ok— 241 Ok—1 P 0 P
Sk—z =7 QAk—z —7 Sk—z41 — 2 Qk—z41 """ — 7 Ak—1 —> Sk — 7 Ak —7 Sk41-
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859 Also consider the auxiliary Markov chain with fixed policy since timestep k£ — z:

[ P Oz . Ork—» - P o~ Oz . P .
Sk—z = Qk—z —> Sk—z+41 —2 Qk—z41 """ —> Q—1 —> Sk ——> Ak — Sk+1-

geo  Throughout the proof of this lemma, we wil use 1y: to represent 1g: (s, a};) for brevity.
gs1  We define the following notation for the ease of discussion
A3(&,0) == Eepy[0(€,0)109i] — 6(E, 0) 1]
gs2 Then our objective is to bound
E[|[Az(&k; Or)l] Or—-]-
sz We decompose || A3 (&, 01| by applying triangle inequality
A3 (&, Okl < [[A3(Ek, Ok) — As(Ek, Or—2) |

I

4+ |1 A3 &k Or—2) — As(Exy Ok—2) ||

I
+ | A3 (Exy 02| - (83)
N——————

I

8s4 We apply triangle inequality again to bound /; as
Iy < ||6(8k Ok—2)tg; . — 0(&k, O )0;
m
i, 166, 0105 ] — B, _[5(6,01—2)0g; ] (84)

@

85 I {1) can be bounded as

I = |18(k, On—z)bg;_ — O(Ex, 01 )04 |
< N16(&k, Or—z)t0; - — 6(Ek, Ok )0; ||
+ 110(&ks Ox) g — 6(&k, Ok )0 ||
<y (Vo (") = Vo (8) + (Va,_.(s) = Vo, _.(s")[¥_.l
+ 116(&ns Ok )0r - — (& On)p:
S A+ NLy |0k — Ozl + 10(&k, Or)p: - — 6(&ks Ok )tbp |
< (L +7)Lv |10k — Ozl + CsLy16; — O I, (85)

ges where the second last inequality follows the Lipschitz continuous of value function in Lemma 7, and
67 the last inequality uses Lipschitz continuous of ;.

ses [ f) can be bounded as

@ _ Bt 06, 0)00i ] — Eenpg, (08, 05—2)0g; ]l
= [1Eenpo, [6(8, Ou—2)00: ] — Eenpy, _[10(8, Ou—z)hp: |
+ Egropg, [6(,08)0g; — (&, 0k—2)0g: ]l
< |A|L(log, k™ + (1 — p) 1) Col|6r — Or—s||
+ By, [0, 08) ;. — 3(&, 02 )ogy ]|
< [A[L(log, £~ + (1= p)"")Col |0 — b1 |
+ (L4 9Ly [0k — Ok ]| + CsLy 10 — 04|, (86)
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870

871

872

873

874

875

876

877

where the first inequality applies Lemma 8, and the last inequality uses the derivation in (85).
Combine (85) and (86), we have
I < |A|L(log,, K4 (1= p) o0k — Or—2]|
+2(1+ )Ly [l — Ozl +2C5 Ly |10 — 6} .| (87)

‘We now bound I as
E[L] = El|6(Ex, Oh—2)0, . — 6(Eks On—2) 05, __l
< 2812]@ 168, 0k—2)g: _lldrv (P(€x € 10k—2, sk—2), P(Ek € Ok—2, 58—2))

z—1

<2Cy Y |AlL||0k—m — O], (88)

m=0
where the last inequality follows Lemma 13.

I3 can be bounded as
13 = ]E||E§~M6k7z [6<£7 akfz)wlchz] - 5(5197 akfzwék_z)”
< QSlgp 16(€, 0k—2)h, Nl drv(P(E € |0z, 85—2), o, . @ 7o, . @ P)

< 2Cyrp* 1, (89)
where the last inequality follows Lemma 5.
Plug (87), (88), and (89), we have

[Eenpa, [0(6: k) tg; (ks ak)] — E[0(Es Ok )tbg; (ks a )]
z—1
< 2Corp* ™t + 205 Ly |10} — 01| +2Co S |AILa 0k — O]

m=0
+ (JA|L(log, &~ + (1 = p)™1)Co + 2(1 + ) L) |6 — O],

which completes the proof.
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szs E  Proof of main results

s79 E.1 Proof of Theorem 1

ggo In this section, we provide the analysis for i.i.d. sampling. By Lemma 4, we have

L
E[J(Ok+1)] = J(O) > E(VJI(Ok), Or+1 — Ok)] — §H9k+1 K
N . , L& ,
= ZEKVeiJ(@k)ﬁZH —0;)] — 3 Z 1641 — 6317
=1

N N
i i i L i i i
= ZE[O‘k<v0’? J(0r), 9o (Eks Wig1s Akg1))] — gai ZE”ga(fk’ WE41> >‘k+1)||2

=1 =1

N
Qg s i i i
> 3 1SV T O + S Bl (€ g1, Ay

i=1
Ok i i i 29 Lo oo
- ?HVGiJ(ek) — Elga (& wiar, Mg DI — §Nceakv (90)
g1 where the last inequality is due to ||g7, (&, w1, Ay, 1] = ||5(§k,w,i,)\§;)wei (s,a%)|| < CsCy =

ss2  Cp.

g3 For brevity, we will use 1/19; to represent w% (g, al). The gradient bias can be bounded as

1V0: T (Ok) — Elge (Es Wi Mot [ Wi 15 Mg ][I
< 4|V T (0r) — E[8 (4, 0r )]
+4 IIE[(é(Emk)h— 0 (&k, w* (61))) s |17
+4 ||E[(S(§k7W*(9k))Iz_ 0(Eks i) Vs ]
+ 4 |E[(3(érs whi1) — (I;@ka W1y Meg1)) Vo117, o1

n

2

ss4 where the inequality uses |la + b+ ¢ + c[|? < 4a||* + 4]|b||* + 4]|¢||* + 4]|d]||>.
sss  From now on, we will use £ ~ dp to denote s ~ d,,a ~ m(:|s), s’ ~ P for notational simplicity.

gss I reflects the sampling error under perfect value function estimation of critic. It can be bounded as

E[1110k] = [V g: T (0k) — E[5(&k, O )0; [0k] 1
= | Egndy, [6(&, 0100 10k] — B, [8(E, 01 )00: [01]17
< (2 s1£1p 17(s,a) + Vo, (5") — Vo, ()| drv (1, ® T, @ P,ds, & ma, @ P))?

< (zrmaxcwdTV (Mt%’d@k))Q

1
< 1603(10gp K4+ =)2(1 -4,
P

ss7  where the last inequality follows Lemma 6.

sss  Define e := 4C7(log, k™" + 1)?(1 — +?), then I; can be bounded as

I; <degp. (92)
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890
891

892

893

894

895

896
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898

899

The term I, describe the approximation quality of linear function class, it can be bounded as
Iy = |B[(5(¢k, Ok) — 0(En, ™ (1)) 10z 1117
(4) -
< E[|8(Ek, O) — 0(&k, w* (01)) [l [17]
(ié) (72 V. _ T, % 0 Ve _ T % 0 2
VEIY(Vay (sk41) = @(sk41)" w™(0k)) + (Vo (sk) — d(sk)” w™ (6k))[]
(#47)

< %(2]1*3[ ?(Vou (1) = @(st1)Tw" (01))°] + 2E[(V, (s1) — d(s)Tw" (01))°])

(#dd
< 203,(1 +7%)es

93)

where (i) applies triangle inequality and Cauchy Schwarz inequality, (i7) follows Assump—
tion 3, (iii) uses ||a + b||> < 2|ja||* + 2||b||%, and (iiii) follows the definition of €5, =

a0 /By [Virg () = Vi 0y () 2.
I35 can be bounded as
E[Is] = |[E[(5(&k w* (0r)) — 0(Eks wir1))v: I1°
< E[I5(&ksw" (1)) — 6(En wir) Pl 1]
< CRE[ (s + )T (@ (0k) = wiyr) — ¢(s) T (0" (0) = wiyr)I?]
< O 2E[[ye(st1) " (w* () — wip 1) P] + 2E[lo(s1) " (0" (0 — wie1))I*])
< Cy (27 Elll¢(si+0) 1 lw* (k) — wipal*] + 2E[ll¢(s0) 1w (Ok) — wiy1 7))

(4) ) )
< 2031+ 7)][w" (B4) = W | < 4C3 " () — i I ©4)

< 4C¢5

aPP app*

where the last inequality is due to ||¢(s)|| < 1, as specified by Assumption 1.

14 can be bounded as

B[l = ||E[(5(§k’wlic+l) - S(fkawiﬂa Z+1))¢6;‘€ Z+1]
< E[6(k, whopr) — 06k Wi ) llg; 112
< CLE[|7 (s, an) — @(sk, ar) " Ny [P My 1]

I?

vy

< C(E[7 (s, ar) — @(sw, ar) TN (0k) 2] + 2E[lo(sk, ar) T A" (0k) — (sk, k)" Nor [ \ia])

<203l + 202 |\ (0k) — Ny |2 (95)

app

Thus, the gradient bias for ;5 agent can be bounded as
IV F(Ok) — Elga (€, i1, Nes)]I1?
< 1624, + 16C; e, + 16C5 [w* (0k) — wiy 1 [
+ SCwEapp + 801/}||)‘*(9}<?) - 2+1 H2
< 16(eap + Ceapy) + 16C2]10" (0) — w1 [ +8C N (B) = N 2. 96)
where the last inequality follows the definition of €,

Plug (96) into (90) gives us

N
Ak i i i
E[J(Ok+1)] — J(0k) > Z || Vs J(01)|2 + 7EHga(§kvwk+1»>‘k+l)”2
- SCwakEHw (01) = Wigr I = 4CTaRE[N*(0k) — Ny %)
L
— 5N0§a§ — 8(esp + Cleapp) Na. (97)

Consider the Lyapunov function
Vi = —=J(0k) + [[wr — w*(00)1I” + | A — A" (851
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900 The difference between two Lyapunov functions will be

E[Vit1] = E[Vi] = E[J (k)] — E[J(Ok+1)] + Ell@rr1 — w* (Orr1)|” — Ellor — w*(00)]*
+El[ A1 = A (0)II° = Ell A — A" (605)]1*
N

L
Z ||V01 On)II* — 7E||ga(£kvwk+l)H )+ §N092@i +8(esp + Clcapp) Now
- |
+ Y 8CIE|w* (0k) — Wit I* + Ell@rs1 — w (Ors1)|* — Elloy — w™(64)]?
i=1

Is

N
+ ) ACTaRE|N (0) = Nyr |2 + EllMkr = A G0 lI” = B[ X — A (65) 1

i=1
Is
(98)
901 The first two terms of I5 can be bounded as
N
> 8CGakE[w* (6k) — Wrt1 + Dry1 — Wi |I* + Ell@ka — o (01|12
i=1
N
= 3 8C2sE| @1 — wh |2 + BCE |Gt — w0 (00)]2 + El|@ns1 — w0 (Bhsr)?
i=1
16N C? 8V NCs||lw
< 8C3an (1wl + o s gp 4 SNColol
—v 1—v
+8CT e El|wr+1 — w* (1)1 + Ell@r+1 — w* (1)1, (99)
902 where the second equality is due to
N
Z<w*(9k) — Wpo 1, Wh1 — Whpq) = (W (Ok) — @ky1, W1 — Dp1) = 0,
i=1
903 and the last inequality follows the Lemma 21.
904 For the ease of expression, we define
16NC? 8V NCs||w .
My, = SCi(VQkHLUoHF + g B}? + 6” OHFVk/Bk). (100)
1—v 1—-v
905 Plug (100) into (99), we have
I5 < 8CLaE||@pt1 — w* (0k)1 + El|0ks1 — @ (1) ” + arMy,
2 2 Li 2 2 — * 2
< (T+4LE o Nay + 8C,ay, 2’ ;) )E||0gr1 — w (0r)]|
L2 ,CZN? o . , .
+ (+ +L2)ai + 1 Z IElge, (k> Wi, Mo )II® + My, , (101)
i=1

90s where the second inequality follows (31) in Lemma 15.
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907 Let Cy := min{c | 4Li,2]\7ak + SCiak + L‘;QC’gN%zi < cay }. Plug the definition into (101),
908 Wwe get
2 A2

L2 ,C3N
I < (14 Coan)El|ns — w* (0)|* + (2257 + L3)a}

N
923 i i i
T Z IElge, (ks Wh1s Mo )| + My,
i=1

< (14 Coar) (1 = 224 B4 El|@r+1 — w*(0k) 1> + (1 + Coar,)C5 B
12 .C2N?2 N
+( w,2™~0

Qg i i i
S 1200+ S Bl e Ml M, (02)
i=1
909 where the last inequality follows (32) in Lemma 15.

910 By letting By = 9 - (i, We can ensure

( + Cgak)(l — 2/\¢ﬁk) <0
911 Therefore, I5 can be bounded as

LEJ 2092N2 2 2
I5 < (1 + Coa)C3 B + 2 Z IE[ge (ks Whsrs Mo )P + My, + (# + L)
i=1
(103)
912 By applying Lemma 18 and following the similar procedure, we can bound I as
N 2 272
o ; ; ; L3 ,C4N
I < (1+ Croow) O3 + - Y IELg (€ whoyrs Ny )]I1P + M, + (25— + 13)
i=1
(104)
913 with g = C“’ > and
Li 2 ~2 2 Li 2 (? 2
Cio := min{c | 4T’Cgozk +8C au + ’Tak < cay},
16NC} 5  8/NCy|A
My, = 8CF (| Aol r + et I_AH O||F1/kv7k). (105)
914 Plug (103) and (104) into (98), we have
E[Vi1] —E[Vi] < Z ——||v9z (On)I* — *Ellga(fmwm)\\ Z I {ga (8, Wit 1, Ak )]
=1
+ (1 + Coa)C5 B + (1 + Croar)Cmi + (ENCQQ +Cii)a
(Mkl + Mkz)ak + 8(€sp + CifappN)Olk,
N
Z —*Hvet (O0)[17) + (M, + My, ) + 8(esp + Cleapp N )k
232 202 L 2 2
+ (]. + Cgak)C56k + (1 + Cloak)C)\nk + (§NCG + Cll)ak, (106)
2 2 A2 2 2 a72
915 where Cp 1= L‘”’ZSQN + Lm(;eN + L2+ L3.
916 By telescoping (106), we get
2E[¥:] 1 2 §-
LS S w0 < Z0 4 160, + 03y + 2 >0+ M)
k=0 i=1
+ 1+ cgak)c(%@ + 1+ cwak)ciik +(5 Lyez + oo
107)
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917 The third term can be bounded as

5 XK
K Z(Mkl + Mk2)
k=0
16C? K 256N C3
= Tw(HonF-i-H)\oHF ZV2k+ )KZ C3 B + C3ni)
k=1
128/ NC},
+ A ZCstwollpvkﬁk + ;CAHAOHFV M)
2 C
< v ____ v
< iy ol + Dolle) + 7= (G357 + Cn)
128V/NC3
+ Tk 2 (Csllwoll#Br + Call Aol rme)
1
= o(—), 108
(\/F) (108)
918 where we use Zi{ oV § — for the inequality.

ot Plug (108) back into (107) and let ay, = % for some positive constant @, 8, = 2(5\ gy M = Clo 2,
920 we obtain the desired result.

921 E.2 Proof of Theorem 2

922 Following the proof under i.i.d. sampling in (90), we have

E[J (9k+1)]— J(0r)

Z = Vi T (0k) ||2+7||E[9a(€kawk+17)‘k+1)]”2

i i i L
— SV (60) ~ Blgh (€, whyn, Mes I = 5 N (109)
%23 By following the derivation of (91), the gradient bias can be bounded as (crf. ¢p; = 1g; (sk, at))

||V9“](9k) - ]E[gzlz(gkh w}ic+17 )‘2+1)‘w£+17 )‘;;:Jrl] H2

< 4[Voi d (1) — B8 (&, Ox)vbg; ]I
+4 IIE[(5(£k79k)h— 0 (&k, w" (68))) s ]II?
+4 IIE[(S(fmw*(@k))Iz— 0(Es oy g1 |17
+ 4 |E[(3(érs whr1) — (I;(fka W1 Akg1)) Vg ]I, (110)

Iy
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924 We bound I; as

I = [|Vg: J (0k) — E[5(Er, 1) s [61]]1

[
= [[Bendy, [6(€; Ok )01 0k] — E[6(Ex, Ox)tbg; 104]]1

< 2||Egay, [0(8, 0001 16k] — Eempug, [0(6, 01)0g; |04]]|
m
+ 2 || ey [0(€, 0x) g1 |0k] — E[0(Ex, Ox)1g; 104] 12 (111)
@
925 Follow the derivation of (92), we have
1
I < de,,.
926 By Lemma 22, I £2) can be bounded as
z—1
I < (2Cokp™™" + Cr2 Y N0k — Orzl| + Cusl|6h — Ok ]| + Crall O} — 0} |)?
m=0
z—1 z—m .
< (2Corp" " +Chz D Y l0k—m—nt1 = Ol + Ca Z 165—n-+1 = Or—nl + Cia Z 16— — Gien )
m=0 n=1 n=1 n=1
1
< (QCQI{pz_l + C12NCQZ(ZT+)O%7Z + C13NzCooup—, + CMZC@ak,Z)Q
< 16C3R*p** 2 + 205,05 2%a;_, + ACHN?22Chad_, + 403, 2*Chai _,, (112)

927 where the second inequality uses triangle inequality, and the last inequality applies (a +b+c+d)?
928 4a? + 4b% + 4c? + 4d>.

929 Let 2 = Zg. Recall Zx is defined as Zx := min{z € N*|xp*~! < min{ay, B, 7 }}. Then we
930 have

LY < Ci,0f_g,, (113)
st where we define C, := 16C% + 203,02 7% + 4C% N2 Z%C3 + AC3, Z3.Ch.

932 Thus, we have
L <degy+ Criaj_yg, - (114)

933 The bound of Is, I3, and I, follows the analysis under i.i.d. sampling. Plug in (93), (94), and (95)
934 will give us the bound of gradient bias

IVo: F(01) — Elgh &k, wip1, Ay )P
< 16(esp + Cleapp) + 16C [lw™(01) — wi gy I
+ 803;“)\*(91«) = N 1P + 4CK50‘£—ZK'

935 Thus, we have

@ i i i
E[J(0x41)] — J (0k) >Z 5 EIVor T + 5 Elga 6k wh1: Moy
- 8G¢akEuw (61) = i |* — ACTAUEN N (65) = Aoy )

L
— ENcgai —2NCg, 04z, — 8(esp + Coeapp) Nov. (115)

936 Consider the Lyapunov function
Vi 1= —=J (k) + [[@k — w* (00)[1” + | A — A (00)]1*. (116)

42



937 The difference between two Lyapunov functions will be

E[Vi+1] — E[Vi] = E[J(0k)] — E[J (Oks1)] + E[@r1 — w* (O2)|” — Ell@r — w (0) ||
+E[Xerr — A (00)[7 = EAe — A" (05)[I?

<

-

Il
—

g Qg i i
(—7||V9ij(9k)“2 - ?E”ga(fkvwk+1)H2>

2

L
+2NCk, -z, + 5N00204% +8(esp + Cheapp) N,

N
+ 3 8C2UE]w" (61) — iy |? + Ell@rsr — o O |? — Ello — (001
i=1

Is

N
+ ) ACTaEIN (0k) — Moy I” + Bl Akr1 — AT (Org2) 1> = ElAk — X7 (65)]

i=1
Is
(117)
938 The first two terms of I5 can be bounded as
N
> 8CTauElw () — Dkr1 + @1 — Wi |I” + El@ks1 — w* (kg1 I
i=1

I
M=

8C)arEl|wkr1 — wip1 [I* + 8CF arEll@ns1 — w* (0k)[1* + Ellok1 — w* (Os1) 1
1

)

< 8O} kE|[@rs1 — W (06)|* + Bl @1 — w* (Orr1) | + cr My,

L,
< (L+4LE s Nay + 8CEan + 5= CfN? 0 )El|onr — w™ (61|
L2 ,CZN? o o , , .
+ (22— LE)of + 7 Y Il whans Moy )N + 0w, (118)
=1
939 where the equality is due to
N .
Z<w*(9k) — Wkt 1, W1 — Weyr) = (W (Ok) — kg1, W1 — Ogy1) = 0.
1=1

940 The first inequality follows the Lemma 21, with M}, is defined in (100). The last inequality follows
941 (39) in Lemma 16.

L2
s42  Plug (118) into (117), and recall Cg := min{c | 4L2 yNay + 8Ciak + Z52C3N?af < coy}, we
943 get

2 n\72

_ * 2 LE) QCQN 2 2
I < (1+ Comp)El|@rss — o ()2 + (F225 0 + 12)ad

N
Ak i i i
T Z B9k &k Whp1s M) + ar My,
i1

< (1+ Coag) (1 — 224 B )El|@g41 — w* (6|
+ (1 + Coa)(Cr, Bifri—zx + Crs Brti—zy)
L2 ,C3N? & , , ,
+ (% +L2)aq + Ik Z IE[g; &k Whp1s M) + ar My, (119)
i—1

944 where the last inequality follows (40) in Lemma 16.
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a5 By letting 5y, = Q%)ak, we can ensure

(1 + C’gak)(l - 2>\¢ﬁk) <0

946 Therefore, I5 can be bounded as

N 2 22
N o 12 ,C2N
Is < Zk Z IE[gz (&k> Wiyt 2+1)M2 + ap My, + (% + L2)aj
i1
+ (1 + Coa)(Cr, Bifi—2zi + Cry Brti—z, )- (120)

947 By applying Lemma 19 and following the similar procedure, we can bound I as

o B0V
Iy < %S Bl (€ A I + My + (25 4 12)02
=1
+ (14 Croar) (CryMeNi—zi + CraMeQi— 275 )- (121)

sis  with g, = S ®ay, and My, defined in (105).
o Plug (120) and (121) into (117), we have
N an
E[Vi1] —E[Vi] <> —7||V91'J(49k)||2 + (M, + My, ) ok
=1

+ (14 Coo)(Cr, BrBr—zx + Crey Brk—zy )
(1 + Cr00k) (CrsMini— 2z + CryMeCl—z, )
+ (5

NC§ + Cn1)aj + 8(esp + CheappN)ak, (122)

LigcgN2 I LiyzceN

2
950 where we recall Cqq := 5 + L2 + L3.

951 By letting oy, = % for some positive constant &, and recall 8, = 20/\ g, M = QCA Qy;, We can
952 telescope (122) as

K
—ZZEHVW 0] < [ ol +16( sp + CheappN) Z My, + My,)
k=0 :=1 k:

+ (1 + Coay)(Ck, &/kazK + Ck, Bfakfzx)

(1+Cloak)(CK3 77k 2+ Crcy kak Zx)

+(§Ncg+c11)0<k- (123)
953 The third term can be bounded as
16C2 K 256N02
2 S M + M) = 2 (s + ollr) S0 e 93 Z C26% + C3np)
k=0 k=1
128\F02
M=K ZCSHWO”FVk/Bk +ZC>\||)\0||FV )
k=1
166’2 256N C’2
< W(HWOHF +[[XollF) + ﬁ(céﬂk + C3np)
128V/NC3
+ ﬁ(O(SHWOHFﬂk + Cx[[Aoll 77
1
= O(W)» (124)
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K
954 where weuse Y,V

955 Plug (124) back into (123). By noticing Cx, = O(log-1 ), Ck, = O(log® - ) Ck, =
s O(log -1 -),Ck, = O(log® ale) we obtain the desired result.

957 E.3 Proof of Theorem 3

958 Define the update of actor ¢ using the noisy reward as
QZ(Gkvwhl) = 7:2,1{,,.(5/9’ ax) + Wb(sl)TwiH - ¢(5)TW£+1- (125)
959 Following the derivation of (90), we have
N
B Oa] = T06) = D[S IVa: T O + SEIIElgh (e, i )1
i=1
~ %V (0) ~ Blgh (6w )IP) — S NCad (126
960 Similarly to the proof of Theorem 1 and 2, the gradient bias term can be decomposed as as
Vi (0k) — Elgg (&s wis)III” < 411Vos T (Ok) — E[5(Ek, Ok ]|I°
I
+ 4 [[E[(6(&k, Ok) — S(fmw*(@k)))%,ﬂ [
I
+ 4 [E[(0(Er, " (01)) — (Ex, whi)) ]I
I3
+ 4 |[E[(Fr(sk, ar) — Tk, (55, ax)) s ]||° (127)

Iy
961 I1, Is, I3 can be bounded following the derivation of (114), (91), and (96), respectively. Plug these
962 bounds into (127), we have

Ok oy i i * i
E[J(Ok11)] = J(0k) = Z B[V T (01)]” + < Ellga (& wipn)[* = 8CTaREw™ (0k) — wisa |1*)
Y o L
=2 % Chlrk(sks a) = T, (sx.an) |* = 5 NCFog
i=1
—2NCk, 03z, — 8(esp + Coeapp) N (128)
93 Define 7y rc, := [} g, »Th &, |” - The reward bias can be bounded as
N .
> lPksks ar) = 7 g, (5w an) 1> = Q. i, |12
i=1

QW r 0 (sk» an) ||

< V|70 (s, an) |
N
= V25N (17 0 (s ak) — i sk, an)lI” + |17 (58, ax) 1)
i=1
< Z/QKTN(O'Q + rmax) (129)
964 where o is the variance of the reward noise. Let K. = logl, ay and define Cy5 := 02 + 72 .
965 Plug (128) back to (127) we have
Ak i i * i
E[J(641)] — T (1) > Z 5 ElIVor J(00)I + S Elgs 6k win)1* — 8CEaRE|w” (65) — why[1°)

+ 5(015 +CjL)aj — 2NCr, 05, — 8(esp + Coeapp) Novk.
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966 Consider the Lyapunov function
Vi i= —J(0r) + [|wx — w*(0k) ]I
967 The difference between two Lyapunov functions is

N
(677 L i i
E[Vii1] = E[Vi] < Z(—7||V9J(0k)\|2 - 7]E||ga(£k7wk+1)‘|2)
i=1
N
=+ ?Clgai — 2NCK5ai—ZK — 8(€5p =+ C’iaapp)Nak

N
+ ) 8CarE||w* (0k) — w1 I? + Ell@rr1 — @ (Or4)l* — Efl@x — w0 (601

i=1

Is

968 I5 can be bounded by following the derivation of (120). Thus, we have

[Vk+1] — E[Vi]
< Z ||v91 0)? + cwak 2NCr, 0}z, — 8(esp + Coeapp) Novk
(1 + Coak ) (Cr, BeBr—zx + Ckey Brk—zy ) + My, g, (130)
2
960 where Cy := C15 + CZL + LCQN +L2.
970 Telescoping (130), we have
2E[Vo) 2 &
2 o 0 2
- ;;J ;EHW WI? < o= + 166w + CheamN) + 12 I;Mkl + Cigan,

+ (14 Coay)(Ck, &ﬁk—zx + Ck, &ak—zK)-
Qe (677

971 The term % ZkK o My, has been bounded in (124). Let a = % for some positive constant &,

972 P = 26;\9 oy, will yield the desired rate.

o3 F Natural AC variant and its convergence

974 In this section, we propose a natural Actor-Critic variant of Algorithm 1, where the approach of
975 calculating the natural policy graident under the decentralized setting is mainly inspired by [6]. We
976 show that the gradient norm square of such an algorithm will convergence with the optimal sample

977 complexity of 6(6_3). Moreover, the algorithm will converge to the global optimum with the sample

978 complexity of O (¢7%). In the rest of this section, we first explain the update of the algorithm, and
979 then prove its convergence.

9s0 F.1 Decentralized natural Actor-Critic

981 The natural policy gradient (NPG) algorithm [12] can be viewed as a preconditioned policy gradient
982 algorithm, which updates as follow:

9k+1 :Gk —akF(Qk)_1VJ(9k), (131)
983 where F(9) := Esndy, anmo [1/}9(8, a)y(s, a)T} is the Fisher information matrix (FIM).? The

984 natural Actor-Critic (NAC) uses the critic variable to estimate the gradient. The main challenge
e85 for implementing NAC lies in the estimation of the inverse matrix-vector product F'(6x) =1V J(0%),

3Throughout the discussion, we assume that FIM is invertible and thus positive-definite.
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Algorithm 3: Decentralized single-timescale NAC

1: Initialize: Actor parameter 6y, critic parameter wy, reward estimator parameter \o, initial state so, natural
policy gradient estimation hy .
2: fork=0,---, K —1do

3:  Option 1: i.i.d. sampling:
4: Sk N/lek(')ﬂk Nﬂek(~|8k),8k+1 ~’P(~|sk,ak).
5:  Option 2: Markovian sampling:
6: Qg Nﬂ'ek("Sk),SkJrl NP(-|5k,ak).
7:
8:  Periodical consensus: Compute &}, and \i by (4) and (7).
9:
10: fori=0,---, N in parallel do ‘
11: Reward estimator update: Update A}, ; by (8).
12: Critic update: Update wiﬂ by (5).
13: Actor update:
14: Collect N, transition samples based on Markovian/i.i.d sampling.
15: fork' =1,--- ,K, do
16: Estimate Zy/ ,,, Vn € [N,] using (133).
17: Update hy, ;741 by (135).
18: end for
19: Update 65, ; by (136).
20:  end for
21: end for

especially under the decentralized setting. The work [6] proposes to solve the following strongly
convex problem in order to estimate the product in a decentralized way

h(0y) = argmin fy, (h) := %hTF(Gk)h —VJ(6r)Th. (132)
h

Such a problem can be solved by using (stochastic) gradient descent, where the gradient is calculated
by F'(0;)h — V. J(0y). For the centralized setting, the gradient w.r.t. each agent can be approximated

as Nia Do z/;ék(sn, al)e, (sn,an)Th — gt (&n, wit1, A\kt1). However, when considering the
decentralized setting, the term z,, := g, (Sn, an)Th = Zf\;l V5, (8n,an)T R* is not accessible for

each agent. Therefore, to approximate this value, agents compute 2}, 5 := 1) (sn,an)"h’ locally
and then perform the following communication step for K, steps

N
Zhpr =Y W9z, Vn € [Ny, k' =0, K, — 1. (133)

j=1

As we will see, Nz? ., converges to Z, linearly. Thus, the gradient of agent  can be approximated as

N,

~ N <& o .

Vfék(hk,k’) = N E T/’ék (Sma;)zfl,KZ — e (& Wy 15 Aet1)- (134)
@ p=1

Then, each agent ¢ performs the following update for K, steps to estimate the natural policy gradient
direction as

ki1 = Loy, (hi g — 0V £, (hiw)), (135)
where p is a positive constant step size. Since the norm of optimal direction is bounded by C}, :=
Amax (F(8)~1)Cy, we project the vector into a ball of norm C}, for each update. Finally, we perform
the approximate natural policy gradient step as

01 = 0 — arhj, g, - (136)

F.2 Convergence of natural Actor-Critic

In this section, we establish the sample complexity of Algorithm 3. We first introduce an additional
assumption.
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Assumption 6. (invertible FIM) There exists a positive constant \r such that for all policy 0,
Arnin(F(o)) Z /\F~

Assumption 6 ensures that F'(0) is positive definite so that the problem (132) is strongly convex.
Such an assumption is commonly adopted; see [6, 36, 17].

‘We now show the sample complexity of the Algroithm 3 in terms of gradient norm square and the
global optimal gap. We consider the i.i.d. sampling to simplify the proof. We remark that the proof
for Markovian sampling follows the similar analysis, with additional O(log(¢ 1)) error terms caused
by Markov chain mixing.

Theorem 4. Suppose Assumpttons 1-6 hold. Constder the update of Algorithm 3 under i.i.d. sampling.
Let oy, = N, = O(VK), K, =

(’)(log(Kl/Q))7 K. = O(log(K'*)). Then, thefollowmg hold

frng Cgak,g<

1
502
203

fzz]a IV F(60)12] <o(f)+o<gapp+asp> (137)

k=11i=1

K

. 1
§ J(O°) = J(6,) <O <K1/4> + O(Capp + Esp + Eactor)- (138)
k::

Based on Theorem 4, Algorithm 3 needs K = O(e~2) iterations to achieve e-error for gradient norm

square, and thus attains sample complexity of K N, K, = o (673), which matches the best existing
sample complexity of NAC [35, 6]. In terms of the global optimality gap, the algorithm requires

K = O(s7%) iterations to achieve e-error, and thus has KN, K, = O(¢~%) sample complexity.
Such a sample complexity is much worse than the best existing sample complexity of O(e~3) [35, 6].

We now explain the intuition of the gap for the sample complexity. Mimicking the analysis of [6]
allows to establish the following inequality

1 K K N
E;OJ(G*)—E[ ( DD EllVe:J(01)] ]>

k=11i=1

( S5 0k>||>+0( o)

k=11i=1

While our analysis can obtain the iteration complexity of (’)( — ) for | V.J (0r) [|?, we can only achieve

O(4e172) iteration complexity for critic’s error [|wy, — w (Qk) ||l. This is because our algorithm uses
single-timescale update, where the critic’s error inevitably converges slower than that of double-loop
based algorithms which have (’)(\/—%) complexity for the critic’s error at each iteration. Therefore,

the sample complexity in terms of global optimality gap of our single-timescale NAC is dominated
by this critic’s error term, resulting in the final complexity of O(¢~%).

We remark that this sample complexity result is based on a straightforward application of the analysis
of [6], which is designed for double-loop algorithm. Therefore, such a proof technique may not be the

tightest one for our single-timescale NAC (intuitively, the result is not tight). We leave the research
on the improvement of such highly suboptimal results of single-timescale NAC as a future work.

F.3 Proof of Theorem 4

By Lemma 4, we have

E[J(Or+1)] = J(Ok) =} E(Vgi T (01), 0h 11 — Ok) — Z 1641 — OklI?

= EMZ

M-

@
I
-

L
apB(Vgi J(0r), hi) — 5]\/0,%0@
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N
Z akE v@’ )7F(0k)7lgi(£kawlic+l7)‘2+1)>

; —1 i i L
+ BV i J (6 ), By, — F(01) " g (€ i1, M1 )] — §NC;2LOZ§

N

(#4) _ i

= E [k E(F(01) 2V s J(0k), F(01) ™% g% (€ wh 1 Nit1))
=1

' -1 i i L
+ arE(Vgi J (0k), b, — F(0x) ' g4 (Es Wi Meg1)] — 5N02ai

N
Qg Qg - i i i
= Z S IE@)72V0i TP + S IIF (k)™ Bl (€ whin M)
- 7\\F(9k)*“ Vo (0x) = F(0) ™ Elgg (6 i M)

j -1 i i i L
+ axB(Vei J (Ok), hy, — F(0) 19a(€k»wk+17 )\k+1)>] - §N03ai

(le

- Qg - i i i
> Z C2 IV J (0k)]17 + 5 ArlF(O) "Elg}, (s wit1s Mo )12
- 7>\El Vi J (01) — Elgh &k i1, Ay )]
Iy
2 i e i i o Lo oo
— o, Cy |E[hy] — F'(0r) " Elgg (§ks whr1, A )]I1F] — §N0004ka
Iz

(139)

1053 where (i) is due to [|0}, — 0;| < Cj := ApCy. Note that we use hj, to represent hj, z for
1034 simplifying the notation. (i7) uses decomposition of positive definite (PD) matrix. Specifically,
1035 let A be PD matrix, then by eigenvalue decomposition, A = VAV for some orthonormal matrix
1036 V. Define A=1/2 := VAY2VT, then (x, Ay) = (AY/2x, AY/2y) for any = and y. (iii) uses
1037 Ap < A(F(0)) < C’i, V.

1038 [; represents the error of gradient bias, which we have bounded when analyzing the error of AC. By
1039 (96), we have

Iy < 16(esp + Crapp) + 16C7 |w* (01) — wiiy 1> + 8CHIIN* (Bk) — N1 I (140)

1040 To bound I>, we need to bound the error of hj, ;. We start with the gradient bias when estimating
1041 hy . Define Vi g (hg i) := VE(Or)hi s — Elga (&, w,iH, )\};4_1)], then it is easy to see that
1042V fre i (hy 1) is the unbiased gradient of the following problem

1 o
~hi 1o VF(0r) et — Blga (s i1, Migr)]” P

1043 Define the following notation for the ease of expression
Na

. 1 ) ) . ,

Ve (i) 3= < > s (5nr @l ) Ve, (55 an) e — G (S Wh1s Mr)
a =1

V e (i) o= ﬁf; w (B )y Ve (i)

vfk k/ hk‘ k/ = ZU’@@ Sn, G n n K. '(gk’,k’vwli-&-l’)‘;c—&-l)

6fk,k’(hk,k’) = [ka,k/(hk,k/)a e »ka,k/(hk,k/)]-

1044  We now analyze the error at outer-loop iteration k. For notational simplicity, we omit the subscript
1045k for the prementioned notations, e.g. we use V f},(hy), V fir (i), V[ (hyr), V frr (hyr) to
1046 represent the above notations, respectively.
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1049

1050
1051

1052
1053

IV frr (i) = ¥ fer (i )|2 < 2|V fir (o) = ¥ o ()12 42|V fro (i) = ¥ e (R )| -
I3 Iy

I3 can be bounded as

13 - || Z ¢9 snaan ¢0(3n7an)T (6))hk'||2

< Z w Sny an)Po(sn,an)" — F(0))|I2C}

n=1

Eq‘jcﬁ. (141)

IN

1, can be bounded as

N 2

L=>Y

i=1

w@l Sny Ay ( ZNZ 1/)0 S’n;a’n) hk’)
N N,

7NC’¢)ZZHZTLK — Zn,K. [&

i=1n=1

2 N,

_ NG S IQW =z, 02
o
Ng

| A\

Na

NC
2 2 K
<5 §=1 Nz ol < NCLCRv (142)

Let K, = min{c € NT|p¢ <

- 15} then K, = O(log ~ 7). Combine (141) and (142) gives us
— ~ , 4C)CH
IV frr (hir) =V frr (has)||7 < N

‘We now analyze the error of ;. Note that we omit the subscript k£ here for simplifying notation.
Define

h* = argmin fy(h) := KT F(0)h := —E¢p, [ga (€, w, N)] D (143)
h

It is easy to see that the function on the RHS is strongly convex, since F'(6) is positive definite w.r.t.
h. We bound the optimal gap by
Ellhir 11— b*[1> = Ellhw — oV fro (hi) — b7

= E||hw — h*[]* — 20E(hw — h*,V fi (har)) + 0|V fr () |12

< Ellhp — h*|]? = 20E(hi — B,V fro (hr)) + 20E (b — B,V fio (hyr) — ¥ fro (i)

+20* [V fir ()| + 20° |1V fio (o) = ¥ for () |2

—~
.
=

+ 20% |V fro (i) |2 + 20° |1V fio (haer) = ¥ o (i) |12
(i) s
< (1— oAp)El[hg — 1|2 = 20(1 — 20C2) (fur (hir) — )

+ 20E(hyr — h*,V i (hie) =V i (i) + 202V fr (B ) =V for (g ) |2
(i) _ .
< (1= oAp)E|hi — h*||? + 20E(hiy — h*, ¥ i (hi) — V fir (hr))

+ 202V fir (hi) — ¥ for ()|

(idid) 2 . 4 S v
< (U= S0Ble — A7+ (T + 20|V fu (i) = ¥ fu (i) P,

50

< (1= o\p)E|hyy — h*||? = 20(fi (hir) — ) + 20E(hir — B*, ¥V frr (i) — V for ()



1054
1055
1056

1057

1058

1059

1060

1061

1062

1063

1064

where f* is the optimal value of f(h) defined in (143), and the inequality follows the property of
Ap-strongly convex function: f(ha) > f(h1) + (Vf(h1), ha — h2) + ’\7F||h1 — hal|?, Yh1, ha. (i4)

uses the PL condition implied by )\F -strong convexity: f(h*) — f(h) < fﬁHV?(h) %, Vh. (iii)
is due to step size rule that o < 5 c2 . (#iii) applies Young’s inequality.

Use the above induction, we have

. A ) A -
e, — h°[* < (1= £55) 1o - hH2+Zl—QJ (G2 + 26 ey, ) = i, (e, ) P

OAF Kk 4o
<4021 - LEVK. (20 2 =
T 2)ciC

Let K, = min{c € NT[4C2(1 — &F)¢ = (;\va +32)CCE 5=}, then K, = O(log(R-)). Define

Cig 1= ( 169 + &69)040,%, we have

2018

L =E|hk, - h'[I* < . (144)
Plug (140) and (144) back to (139), we have
O‘k —2 2, %% —1(,i i i 2 22018
E[J(Ok+1)] — J(6k) = Z Vo T(0)1” + S Ap I F(0k) " Elg (€rs whr1, M) ]I1” + GG N,

+ 8)‘F (esp + Clieapp) + 8AR CRllw™ (01) — wipr I + 4AF CLIN (B) — N |]
Consider the Lyapunov function
VE = —J(0k) + A5 (lwr — 0 @)1 + [Ae = X*(O5)]%).
The difference of the Lyapunov function is

E[VF] — E[VF] = E[J (k)] — E[J(Ox1)] + Ap' (Ellwisr — w* (1) [* = Ellwr, — w (0x)]I?
+ B[k = A Or) 1* = EAe = A" (00)]1%)

N
f 5 2C
<3 | FCTEITo IO + AR O Blsl 6k A1 + O3
. |
+ 25" D 8CTauEl|w* (0k) — wig * + Ell@rr1 — w* (0x11)|” — By — w*(ok)|2]
Li=1
Is
. | _ )
F AR D ACT R[N (01) = M 1P + ElAksr — A (1) 1> — B[ A — A*(ek)HQ]
Li=1
Is
+ 8N AL (€sp + Clleapp)- (145)

By following the similar procedures through (98) to (106), we can bound I5 and g as

(6%
Iy < (1+clgak)c§5,3+fx 1ZE||F (0) gL (€ whi1s Moy 1P + My, + Caoa

(146)

N
Xf —1 i i i
Is < (14 Corag,)Cn + f/\pl > EIF(0k) " gk (& whoi1s Mo )1 + @k My, + Cazo,
=1

(147)
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where C1g, Cog, Ca1, Cao are some positive constants. Plug (146) and (147) back to (145), we have

2018

E[VF+1] — E[V¥) <Za’“ CEINg T 00 +axC) 5" + 00} + 5 + i)

+ (M]ﬁ + M’fz)ak + 0(651) + 5app)ak]~ (148)
By telescoping (148), we can get

C2V 8C2 (5
—ZZ]EHV@Z (0] < + O(esp + Eapp) + ;f[ +O(ak+ﬂk

k=0 i=1

77k )
(092 Qe

+ 4C¢(Mk1 + ng)

By (108), My, + My, = (’)(i) when K, < O(K1/4). Therefore, let C, & be some positive

constants. Set N, = CV K, oy, = L= ak, B = Cio «y,, we obtain the desired result of
n 22
\/ °

(137).

We now prove (138). Let Eg- denote the expectation over s ~ dy,. ,a ~ g« (-|s). We begin with the
descent of policy gap as

ﬂ

Eg-[log mg, ., (als) — log 7, (als)]
> axRg-[tbg, (s,a) hy] — Lw;k
> arEo- 1o, (5,0)" (e — 1" (0k))] + arBEo-[ve, (s,a)"h*(0)) — A, (s, a)]

Lyas
+ i [4g, (5,0)] = =2 O}

Ci,

2
Lyaj

> —ak0¢‘|hk = h*(0K) || — akvEactor + ar(J(07) — J(0k)) — Cﬁ
By telescoping the above inequality and rearranging terms, we have

K
% (J(67) = J(0)) < %%Eg*[log mic(als) — log mo(als)] + /oot

« L AL
+—ch||hk—h (0n)]l + —Z g
=1
The term ||y, — h*(0k)| < [|he — F(0r) "Elga (ks wit1, Aot || + ||E[ga(fkawk+1a>\k+1] -

F~1V.J(6;)]||. Since by the (144) and (96), these two terms are of order O( 1/2) and O(|wg —

w1 + €app ). respectively, we conclude that ||, — h* (0| is of order (9(||wk —w*(Or) || + capp)-
By following the step size rule as suggested by Theorem 4, we obtain the desired result.
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w77 G Overview of communication complexity

1078 The Table 1 compares related works in terms of sample complexity and communication complexity.

. . Sample Communication
Setting Paper Update Sampling ] ]
complexity complexity

Single-agent AC [32] Two-timescale Markov%an (’z (e73) -
[35] Double-loop Markovian | O(e72) -
[42] Two-timescale | Markovian | Asymptotic -

[38] Two-timescale iid. O(e™3) O(e73)

Decentralized AC [6] Double-loop Markovian O(e72) O(e1)

[11] Double-loop | Markovian | O(s~2) O(e1)

This work | Single-timescale | Markovian O(e72) O(e3)

Table 1: Comparison of some existing sample complexity results. The symbol (7)() hides the
logarithmic terms.

w79 H Policy gradient theorem

1080 The following derivation establishes the policy gradient update of our algorithm.

VESUNMO [VTF" (50)] = ESONNO \Y Z o (0’0|50) Qﬂ'e (807 a’O)‘|

ao

= Esmm Z Vg (ao |30)Q7r9 (80, ao) + Z We(ao|80)VQm, (80, ao)

ao ao
L 1 L 1

Ist term on RHS of (7) 2nd term on RHS of (7)

= Eagmo | > To(0]50)V log m(ao|s0)Qr, (0, ao)]

ao

+ Esgrpo [Zm)(aobo)v (T(So,ao) +VZP(81|507GO)VM(51))

S1

= Esgmpo [Z mg(aolso)V log mg(aolso)Qx, (S0, ao) + v Z o (aols0)VVr,(s1)

ao ao,S1

= E; [Qr,(50,a0)V log mg(ag|so)] + VE- [V Vz, (s1)],

1081 where the (7) in the second inequality refers to equation (7) of [4], and the expectation on T is taken
1082 over a trajectory: ag ~ 7w (+|S0), s1 ~ P(s1]|s0,a0), - -. By expanding the above recursion, we can
1083 derive the policy gradient

VESUNHO [Vﬁs (50)] =E; Z'VkQﬂ'e (Skvak)VIOgﬂdak» sk)

k=0

1
7Es~d7r9 ,arvTg [Qﬂ'g (57 a)v log Uy (a|s)] .

1084
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