A Appendix

1200

Latency per batch on average (ms)

200

1000

800

600

400

—e— FIM-1.3B-fp32
-B- MIM-1.3B-fp32
—&- FIM-1.3B-fp16
-4+ MIM-1.3B-fp16

Latency vs batch size

10

15 20 25
Batch Size

30

Figure 2: Inference latency with batch implementation in A100 GPU with fp32 and fp16 format.

Log Perplexity

Log perplexity vs FLOPs

—e— 350M
-®- 350M-MIM
—&- 1.3B
ﬂ -4+ 1.3B-MIM
N —— 2.7B
'\ 2.7B-MIM
T T (T [(c T
FLOPs

Figure 3: Perplexity vs. FLOP count of MIM compared to left-to-right baselines across model sizes.

A.1 Model training details

To evaluate the effectiveness of “Meet in the Middle” (MIM) pre-training compared to left-to-right
autoregressive and “Fill in the Middle” (FIM) pre-training baselines, we adopt standard transformer-
based autoregressive language models used in previous works for all the models we
trained, varying the number of parameters (350M, 1.3B, 2.7B). Moreover, we replace the use of the

Multi Head Attention

14

with the use of the Multi Query Attention proposed in in



Log perplexity vs Training time

—e— 350M

8r -®- 350M-MIM
—- 1.3B
-4+ 1.3B-MIM
—e— 2.7B

\ 2.7B-MIM

Log Perplexity

0 20 40 60 80 100 120 140
Training time (hours)

Figure 4: Perplexity vs. training time of MIM compared to left-to-right baselines across model sizes.

all the models we trained, allowing faster inference and reducing the memory requirements to store
multiple key and values embeddings that are not shared between attention heads.

For our bidirectional language models, we run the forward model and the backward model in parallel
within a single decoder-only architecture, leveraging bidirectional context explicitly during pre-
training. We use the sentinel token ((2r) to specify that the generation comes from the forward model
and sentinel token (r2[) to specify that generation comes from the backward model.

Regarding optimization, we use the Adam optimizer [KB15] with 3; = 0.9, B2 = 0.95, ¢ = 1078
and a global gradient norm clipping of 1.0. We follow [BMR™20] to decay learning rate to 10% of
its maximum value using cosine annealing with linear warm-up of 2% of the total number of training
steps.

For scaling the training of these models, we employ the open source Megatron-LM framework
[SPP™19] and partition the training across multiple GPUs along the batch dimension. All the training
runs that we conducted use mixed precision training [MNA™ 18] and FlashAttention [DFET22] to
reduce memory requirements and increase training throughput. During pre-training of our models, we
observed that MIM, FIM and autoregressive left-to-right pre-training have similar training wall-clock
time, it is because the forward model and the backward model are executed in parallel in MIM
pre-training. Our largest models of size 2.7B parameters are trained using 128 A100 GPU with 80GB
memory each over 4 days, while the smaller models are trained using 64 A100 GPU with 80GB
memory each over 3.5 days. See Table[I0]for the details of all the training runs.

A.2 Programming language dataset details

Table 9] details the statistics of the datasets of different programming languages we use to pre-train
our code language models in terms of number of tokens and dataset size. We perform some filtering
and deduplication to obtain the final dataset. Our tokenizer is based on the Byte-Pair Encoding
algorithm widely used in previous work [CTJ"21] to directly encode raw bytes with a vocabulary of
size 100257 tokens. We pre-tokenize the text using a special regex pattern that accounts for splitting
on digit and newlines together with the default GPT-2 pre-tokenization [BMR™20].

A.3 Broader Impact

This paper presents “Meet in the Middle”, a novel pretraining paradigm for language models that
brings potentially far-reaching benefits to various domains. Enhanced efficiency in training language

15



Languages Size (GB) Tokens (B)

C 34.3 12.3
C++ 215.6 70.8
Python 252.3 75.5
Java 178.5 46.7
JavaScript 120.1 39.3
TypeScript 21.8 8.6
PHP 30.7 11

Ruby 26.8 10.1
C# 35.3 12.6
Others 40.2 13.3
Total 955.6 300

Table 9: Approximate statistics of the programming language pre-training data

Hyper-parameters 350M 1.3B 2.7B

Number of layers 24 24 32
Number of heads 16 16 32
Dimension per head 64 128 80
Context length 2048 2048 2048
Batch size 786k 1M 1M
Weight decay 0.1 0.1 0.1
Learning rate 3e—4 2e—4 2e—4
Warmup steps 7k 5k ok
Total steps 382k 286k 286k

Table 10: Details of each training run for all of our model specifications.

models could lead to significant advances in the fields of NLP, machine learning, and AI more broadly.
The implications range from cost savings due to more efficient training of these models, reduced
environmental impact because of less computational resources needed, to advancements in diverse
applications of language models such as translation, chatbots, and text generation.

The proposed method’s secondary benefits in the infilling task could also improve several NLP
tasks, such as text summarization and question answering, leading to better usability and overall
performance of Al systems in these areas. This could bring significant value to industries reliant on
these systems, such as customer service, education, and entertainment.

However, as with any improvement in Al language capabilities, there are potential risks and negative
implications. For instance, more powerful language models can also be used for manipulative purposes
such as generating misleading information or deepfake text content, which could exacerbate the
spread of misinformation. Furthermore, as the technology advances, there could be increased societal
pressure to use Al in areas where it may not be the best choice due to other considerations, such as
privacy or job displacement. Therefore, it is crucial to ensure that the development and application of
these advanced models are guided by strong ethical principles and appropriate regulatory oversight.

16



