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ABSTRACT

Large language models (LLMs) simultaneously facilitate the generation and de-
tection of harmful text. Leading LLM developers, such as OpenAI, Meta, and
Google, are driving a paradigm shift in the detection of harmful text, moving from
conventional detectors to fine-tuned LLMs. However, these newly released mod-
els, which require substantial computational and data resources, have not yet been
thoroughly investigated for their effectiveness in this new paradigm. In this work,
we propose JudgeRail, a novel and generic framework that guides open-source
LLMs to adhere to judicial principles during text moderation.Additionally, we in-
troduce a new logit rectification method that accurately interprets

:::
can

::::::
extract an

LLM’s classification intent, rigorously
::::::::
effectively

:
controls its output format, and

significantly accelerates detection. By integrating several top-performing open-
source LLMs into JudgeRail without any fine-tuning and evaluating them against
OpenAI Moderation API, LlamaGuard3, ShieldGemma, and other conventional
moderation solutions across various datasets, including those specifically designed
for jailbreaking LLMs, we demonstrate that JudgeRail can adapt these LLMs to
be competitive with fine-tuned moderation models and significantly outperform
conventional solutions. Moreover, we evaluate all models for detection latency, a
critical yet rarely examined practical aspect, and show that LLMs with JudgeRail
require only 46% to 55% of the time needed by LlamaGuard3 and ShieldGemma.
The generic nature and competitive performance of JudgeRail highlight its poten-
tial for promoting the practicality of LLM-based harmful text detectors. Warning:
some text examples presented in this paper may be offensive to some readers.

1 INTRODUCTION

Harmful text exhibits the inherent flexibility of natural language, making its detection an enduring
research challenge and a critical practical concern. As large language models (LLMs)(Llama Team,
2024; Team et al., 2024; GLM et al., 2024) are rapidly evolving, they can be exploited to generate
a wide array of harmful text, including discriminatory, obscene, and hateful content(Lees et al.,
2022). Beyond these harmful categories, jailbreaking LLMs has expanded the scope of harmful text
to encompass more severe categories such as crime planning, self-harm, and defamation(Inan et al.,
2023; Meta, 2024). Furthermore, the jailbreak prompts used to tame LLMs for generating harmful
content, are themselves emerging as a distinct and concerning category of harmful text.

These threats have not been adequately addressed by conventional text moderation solutions(Lees
et al., 2022; Hartvigsen et al., 2022). For example, we have investigated Perspective API, a commer-
cial tool primarily designed for detecting harmful text, and have listed the harmful content it covers
in Table 1. Some aforementioned newly identified harmful text clearly fall outside these categories.
On the other hand, as detailed in the bottom of Table 1, the latest OpenAI Moderation API moderates
a broader range of harmful text, with a particular focus on malicious instructions designed to jail-
break LLMs. LlamaGuard models (Inan et al., 2023) further expand detection capabilities to include
a more fine-grained taxonomy of harmful content. However, according to public reports(Lees et al.,
2022; Markov et al., 2023), Perspective API requires a large-scale proprietary corpus to train its
toxic content classifiers. Similarly, the OpenAI Moderation API takes approximately 220K training
samples, along with sophisticated data augmentation and label quality control mechanisms. Given
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Table 1: Perspective API, OpenAI Moderation API, and LlamaGuard3 moderation categories.

API/Model Categories
Perspective API Toxicity, Severe toxicity, Identity attack, Insult, Profanity, Threat
OpenAI Hate, Hate/threatening, Harassment, Harassment/threatening, Self-harm
Moderation API Self-harm/instructions, Self-harm/intent,Sexual, Sexual/minors

Violence, Violence/graphic
Violent crimes, Non-violent crimes, Sex-related crimes, Privacy

LlamaGuard3 Child sexual exploitation,Specialized advice, Intellectual property
Suicide & Self-harm , Indiscriminate weapons, Hate, Sexual content
Elections, Code interpreter abuse, Defamation

the scarcity of newly identified harmful text across various categories and the daily emergence of
unknown risks, it has become increasingly evident that training and updating specific moderation
models to generalize across implicit and novel threats is unsustainable.

Recently, leading developers of LLMs, such as Meta and Google, have released moderation models
supported by their respective LLMs. Meta’s LlamaGuard series (Llama Team, 2024) and Google’s
ShieldGemma models (Zeng et al., 2024) have demonstrated improved capabilities for detecting
both common toxic speech and jailbreak prompts. This signals a paradigm shift towards detecting
harmful text using fine-tuned LLMs. Nevertheless, it does not alleviate the demand for large-scale
training data and substantial computational resources. For example, building ShieldGemma (Zeng
et al., 2024) requires more than 130K samples. Additionally, fine-tuning even a moderately sized 7B
model takes four A100 GPUs and approximately five hours of compute time (Han et al., 2024). This
implies that the landscape of text moderation is increasingly dominated by organizations with sub-
stantial computation and data resources. Consequently, it can be challenging for users to customize
these tools to prioritize certain harmful categories, such as discrimination or politically sensitive
content, without relying on the tool providers to adjust their moderation capabilities.

Given that general-purpose LLMs are both the source and target of text content risks, they inherently
possess the capability to recognize harmful text. More importantly, LLMs can infer the harmful cat-
egory to which a piece of text belongs, making them well-suited for moderation when provided
with a well-designed harmful taxonomy. Using these ideas, we propose JudgeRail, a generic and
efficient framework that leverages top-performing open-source LLMs to act as a judge, adhering to
the presumption of innocence principle in moderating harmful text. However, the outputs of LLMs
are often difficult to control, typically requiring complex data parsing or even multi-round process-
ing. This significantly increases detection latency and diminishes their practicality as detectors. To
efficiently extract valid outputs that align with a pre-determined taxonomy, we have designed a logit
rectification method that enables rigorous

:::::::
effective control over the LLM’s output while simultane-

ously accelerating the detection process in JudgeRail. Notably, detection latency, a critical aspect
for practical text moderation, has been rarely discussed in existing literature, yet it is essential for
building effective LLM guardrails (Rebedea et al., 2023; Guardrail, 2024).

We evaluate JudgeRail with various open-source LLMs on diverse harmful text detection datasets
comprising over 34K samples, and compare LLMs equipped with JudgeRail to different BERT-
based detection models, commercial moderation tools, and specialized moderation LLMs. The re-
sults show that LLMs with JudgeRail significantly outperform conventional moderation solutions
while remaining on par with LLM-based moderation tools. Moreover, LLMs with JudgeRail re-
quire only 46% to 55% of the time needed by LlamaGuard3 and ShieldGemma. We also evaluated
4-bit versions of all LLMs, for the first time, revealing that these models consume significantly less
memory with negligible performance degradation. These findings suggest that text moderation tasks
have lower requirements for high-precision computing compared to text generation tasks

::::::
contrast

::::
with

::::::
studies

:::::::::::::::::::::::::::::
Li et al. (2024); Gong et al. (2024)

:::
that

::::
have

::::::::::::
demonstrated

:::
the

::::::
crucial

::::
role

:::
of

:::::
model

:::::::
precision

:::
in

:::::::::
generative

:::::
tasks.

::::::
This

::::::::
differing

::::::
impact

:::::
leads

:::
us

::
to
:::::::

wonder
::::

that
::::::::::::::

decision-making
:::::::::
moderation

:::::
tasks

::::
may

::::
have

:::::::
distinct

:::::::::::
requirements

:::
for

::::::
model

::::::::
precision. Our results shed light on

a new paradigm for efficiently developing practical text moderation tools that can evolve along with
open-source LLMs.

We summarize our contributions below.

• We design a simple yet effective JudgeRail framework for adapting general LLMs to detect harm-
ful text. We thoroughly investigate the impact of different safety taxonomies on detection perfor-
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mance, emphasizing the importance of well-defined label systems and validated labels, as well as
the utility of in-context few-shot calibration.

• We propose a novel logit rectification method that ensures valid output results and significantly re-
duces detection latency. This method is generic and can be readily adapted to various classification
tasks using LLMs.

• We comprehensively evaluate and compare various LLMs using JudgeRail with a wide spectrum
of moderation solutions, including BERT-based detectors, commercial tools like Perspective API
and OpenAI Moderation API, and specialized LLMs such as LlamaGuard and ShieldGemma.
Our results show that open-source LLMs equipped with JudgeRail achieve highly competitive
performance and are significantly faster than specialized moderation LLMs. We also find that
4-bit LLMs exhibit trivial performance degradation but increased latency, highlighting the need
for improved optimization for quantized models.

2 RELATED WORK

2.1 LLM-BASED MODERATION MODELS

Recently, LLMs have been increasingly utilized for content moderation. For example, SplineLLM
(Balestriero et al., 2024) introduces a method to extract a small set of unsupervised

:::::
latent features

from LLMs that characterize users’ prompts, which are then
::
can

::::
then

:::
be used for detecting harmful

text. RigorLLM (Yuan et al., 2024) is a moderation framework that combines an optimized safe
suffix with a fine-tuned LLM and a K-Nearest Neighbor algorithm. Leading LLM providers, such
as Google and Meta, supported by a substantial amount of meticulously collected and labeled data,
as well as

::::::::::
constructed

::::
data,

:::
and

:
significant computational resources, have released their own LLM-

based moderation tools, including ShieldGemma (Zeng et al., 2024) and the LlamaGuard series
(Llama Team, 2024). These recent developments illustrate a trend where LLMs are increasingly
becoming the foundational models in the content moderation domain.

2.2 CONVENTIONAL MODERATION MODELS

Prior to the widespread adoption of LLMs, the prevalent approaches to detecting harmful text in-
volved using extensive datasets to train classifiers based on pre-trained models such as BERT (Devlin
et al., 2019) and Transformer (Vaswani, 2017). For example, ToxRoberta (Hartvigsen et al., 2022)
has demonstrated effectiveness in detecting both explicit and implicit toxic language. It is fine-tuned
from ToxDectRoBERTa (Zhou et al., 2021) using the TOXIGEN dataset. As an effective toxicity
classifier, S-nlp(Logacheva et al., 2022) is a fine-tuned RoBERTa(Liu, 2019) model, trained on the
English samples from three datasets provided by Jigsaw(cjadams et al., 2017a; 2019; Kivlichan et al.,
2020). In addition, several commercial moderation APIs have been developed, including Perspective
API and OpenAI Moderation API. Specifically, Perspective API (Lees et al., 2022) utilizes a sin-
gle compact pre-trained Charformer-based Transformer (Tay et al., 2022) to identify six categories
of toxic speech. OpenAI Moderation API (Markov et al., 2023) is built on a sophisticated system
designed to capture rare harmful content, incorporating a holistic approach that includes content tax-
onomies, labeling instructions, data quality control, and an active learning pipeline.

:::::::::
Moreover,

::::
Some

::::::
studies

::::
have

:::::::::
attempted

::
to

::::::
design

::
a

::::::::
court-like

::::
jury

::::::::::
mechanism

::
to

:::::
assist

:::::
with

::::::
content

::::::::::
moderation,

::::::
aiming

::
to

:::::::
enhance

:::
the

:::::::
fairness

::::
and

::::::::
reliability

:::
of

:::
the

:::::::::
evaluation

:::::::
process,

::::::::
including

:::::
Jury

:::::::
Learning

:::::::::::::::::
(Gordon et al., 2022)

:::
and

::::::
Digital

::::::
Juries

:::::::::::::::::
(Fan & Zhang, 2020)

:
.
::::
Jury

::::::::
Learning

:::::::::
integrates

::::::::
dissenting

:::::
voices

:::
by

::::::::
modeling

::::::::
individual

:::::::::
annotators

:::
and

::::::::
allowing

::::::::::
practitioners

:::
to

:::::
define

:::
the

::::
jury

::::::::::
composition.

::::::
Digital

:::::
Juries

::::::::
proposes

:
a
:::::::::::::
civics-oriented

:::::::
approach

:::
for

:::::::::::
adjudicating

::::::
content

::::::::::
moderation

::::::
cases. De-

spite their effectiveness in identifying explicit toxic text, these specialized models and tools have
faced challenges in moderating more implicit and previously unseen forms of harmful content, such
as diverse jailbreak prompts (Shen et al., 2023).

3 METHODOLOGY

The role-play capability of LLMs has been extensively exploited for conducting jailbreak attacks
(Shen et al., 2024). This capability can be viewed as a double-edged sword, as it can

:
be

::::::::
exploited

::
for

::::::::::
conducting

:::::::
jailbreak

:::::::
attacks

:::::::::::::::
(Shen et al., 2024),

::
it
:
also be harnessed for detecting harmful text

3
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Figure 1: Overview of the JudgeRail framework and its working pipeline.

and countering jailbreak instructions. In our proposed
::
the

:
JudgeRail framework, we assign a judge

role to the integrated LLMs, prompting them to adhere to the presumption of innocence judicial
principle, thereby making precise and fair judgmentswhen moderating text content. In conjunction
with this framework, we introduce a logit rectification method to rigorously extract valid detection
results from the potentially random output of LLMs

::::::::
generated

:::::::
content.

3.1 JUDGERAIL PROMPTING FRAMEWORK

The JudgeRail prompting framework comprises three key components: character description, label
system, and calibration examples, as shown in Figure 1.

Character Description A
:::
An LLM is assigned a judge character to determine whether an input

text is harmful and to classify it into specific harmful categories. Similar to real-world judicial
practice, we instruct the LLM to adhere to the presumption of innocence principle, which can be
considered common knowledge, implying that there is no need for specific fine-tuning of the model
to comprehend and comply with this principle. Moreover, we employ the Chain-of-Thought (CoT)
technique to guide the LLM in identifying explicit and concrete indicators of harmful content before
classifying the text. This structured reasoning process ensures that the model makes informed deci-
sions based on clear evidence of harmful content. The complete prompt is provided in the appendix.

Label System A label system with semantically distinct harmful categories is crucial for enabling
a
::
an

:
LLM to make more precise detection. Unlike conventional supervised detection models, which

learn the correlation between input data and output labels, a
::
an LLM makes decisions by identifying

the semantic relationships between the input text and the output categories. We follow the label
systems of existing commercial moderation tools to design our own. Specifically, for toxic text, we
adopt the label system from either Perspective API (1st row in Table 1) or OpenAI Moderation API
(2nd row in Table 1). For jailbreak prompts, we have selected the label system from LlamaGuard3
(3rd row in Table 1), as the LlamaGuard model series have been shown to be effective in detecting
jailbreak prompts (Inan et al., 2023). We assign a unique character symbol to each category, includ-
ing both harmful and non-harmful ones. This allows for the design of a simple character-matching
mechanism, which guides the LLM to act similarly to a classifier and facilitates the parsing of out-
put results. For example, we assign numerical labels such as 0, 1, 2, and so forth, to categories
“Not Harmful”, “Toxicity”, “Severe Toxicity”, etc., as defined by Perspective API. The label system
serves as a “soft” guide to encourage LLMs to adhere to the desired symbolic output format.

Calibration Examples The in-context learning capabilities of LLMs enable a significant boost
in their generation quality with just a few relevant examples. During our initial exploration, we
observed that most LLMs tend to produce abnormally high false positive rates. To mitigate this
issue, we incorporate in-context examples of falsely classified text into our prompting framework,
thereby reminding the model to avoid overly strict classifications.

3.2 LOGIT RECTIFICATION

The generative nature of LLMs and their conversational interaction style, reinforced by instruc-
tion tuning, make their output inherently prone to deviate from the symbolic labels specified in

4
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the prompting framework. For example, in our experiments with the Llama3-8B-Instruct model
(Llama Team, 2024), it frequently failed to directly generate the classified symbols and instead pro-
duced responses explicitly designed to reject harmful content. This behavior is likely a consequence
of conservative safety alignment.

To effectively extract valid classification symbols from a
::
an

:
LLM’s potentially random output, we

propose to rectify its output logits by nullifying out-of-domain logits. More formally, given a
:
an

LLM M that generates a sequence tokens x = [x1, x2, . . . , x|x|] conditioned on a provided prompt
p, the generation process can be denoted as x ∼ M(· | p). Each token is selected by sampling
from its corresponding logit distribution. For example, the selection of

:::::::
selecting

:
token x1 corre-

sponds to x1 ∼ P (Softmax(l)), where l = {l1, l2, . . . , l|V |} ∈ RV , and V denotes the size of the
vocabulary of

:::::::::
vocabulary

:::
size

:::
of M . As mentioned, we

:::
We

:
only consider logit values from a set

S of indices of pre-determined symbolic tokens
:::::
which

::::::::::
corresponds

:::
to

:::
the

:::::::
selected

::::
label

::::::
system

::
as

:::::
shown

::
in

:::::
Table

:::
4.3. This corresponds to applying a multi-dimensional rectification layer N(·) to l,

and outputting the selected logits as N(l) = {li∈S}, for i = 1, . . . , V . Thus, only the logits in l that
correspond to the tokens in S have their value preserved, while the rest are nullified to zero. The
remaining logits {li∈S} are then normalized to determine the final classification result.

This method is inspired by our hypothesis that a
::
an

:
LLM following an instruction may have its

inclination toward a particular output embedded in the logits associated with its first output token.
To validate this hypothesis, we implemented a simplified prompt, where the model is asked to judge
whether a piece of text is harmful using an open-ended prompt such as “Give me your judgment
result” without specifying the output format. We randomly sampled 100 text samples, consisting
of 50 harmful and 50 harmless samples

:::
ones, from the dataset published by Zheng et al. (Zheng

et al., 2024). We then used the logits of the first output tokens of Gemma2-9B-IT (Team et al., 2024)
across these 100 testing samples to determine their harmfulness, following our logit rectification
method. By comparing the results from the logit rectification with the ground truth labels, we found
that this method resulted in only four false positives and achieved an accuracy rate of 96%.

:::::
Similar

:::::
results

::::
with

::::
500

:::
and

:::::
1000

:::::::
samples

:::
are

::::::::
presented

::
in

:::
the

::::::::
appendix.

:

It is important to note that the benefits of adopting this logit rectification method
:::
logit

::::::::::
rectification

are multi-dimensional. First, it simplifies the output parsing and processingsteps
:::::
output

:::::::::
processing,

as the detection results are transformed to be deterministic. Second, since the processing latency of a
::
an LLM is directly proportional to the number of tokens it generates, logit rectification minimizes the
token count, thereby accelerating the process. Last but not least, we consider this logit rectification
method to be a generic approach for unveiling the implicit intentions of a

::
an LLM. It can be readily

adapted to a variety of LLM-based classification tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We adopted multiple harmful text datasets comprising approximately 35K samples for
evaluation. The HateCheck dataset (Röttger et al., 2020) contains approximately 4K samples, di-
vided into two categories: a harmful category with 2,563 samples and a normal category with 1,165
samples. The HateXplain dataset (He et al., 2024b) is designed to evaluate the explainability of hate
speech classifiers and comprises 20K samples across three categories: hate, offensive, and normal.
The OpenAI moderation dataset(OpenAI Mod) (Markov et al., 2023) consists of 1,680 samples that
adhere to OpenAI’s moderation criteria and include a fine-grained label system with 8 categories.
During the preparation of this work, OpenAI has expanded the number of categories in its Modera-
tion API from 8 to 11, by adding subcategory labels under the existing categories

::::
more

::::::::::
subcategory

:::::
labels. The ToxicChat dataset (Lin et al., 2023) contains approximately

:::::
around

:
10K prompt samples

collected from real user queries, including 9,419 non-toxic prompts and 746 toxic prompts. Among
the toxic prompts

::::
latter, 204 are also categorized as jailbreak prompts. The AdvBench dataset (Zou

et al., 2023) contains 520 harmful instructions as jailbreak prompts.
:::
We

::::
also

:::::::
evaluate

::::::::
JudgeRail

::::
with

:
4
:::::::::::
text-to-image

:::::::
prompt

::::::
datasets

:::::
from

::::
prior

:::::::
research

::::::::::::::
(Qu et al., 2023)

:
.
::::
Due

::
to

:::::
space

::::
limit,

::::
their

::::::::
evaluation

::::::
results

:::
are

:::::::
provided

:::
in

::
the

:::::::::
appendix.

5
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Table 2: Performance of different models across all datasets. JudgeRail LLMs are denoted with the
prefix (JR). For the AdvBench dataset, which contains only harmful samples, we report accuracy
scores. For other datasets, we report F1 scores. The best performances are marked in bold. The
“Latency” column shows the average latency in seconds per sample across all datasets.

Model Dataset LatencyHateCheck HateXplain OpenAI Mod AdvBench ToxicChat
Martin-ha 0.592 0.511 0.504 0.000 0.114 0.001
ToxRoberta 0.839 0.685 0.612 0.210 0.274 0.002
S-nlp 0.812 0.664 0.684 0.019 0.265 0.001
heightPerspective API 0.862 0.683 0.701 0.054 0.250 1.000
OpenAI Mod. API 0.934 0.744 0.790 0.104 0.254 1.030
LlamaGuard3 0.926 0.720 0.791 0.979 0.497 0.159
ShieldGemma 0.892 0.729 0.794 0.612 0.684 0.191
::::::::
SplineLLM

: ::::
0.815

: ::::
0.667

: ::::
0.481

: ::::
0.892

: ::::
0.139

: ::::
0.063

:

height
:::::::::::::
Simple(Gemma2)

: ::::
0.887

: ::::
0.712

: ::::
0.730

: :
/

:
/

::::
7.310

:

:::::::::::::::::
Simple COT(Gemma2)

: ::::
0.905

: ::::
0.711

: ::::
0.693

: :
/

:
/

::::
7.392

:

GLM4(JR) 0.894 0.719 0.714 0.729 0.385 0.102
Mistral0.2(JR) 0.884 0.706 0.676 0.950 0.586 0.088
Gemma2(JR) 0.910 0.746 0.756 0.992 0.584 0.098

JudgeRail Models With JudgeRail, we primarily evaluated three open-source LLMs: Gemma2-
9B-IT(Gemma2) (Team et al., 2024), GLM-4-9B-Chat(GLM4) (GLM et al., 2024), and Mistral-
7B-Instruct-v0.2(Mistral0.2) (Jiang et al., 2023; AI, 2024). The parameter sizes of these selected
models are comparable to those of

:::::
These

:::::::
selected

:::::
LLMs

:::::
have

::::::::::
comparable

::::
size

::
to ShieldGemma-

9B and LlamaGuard3-8B. We have also integrated Llama3-8B-Instruct and Llama3.1-8B-Instruct
(Llama Team, 2024) into JudgeRail for evaluation. However, both Llama3 models exhibited sur-
prisingly poor instruction-following capabilities and overly conservative behaviors.1 Therefore, we
have omitted

::::::
provide

:
their evaluation results in this section and have included them

::
the

::::::::
appendix.

::::::::::
Additionally,

:::
we

:::::
have

::::
also

::::::::
equipped

:::::
GPT4

::::::::::::::::::
(Achiam et al., 2023)

::::
with

::::::::
JudgeRail

::::
and

::::::::
evaluated

::
its

::::::::::
performance

:::
on

::::
three

:::
of

:::
the

:::
five

:::::::
selected

::::::::
datasets,

:::
due

::
to

:::
the

::::
high

:::::
cost.

::::
The

:::::::::
evaluation

:::::
results

:::
are

:::
also

::::::::
presented

:
in the appendix.

Baseline Models We compared JudgeRail models with a spectrum of harmful text detectors that
span conventional, commercial, and LLM-based models. For conventional models, we followed
a prior study (Balestriero et al., 2024) to adopted ToxRoberta (Hartvigsen et al., 2022), Martin-ha
(Martin-ha, 2024), and S-nlp (Logacheva et al., 2022). These models have been reported to achieve
the best performance among conventional toxicity detection models, with the latter two also having
high download records in the Hugging Face community. For commercial tools, we selected Google’s
Perspective API and the OpenAI Moderation API due to their popularity in the literature. For LLM-
based models, we compared our approach with the latest ShieldGemma-9B and LlamaGuard3-8B, as
these are the most recent moderation models built on top-performing LLMs.

:::
We

:::
also

:::::::::
compared

:::
with

:::::::::
SplineLLM

:::::::::::::::::::::
(Balestriero et al., 2023),

::::::
which

::::
uses

:::::
latent

:::::::
features

::::::::
extracted

::::
from

::::::
LLMs

::
to
:::::::

perform
::::::
content

::::::::::
moderation.

:::::::::::
Furthermore,

::
to

:::::::::::
demonstrate

:::
the

::::::::::
effectiveness

:::
of

::::::::
JudgeRail

:::::::
prompts

::::::::
compared

::
to

:::::
simple

::::::::
prompts,

:::
we

:::::::::
employed

:::
two

::::::
simple

::::::
prompt

::::::::
methods

:::::::
(Simple,

::::::::::::
Simple COT)

::::
from

::::::
several

:::::
related

:::::::
studies

:::::::::::::::
(He et al., 2024a)

:::::::::::::::
(Yang et al., 2023)

::
for

:::::::::::
comparisons.

::::::
Given

::::
that

::::
these

:::::::
prompts

:::
are

:::::
aimed

::
at

::::
hate

::::::
speech

:::
and

::::
toxic

:::::::
content,

:::
we

:::::::
selected

:::
the

:::::
three

:::
hate

::::::
speech

::::::
related

::::::::
datasets.

Except for Perspective API and OpenAI Moderation API, all other
::
the

::::
two

:::::
APIs,

:::
all models were

run locally with 4 NVIDIA GeForce RTX 4090 GPUs.

4.2 JUDGERAIL PROMPTING IS UNIVERSALLY EFFECTIVE

We present the performance of all models across all datasets in Table 2. For Perspective API, we
converted its multi-label detection results into binary classifications by assigning the final result as
harmful if any harmful label had a score larger than 0.5, following the evaluation protocol described
in (He et al., 2024b). The OpenAI Moderation API directly outputs a binary detection result along

1When presented with harmful text, Llama3 models tended to respond with refusal replies.
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with fine-grained, multi-dimensional harmful scores. For the JudgeRail models, we adopted the
label systems of Perspective API and LlamaGuard3 for toxic speech datasets and jailbreak prompt
datasets, respectively. We avoided using calibration examples in this section for ablation purposes.

:::::::::::
Commercial

::::::::::
moderation

::::
APIs

:
.
:
As shown in Table 2, all LLM-based models

:::::
except

:::
for

:::::::::
SplineLLM

significantly outperformed conventional toxic speech detection models – namely, Martin-ha,
ToxRoberta, and S-nlp – especially on the jailbreak datasets such as AdvBench and ToxicChat. Note
that the performance of Perspective API on HateCheckand HateXplain,

::::::::::
HateXplain,

::::
and

::::::::
ToxicChat

is comparable to that of conventional models. OpenAI Moderation API achieved competitive per-
formance on the HateCheck, HateXplain, and OpenAI moderation datasets, closely matching LLM-
based models and even achieving the best performance on the HateCheck dataset. Nevertheless,
similar to conventional models, both commercial moderation tools

::::
APIs

:
exhibit very limited perfor-

mance on the jailbreak datasets.

:::::
LLM

::::::::::
moderation

:::::
tools

:
.
:

Among LLM-based models, JudgeRail models achieved performance
comparable to the other two fine-tuned LLMs. Specifically, among

:::::::::
LLM-based

:::::::
models.

::::::::
Between the

two fine-tuned LLMs, LlamaGuard3 exhibited slightly stronger overall performance, while Shield-
Gemma notably outperformed LlamaGuard3

:::::::
perform

::::::
notably

:::::
better on the ToxicChat dataset.

::::
Since

:::::::::
SplineLLM

::
is
::::::
trained

:::
on

:
a
:::::::
specific

:::::
toxic

::::::
dataset

:
–
::::::
Jigsaw

:::::::::::::::::::
cjadams et al. (2017b),

:::
its

:::::::::::
generalization

::::::::::
performance

::
is

::::::
limited

:::::
when

::::::::
compared

::
to
:::::
other

::::::::::
LLM-based

:::::::
models.

For JudgeRail models, Gemma2(JR) demonstrated the best overall performance. This result, com-
bined with ShieldGemma’s top performance on the OpenAI moderation and ToxicChat datasets,
imply that Gemma2-9B has superior capabilities in recognizing harmful text. On the other hand,
Mistral0.2(JR) obtained the worst performance across three toxic speech datasets when compared
to other LLM-based models, while demonstrating highly competitive results on the two jailbreak
datasets. In contrast, GLM4(JR)’s overall performance ranks in the middle; however, its perfor-
mance on the jailbreak datasets is notably worse than that of other JudgeRail models.

::
To

:::::
better

::::::
present

:::
the

::::::::
flexibility

::
of

:::::::::
JudgeRail,

:::
we

:::
also

:::::
equip

::::::
GPT-4

::::
with

::::::::
JudgeRail

::::::::
(denoted

::
as

:::::::::
GPT4(JR))

:::
and

:::::::
evaluate

::
its

:::::::::::
performance.

:::::::
Detailed

::::::
results

:::
are

::::::
shown

::
in

::
the

:::::::::
appendix.

::::::::
GPT4(JR)

:::::::
obtains

:::::::::
comparable

::::::::::
performance

::
to

:::
our

::::::::::::::
best-performing

:::::::::::
Gemma2(JR)

:::
on

:::::::::
AdvBench

:::
and

:::::::
OpenAI

::::::::::
Moderation

:::::::
datasets,

::::
while

::::::::::
performing

:::::
worse

:::
on

:::
the

:::::::::
HateCheck

:::::::
dataset.

:::
By

::::::::
examining

:::
its

:::::::::
mistakenly

::::::::
classified

:::::::
samples,

::
we

::::
find

::::
that,

::::::
while

:::::::::
HateCheck

::::::::
primarily

:::::::
focuses

:::
on

::::
hate

::::::
speech,

:::::
some

:::
of

::
its

::::::::
samples

::::::
labeled

::
as

:::::::
Non-hate

::::
still

:::::::
contain

::::::::
offensive

::::::::
materials.

:::::
This

::::
type

::
of

::::::
content

::
is
:::::

often
::::::::::
recognized

::
as

:::::::
harmful

::
by

::::::
GPT-4.

:::
We

::::
will

::::::
discuss

:::
the

::::::
impact

::
of

:::::::::
inaccurate

:::::
labels

::
in

:::
the

::::::::
following

:::::::
sections.

:

::
An

::::::::::
interesting

::::::::::
observation

:::
is

::::
that,

:::
by

::::::
using

:::
the

::::
two

:::::::::
previously

::::::::::
mentioned

::::::
simple

:::::::::
prompting

:::::::::
techniques,

:::
we

::::
can

:::::
shape

:::
an

:::::
LLM

::
to

::::::
obtain

::::::::::
satisfactory

::::::::::
moderation

:::::::::::
performance.

:::::::::::
Meanwhile,

::::::::
JudgeRail

::::::::
maintains

:::::::
superior

:::::::::::
performance

:::::
across

:::
all

:::::::
datasets.

:

::::::::
Detection

:::::::
latency.

::
The last column of Table 2 presents the detection latency of all models. For

the two commercial APIs, according to their public guidelines (Google, 2024; OpenAI, 2024), Per-
spective API sets a quota limit of an average of 1 query-per-second, whereas OpenAI imposes a
requests-per-minute quota limit for free accounts. During our experiments, we manually measured
their latency and found that both APIs have an average limit of 1 second per query.

As evident from Table 2, the average latency for conventional models was approximately 1 to 2 mil-
liseconds per sample, whereas LLM-based models exhibited an average processing latency of around
100 milliseconds per sample. This significant latency difference suggests that LLM-based modera-
tion solutions face challenges when the required processing bandwidth is high. Among LLM-based
models, JudgeRail models demonstrated significantly lower processing latency compared to Lla-
maGuard3 and ShieldGemma. Mistral0.2(JR) exhibited the fastest processing speed, reducing the
processing time by 45% compared to LlamaGuard3 and by 54% compared to ShieldGemma. Ad-
ditionally, Gemma2(JR) required only 51.3% of the time taken by ShieldGemma to process a text
sample on average.

The above results indicate that our proposed JudgeRail framework effectively adapts various open-
source LLMs into competitive harmful text detection models, while also enhancing practicality
through a significant acceleration in processing speed. In the following section, we further explore
potential improvements by thoroughly examining the key components of our JudgeRail framework.
Unless otherwise specified, we will focus on evaluating Gemma2(JR).
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Figure 2: The distribution of FP errors across different datasets and categories from the adopted
label system

::
as

::::::
shown

::
in

:::::
tabel1. For the HateCheck, HateXplain, and OpenAI moderation datasets,

we use the Perspective API label system, denoting categories as “P1”, “P2”, etc. For ToxicChat, we
use the LlamaGuard3 label system, denoting categories as “S1”, “S2”, etc.
False positive examples collected from HateCheck and HateXplain. Dataset Example 1 Example
2HateCheck You can all go f*** yourselves.I gotchu, my n****.HateXplaineat your di* wait thats
ga*. f***ing twitter done with that f*****.

Table 3: Comparison of F1 and accuracy scores (F1/Acc) between the two label systems.

Model Perspective API Categories OpenAI Moderation API Categories
HateCheck HateXplain OpenAI Mod HateCheck HateXplain OpenAI Mod

GLM4(JR) 0.894/0.843 0.719/0.671 0.714/0.821 0.838/0.793 0.641/0.683 0.664/0.823
Mistral0.2(JR) 0.884/0.826 0.706/0.675 0.676/0.798 0.807/0.744 0.607/0.647 0.700/0.814
Gemma2(JR) 0.910/0.865 0.746/0.685 0.756/0.839 0.927/0.895 0.742/0.690 0.792/0.851

4.3 LABEL SYSTEM AND QUALITY MATTERS

:::
The

:::::::
impact

::
of

::::::::::
ambiguous

:::::
labels

:
. By delving into the performance of JudgeRail models in identi-

fying each harmful category, we observed a significant imbalance in the ratio of false positives (FP)
to false negatives (FN), ranging from 4:1 to 20:1 2. This suggests that the high rate of FP errors is
the primary factor limiting the overall performance of the JudgeRail models.

In Figure 2, we illustrate the distribution of FP errors across different datasets and categories, with
“P4” and “P5” denoting “Insult” and “Profanity”, and “S6” and “S14” representing “Specialized
Advice” and “Code Interpreter Abuse”, respectively. The FP errors observed in ToxicChat are less
severe than those found in toxic speech datasets. We can identify two key factors contributing to
these FP errors: the taxonomic structure of the adopted label system and the quality of the provided
labels. Upon analyzing the FP errors from HateCheck and HateXplain, a considerable number of
samples, as exemplified in Table ??

:
1
:::

in
:::
the

::::::::
appendix, were categorized by Gemma2(JR) under

“Profanity” according to the Perspective API label system, despite being labeled as non-toxic or
not harmful. Therefore, we attribute the discrepancies between the JudgeRail models’ detection
outcomes and the human-annotated “ground-truth” labels to the relatively high degree of semantic
ambiguity inherent in the category designations of “Insult” and “Profanity”.
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Figure 3: Change in the ratios between
FP and FN errors on HateCheck before
and after switching label systems.

We then adopted the label system of OpenAI Modera-
tion API, which has less ambiguous semantic implica-
tions, as shown in Table 1. Table 3 show that, switch-
ing categories led to a decrease in F1 scores. However,
the accuracy scores, which measure the ratio of correctly
classified samples, slightly improved for JudgeRail mod-
els on the HateXplain and OpenAI moderation datasets.
These changes can be attributed to a reduction in FP er-
rors but an increase in FN errors when switching from
the Perspective API’s harmful categories to those of the
OpenAI Moderation API. Figure 3 illustrates the change
in the ratios between FP and FN errors before and after
the label system switch for three JudgeRail LLMs. As

2The specific FP and FN counts are detailed in the appendix.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

expected, we observe an exchange between FP and FN
errors for both GLM4(JR) and Mistral0.2(JR), while FP
errors remain a prominent issue for Gemma2(JR). These results indicate that changing the label
system indeed influences detection performance, as expected. In JudgeRail, this can be adjusted by
simply editing the text segment reserved for the label system. However, both label systems from the
commercial moderation tools still exhibit a degree of ambiguity in their harmful taxonomies.

We further shifted our focus to
:::
The

:::::::
Impact

::
of

:::::
Label

:::::::
Quality

:
.
:::
We

::::::
further

::::
focus

:::
on investigating the

quality of the ground-truth labels provided for the identified false positive (FP )
:::
FP samples. Specif-

ically, we employed GPT-4 to re-label the FP samples collected from Gemma2(JR) on HateCheck.
We asked GPT-4 to determine whether a sample labeled by Gemma2(JR) as “Insult” or “Profanity”
was actually harmful, and used its assessment as the new ground-truth. As shown in Figure 4, the
F1 scores of most evaluated models increase with the GPT-4 re-labeled samples. In particular, all
JudgeRail LLMs exhibit more significant performance improvements, with Gemma2(JR) achieving
the best performance on the HateCheck dataset. These results highlight the importance of label qual-
ityin conducting more accurate evaluations of text moderation models. In addition

:
.
:::::::::::
Additionally,

the OpenAI moderation dataset includes samples with fine-grained labels that align with the taxon-
omy of OpenAI Moderation API. This allowed us to compare the

:::
the

:::::::::
comparison

::
of
:::
the

:
fine-grained

detection accuracy between Gemma2(JR) and OpenAI Moderation API. Specifically, we evaluated
each sample from the OpenAI moderation dataset to determine if its ground-truth label matched the
results of both Gemma2(JR) and OpenAI Moderation API, thereby obtaining the overall accuracy.
The results, presented as the light blue bars in Figure 5, show that Gemma2(JR) achieved better
detection accuracy.

0.5 0.6 0.7 0.8 0.9 1.0
GLM4(JR)

Mistral0.2(JR)
Gemma2(JR)

LlamaGuard3
ShieldGemma

Perspective API
OpenAI Mod. API

ToxRoberta
S-nlp

Martin-ha Original
Fixed

Figure 4: F1 scores before and after re-labeling
with GPT-4 on HateCheck. “Original” denotes the
original F1 scores, while “Fixed” denotes the F1
scores calculated with GPT-4’s labels.
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Figure 5: A comparison of the
::::::::
detection

accuracy in detecting harmful text between
Gemma2 (JR) and the OpenAI Moderation
API (left), and in detecting jailbreak prompts
from the Ultrasafety dataset among Gemma2
(JR) and other capable models (right).

::::::::
Few-shot

::::::::::
calibration.

:
To further improve the detection performance of JudgeRail models, we in-

corporate few-shot calibration examples into the prompting framework, as described in Section 3.1.
Given that FP errors dominate the errors of Gemma2(JR), our primary objective is to introduce
few-shot FP examples to calibrate its detection results.

We constructed a pool of FP samples by collecting such errors from all datasets. We then conducted
multiple sampling iterations, selecting 2, 4, or 8 samples from this pool to include in the JudgeRail
prompting framework as calibration examples. However, since the HateXplain dataset, with 20K
samples, contributes the majority of FP samples to the pool, random sampling fewer than 10 samples
would essentially rely on HateXplain as the primary source for calibration. Therefore, we also
sampled FP examples from each dataset individually and reported the best performance. Table 4
presents the experimental results obtained from the HateCheck and OpenAI moderation datasets 3.
We observe that on most datasets, sampling from individual datasets (“Individual”) is more effective
in reducing either FP or FN errors compared to sampling from the entire FP pool (“All”).

4.4 PERFORMANCE FOR DETECTING ADVANCED JAILBREAK PROMPTS

We further evaluate Gemma2(JR) for its performance in detecting advanced jailbreak prompts,
such as those provided by the UltraSafety dataset (Guo et al., 2024), which includes long jail-

3The results from other datasets are provided in the appendix.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Few-shot calibration performance (FP/FN/F1) for Gemma2(JR). “Base” refers to the case
without

::::::
denotes

::
no

:
calibration. “Individual” indicates sampling from individual dataset, and ”All”

denotes
:::::
denote sampling

:::
FPs

:
from

::::::::
individual

::::
and all FP samples

:::::::
datasets,

::::::::::
respectively.

Dataset Base Individual All
FP FN F1 FP FN F1 FP FN F1

HateCheck 472 31 0.910 414 47 0.916 472 35 0.909
OpenAI Mod 167 103 0.756 170 83 0.776 185 77 0.773

Table 5: Performance of LLM-based detection models evaluated with BF16 and INT4 precision.
We report accuracy scores for AdvBench and F1 scores for other datasets. Latency is measured as
the average time in seconds required to process one sample.

Model Dataset Latency Mem.HateCheck HateXplain OpenAI Mod Advbench ToxicChat
LlamaGuard3-BF16 0.926 0.720 0.791 0.979 0.497 0.159 26G
LlamaGuard3-INT4 0.885 0.689 0.780 0.983 0.489 0.234 9G
ShieldGemma-BF16 0.892 0.729 0.794 0.612 0.684 0.191 31G
ShieldGemma-INT4 0.892 0.728 0.790 0.477 0.675 0.260 12G
Gemma2(JR)-BF16 0.916 0.746 0.776 0.996 0.618 0.094 21G
Gemma2(JR)-INT4 0.920 0.755 0.748 0.992 0.687 0.154 11G

break prompts for role-playing scenarios. The evaluation results for LlamaGuard3, ShieldGemma,
Gemma2(JR), and OpenAI Moderation API are presented in Figure 5. Our observations indicate
that LlamaGuard3 outperformed the other models by a large margin, while Gemma2(JR) achieved
the second-best performance, surpassing ShieldGemma. Given that both Gemma2(JR) and Shield-
Gemma share the same foundation LLM, these results suggest that JudgeRail is effective in stimu-
lating general-purpose LLMs to defend against more sophisticated jailbreak prompts.

4.5 IMPACT OF LOGIT RECTIFICATION AND MODEL PRECISION ON DETECTION LATENCY

In Figure 6, we illustrate the acceleration effect on detection achieved by adopting logit rectification.
Compared to using the “soft” prompt defined in JudgeRail for output regulation, logit rectification
significantly reduces processing latency for all three JudgeRail LLMs by rigorously ensuring a valid
output format.

:::
The

::::::
results

::
in

:::::
Table

::
2
::::
also

:::::
show

::::
that

::::::::
JudgeRail

::::
has

:
a
:::::::::

significant
:::::::::

advantage
::::

over
:::::
simple

:::::::::
prompting

::
in

:::::
terms

:::
of

::::::
latency.

:
To further assess the practicality of JudgeRail, we evaluated

the performance of 4-bit quantized LLMs under our framework, as well as the 4-bit versions of
LlamaGuard3 and ShieldGemma4. We monitored the running memory (as shown in the ”Mem.”
column of Table 5) to validate the success of the configuration.

0.0 0.2 0.4 0.6 0.8 1.0
Latency/s

GLM4

Mistral0.2

Gemma2

0.102

0.088

0.098

0.203

1.037

0.383 w
w/o

Figure 6: Compare latency with (label w) or with-
out (label w/o) logit rectification

As shown in Table 5, most LLMs with 4-bit pre-
cision exhibit limited performance fluctuations
:::::::
maintain

:::::
rather

:::::
stable

:::::::::::
performance across most

datasets. However, ShieldGemma experiences
a noticeable performance degradation on the
AdvBench dataset when transitioning from
BF16 to INT4 precision. In contrast, on the
ToxicChat dataset, Gemma2(JR) with INT4
precision outperforms its BF16 counterpart and
achieves the best performance. These results
indicate that open-source LLMs equipped with
JudgeRail can be effectively deployed at lower
precision while maintaining their detection performance. We also observed that all LLM-based
models experienced nearly twice the latency compared to their BF16 versions. This increase in la-
tency may be attributed to the current limitations in computational efficiency optimizations for 4-bit
quantized models. As lower-bit LLMs are anticipated to be better optimized, the practicality of
JudgeRail can be further boosted.

4We configured all models to their 4-bit versions by setting “load in 4bit=True”.
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5
::::::::::::
LIMITATION

::
To

::::::
ensure

::::
fast

::::::::
detection,

:::
we

::::
use

::
a

::::::::
relatively

::::::
simple

:::::::::
in-context

:::::::
learning

:::::::::::
mechanism,

:::::
which

::::
may

::::
limit

::::::::::
performance

::::::::::::
improvement.

:::
In

:::::
future

:::::
work,

:::
we

::::
will

::::::
explore

:::::
more

:::::::
complex

:::::::::::
mechanisms,

::::
such

::
as

::::::::::::::::::
Retrieval-Augmented

:::::::::
Generation

:::::::
(RAG).

::::::::
Moreover,

:::
we

:::::
have

::::::
shown

:::
that

:::::::
existing

:::::
label

::::::
systems

::::
have

:::::
some

:::::
degree

:::
of

:::::::
semantic

::::::::::
ambiguity,

:::::
which

:::::
limits

::::::::
detection

:::::::::::
performance.

:::::
This

::::::::
motivates

:::
our

:::::
future

::::
work

:::
on

::::::::
designing

:
a
:::::
more

::::::
refined

::::
label

::::::
system

::::
with

:::::::::::::
better-separated

:::::::
semantic

:::::::::::::
representations.

::::::::::
Additionally,

:::::
note

:::
that

:::
the

::::::::
detection

::::::::::
capabilities

::
of

:::::::::
JudgeRail

:::::::::
essentially

::::::
depend

:::
on

::
its

:::::::::
underlying

:::::
LLM.

::::
This

::::::::
indicates

:::
that

::::
one

:::::
needs

::
to
::::::::

perform
:::::
model

::::::::
selection

::::::
instead

:::
of

:::::
using

:::::::
arbitrary

::::::
LLMs.

::::::::
However,

::::::::
JudgeRail

::::
also

:::::::
benefits

::::
from

:::
this

:::
as

::
the

::::::::::
underlying

::::
LLM

:::::::
evolves

::
in

::
its

:::::::::
capability.

:

6 CONCLUSION

This paper introduces the JudgeRail framework, which effectively and efficiently adapts open-source
LLMs into harmful text detectors. To explore and improve the proposed framework, we

::
We

:
have

thoroughly investigated the influence of the label system, in-context few-shot calibration exam-
ples, and a novel logit rectification method. The latter not only ensures rigorous behavior from
the underlying LLMs but also significantly accelerates detection. We have evaluated three open-
source LLMs equipped with JudgeRail, as well as several LLM-based and conventional moderation
tools, on five datasets that encompass toxic speech data and jailbreak prompts. Our experiments
demonstrate that LLM-based moderation models achieve significantly better performance than con-
ventional detectors, while LLMs with JudgeRail are competitive with fine-tuned moderation LLMs.
The evaluation results also show that LLMs with JudgeRail require approximately half the time
needed by LlamaGuard3 and ShieldGemma to process a sample on average.
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