JUDGERAIL: HARNESSING OPEN-SOURCE LLMS FOR
FAST HARMFUL TEXT DETECTION WITH JUDICIAL
PROMPTING AND LOGIT RECTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) simultaneously facilitate the generation and de-
tection of harmful text. Leading LLM developers, such as OpenAl, Meta, and
Google, are driving a paradigm shift in the detection of harmful text, moving from
conventional detectors to fine-tuned LLMs. However, these newly released mod-
els, which require substantial computational and data resources, have not yet been
thoroughly investigated for their effectiveness in this new paradigm. In this work,
we propose JudgeRail, a novel and generic framework that guides open-source
LLMs to adhere to judicial principles during text moderation.Additionally, we in-
troduce a new logit rectification method that aceurately—interprets—can extract an
LLM’s classification intent, rigereusty-effectively controls its output format, and
stenifieantly-accelerates detection. By integrating several top-performing open-
source LLMs into JudgeRail without any fine-tuning and evaluating them against
OpenAl Moderation API, LlamaGuard3, ShieldGemma, and other conventional
moderation solutions across various datasets, including those specifically designed
for jailbreaking LLMs, we demonstrate that JudgeRail can adapt these LLMs to
be competitive with fine-tuned moderation models and significantly outperform
conventional solutions. Moreover, we evaluate all models for detection latency, a
critical yet rarely examined practical aspect, and show that LLMs with JudgeRail
require only 46% to 55% of the time needed by LlamaGuard3 and ShieldGemma.
The generic nature and competitive performance of JudgeRail highlight its poten-
tial for promoting the practicality of LLM-based harmful text detectors. Warning:
some text examples presented in this paper may be offensive to some readers.

1 INTRODUCTION

Harmful text exhibits the inherent flexibility of natural language, making its detection an enduring
research challenge and a critical practical concern. As large language models (LLMs)(Llama Team,
2024; [Team et al.l [2024; |GLM et al., [2024) are rapidly evolving, they can be exploited to generate
a wide array of harmful text, including discriminatory, obscene, and hateful content(Lees et al.,
2022). Beyond these harmful categories, jailbreaking LLMs has expanded the scope of harmful text
to encompass more severe categories such as crime planning, self-harm, and defamation(Inan et al.,
2023} Metal 2024)). Furthermore, the jailbreak prompts used to tame LLMs for generating harmful
content, are themselves emerging as a distinct and concerning category of harmful text.

These threats have not been adequately addressed by conventional text moderation solutions(Lees
et al.,|2022; |Hartvigsen et al.,|2022). For example, we have investigated Perspective API, a commer-
cial tool primarily designed for detecting harmful text, and have listed the harmful content it covers
in Table[I] Some aforementioned newly identified harmful text clearly fall outside these categories.
On the other hand, as detailed in the bottom of Table[T] the latest OpenAI Moderation API moderates
a broader range of harmful text, with a particular focus on malicious instructions designed to jail-
break LLMs. LlamaGuard models (Inan et al.,|2023) further expand detection capabilities to include
a more fine-grained taxonomy of harmful content. However, according to public reports(Lees et al.,
2022; Markov et al.| [2023)), Perspective API requires a large-scale proprietary corpus to train its
toxic content classifiers. Similarly, the OpenAl Moderation API takes approximately 220K training
samples, along with sophisticated data augmentation and label quality control mechanisms. Given

Table 1: Perspective API, OpenAl Moderation API, and LlamaGuard3 moderation categories.

API/Model Categories
Perspective APl Toxicity, Severe_toxicity, Identity _attack, Insult, Profanity, Threat
OpenAl Hate, Hate/threatening, Harassment, Harassment/threatening, Self-harm

Moderation API Self-harm/instructions, Self-harm/intent,Sexual, Sexual/minors
Violence, Violence/graphic
Violent crimes, Non-violent crimes, Sex-related crimes, Privacy
LlamaGuard3 Child sexual exploitation,Specialized advice, Intellectual property
Suicide & Self-harm , Indiscriminate weapons, Hate, Sexual content
Elections, Code interpreter abuse, Defamation

the scarcity of newly identified harmful text across various categories and the daily emergence of
unknown risks, it has become increasingly evident that training and updating specific moderation
models to generalize across implicit and novel threats is unsustainable.

Recently, leading developers of LLMs, such as Meta and Google, have released moderation models
supported by their respective LLMs. Meta’s LlamaGuard series (Llama Team), [2024) and Google’s
ShieldGemma models (Zeng et al., |2024) have demonstrated improved capabilities for detecting
both common toxic speech and jailbreak prompts. This signals a paradigm shift towards detecting
harmful text using fine-tuned LLMs. Nevertheless, it does not alleviate the demand for large-scale
training data and substantial computational resources. For example, building ShieldGemma (Zeng
et al.,2024) requires more than 130K samples. Additionally, fine-tuning even a moderately sized 7B
model takes four A100 GPUs and approximately five hours of compute time (Han et al.,[2024). This
implies that the landscape of text moderation is increasingly dominated by organizations with sub-
stantial computation and data resources. Consequently, it can be challenging for users to customize
these tools to prioritize certain harmful categories, such as discrimination or politically sensitive
content, without relying on the tool providers to adjust their moderation capabilities.

Given that general-purpose LLMs are both the source and target of text content risks, they inherently
possess the capability to recognize harmful text. More importantly, LLMs can infer the harmful cat-
egory to which a piece of text belongs, making them well-suited for moderation when provided
with a well-designed harmful taxonomy. Using these ideas, we propose JudgeRail, a generic and
efficient framework that leverages top-performing open-source LLMs to act as a judge, adhering to
the presumption of innocence principle in moderating harmful text. However, the outputs of LLMs
are often difficult to control, typically requiring complex data parsing or even multi-round process-
ing. This significantly increases detection latency and diminishes their practicality as detectors. To
efficiently extract valid outputs that align with a pre-determined taxonomy, we have designed a logit
rectification method that enables rigerous-effective control over the LLM’s output while simultane-
ously accelerating the detection process in JudgeRail. Notably, detection latency, a critical aspect
for practical text moderation, has been rarely discussed in existing literature, yet it is essential for
building effective LLM guardrails (Rebedea et al.|[2023; \Guardraill, 2024)).

We evaluate JudgeRail with various open-source LLMs on diverse harmful text detection datasets
comprising over 34K samples, and compare LLMs equipped with JudgeRail to different BERT-
based detection models, commercial moderation tools, and specialized moderation LLMs. The re-
sults show that LLMs with JudgeRail significantly outperform conventional moderation solutions
while remaining on par with LLM-based moderation tools. Moreover, LLMs with JudgeRail re-
quire only 46% to 55% of the time needed by LlamaGuard3 and ShieldGemma. We also evaluated
4-bit versions of all LLMs, for the first time, revealing that these models consume significantly less

memory Wlth neghglble performance degradatlon These ﬁndmgs %ﬁgg@%l—l:hﬂl—tﬁ*l—ﬁl@dﬁf—&ﬁ@ﬂ—b&%k%

recision in eneratlve tasks ““This dlfferm impact leads us to wonder that decision-makin

moderation tasks may have distinct requirements for model precision. Our results shed light on
a new paradigm for efficiently developing practical text moderation tools that can evolve along with

open-source LL.Ms.
‘We summarize our contributions below.

* We design a simple yet effective JudgeRail framework for adapting general LLMs to detect harm-
ful text. We thoroughly investigate the impact of different safety taxonomies on detection perfor-

mance, emphasizing the importance of well-defined label systems and validated labels, as well as
the utility of in-context few-shot calibration.

* We propose a novel logit rectification method that ensures valid output results-and significantly re-
duces detection latency. This method is-generic-and-can be readily adapted to various classification
tasks using LLMs.

* We comprehensively evaluate and compare various LLMs using JudgeRail with a wide spectrum
of moderation solutions, including BERT-based detectors, commercial tools like Perspective API
and OpenAl Moderation API, and specialized LLMs such as LlamaGuard and ShieldGemma.
Our results show that open-source LLMs equipped with JudgeRail achieve highly competitive
performance and are significantly faster than specialized moderation LLMs. We also find that
4-bit LLMs exhibit trivial performance degradation but increased latency, highlighting the need
for improved optimization for quantized models.

2 RELATED WORK

2.1 LLM-BASED MODERATION MODELS

Recently, LLMs have been increasingly utilized for content moderation. For example, SplineLLM
(Balestriero et al., [2024) introduces a method to extract a small set of unsupervised-latent features
from LLMs that characterize users’ prompts, which are-then-can then be used for detecting harmful
text. RigorLLM (Yuan et al.| 2024) is a mederation-framework that combines an optimized safe
suffix with a fine-tuned LLM and a K-Nearest Neighbor algorithm. Leading LLM providers, such
as Google and Meta, supported by a substantial amount of meticulously collected-and-labeled-data;
as-wel-as-constructed data, and significant computational resources, have released their own LLM-
based moderation tools, including ShieldGemma (Zeng et al., 2024) and the LlamaGuard series
(Llama Team), [2024). These recent developments illustrate a trend where LLMs are increasingly
becoming the foundational models in the content moderation domain.

2.2 CONVENTIONAL MODERATION MODELS

Prior to the widespread adoption of LLMs, the prevalent approaches to detecting harmful text in-
volved using extensive datasets to train classifiers based on pre-trained models such as BERT (Devlin
et al., 2019) and Transformer (Vaswani, [2017). For example, ToxRoberta (Hartvigsen et al., [2022)
has demonstrated effectiveness in detecting both explicit and implicit toxic language. It is fine-tuned
from ToxDectRoBERTa (Zhou et al.l [2021) using the TOXIGEN dataset. As an effective toxicity
classifier, S-nlp(Logacheva et al., [2022) is a fine-tuned RoBERTa(Liul |2019) model, trained on the
English samples from three datasets provided by Jigsaw(cjadams et al.,[2017a;2019; |Kivlichan et al.,
2020). In addition, several commercial moderation APIs have been developed, including Perspective
API and OpenAl Moderation API. Specifically, Perspective API (Lees et al.l |2022) utilizes a sin-
gle compact pre-trained Charformer-based Transformer (Tay et al.| 2022)) to identify six categories
of toxic speech. OpenAl Moderation API (Markov et al.l [2023) is built on a sophisticated system
designed to capture rare harmful content, incorporating a holistic approach that includes content tax-

onomies, labeling instructions, data quality control, and an active learning pipeline. Moreover, Some

studies have attempted to design a court-like jury mechanism to assist with content moderation,
aiming to enhance the fairness and reliability of the evaluation process, including Jury Learning
(Gordon et al.,[2022) and Digital Juries (Fan & Zhang, [2020). Jury Learning integrates dissenting
voices by modeling individual annotators and allowing practitioners to define the jury composition.
Digital Juries proposes a civics-oriented approach for adjudicating content moderation cases. De-

spite their effectiveness in identifying explicit toxic text, these specialized models and tools have
faced challenges in moderating more implicit and previously unseen forms of harmful content, such
as diverse jailbreak prompts (Shen et al., [2023]).

3 METHODOLOGY

The role-play capability of LLMs has-been—extensively-exploited-for-conductingjailbreak-attacks
{Shen-etak]2024)—This-eapability-can be viewed as a double-edged sword, as it can be exploited

for conducting jailbreak attacks (Shen et al.,|2024), it also be harnessed for detecting harmful text

g Harmful (JudgeRail Framework W Result

(_.\ -
Content PROMPT € LLM h Logits Persp. | [OpenAl
I'm thinking about 1. Character Description: You |E| - (=) Toxicity Hate
suicide... I've been q o 7 Severe | Self-harm
will act as an elite judge... % e
thinking about S Juce l]\i" g Toxicity | | /intent
¢ it -Label System: Mistralv0.2-BF16/INT4 .
:‘}“-‘” to t‘:" :‘ and OPENAI PERSPECTIVE | P Threat | Sexual
1€ one that seems T Q ST Q@ ~ I —

LABELS LABELS Gemma2-BF16/INT4 7 e e
the most painless is 3. Calibration Examples: Here % e Identity || Harass
to are some examples | GLM4BFIGINT4 ttack et

) are some examples:) Profanity| | Viol
[From Openai Hello rolanityl | violence
dataset Logit Rectification P) Insult || e

.

Figure 1: Overview of the JudgeRail framework and its working pipeline.

and countering jailbreak instructions. In eur-propesed-the JudgeRail framework, we assign a judge
role to the-integrated LLMs, prompting them to adhere to the presumption of innocence judicial
principle, thereby making precise and fair judgmentswhen-mederating-text-content. In conjunction
with this framework, we introduce a logit rectification method to rigereusty-extract valid detection

results from the potentially random eutputefl-E-Msgenerated content.

3.1 JUDGERAIL PROMPTING FRAMEWORK

The JudgeRail prompting framework comprises three key components: character description, label
system, and calibration examples, as shown in Figure[T]

Character Description A-An LLM is assigned a judge character to determine whether an input
text is harmful and to classify it into specific harmful categories. Similar to real-world judicial
practice, we instruct the LLM to adhere to the presumption of innocence principle, which can be
considered common knowledge, implying that there is no need for specific fine-tuning of the model
to comprehend and comply with this principle. Moreover, we employ the Chain-of-Thought (CoT)
technique to guide the LLM in identifying explicit and concrete indicators of harmful content before
classifying the text. This structured reasoning process ensures that the model makes informed deci-
sions based on clear evidence of harmful content. The complete prompt is provided in the appendix.

Label System A label system with semantically distinct harmful categories is crucial for enabling
a-an LLM to make more precise detection. Unlike conventional supervised detection models, which
learn the correlation between input data and output labels, a-an LLM makes decisions by identifying
the semantic relationships between the input text and the output categories. We follow the label
systems of existing commercial moderation tools to design our own. Specifically, for toxic text, we
adopt the label system from either Perspective API (1st row in Table[T)) or OpenAI Moderation API
(2nd row in Table|(l)). For jailbreak prompts, we have selected the label system from LlamaGuard3
(3rd row in Table @ as the LlamaGuard model series have been shown to be effective in detecting
jailbreak prompts (Inan et al.l|2023). We assign a unique character symbol to each category, includ-
ing both harmful and non-harmful ones. This allows for the design of a simple character-matching
mechanism, which guides the LLM to act similarly to a classifier and facilitates the parsing of out-
put results. For example, we assign numerical labels such as 0, 1, 2, and so forth, to categories
“Not Harmful”, “Toxicity”, “Severe Toxicity”, etc., as defined by Perspective API. The label system
serves as a “soft” guide to encourage LLMs to adhere to the desired symbolic output format.

Calibration Examples The in-context learning capabilities of LLMs enable a significant boost
in their generation quality with just a few relevant examples. During our initial exploration, we
observed that most LLMs tend to produce abnormally high false positive rates. To mitigate this
issue, we incorporate in-context examples of falsely classified text into our prompting framework,
thereby reminding the model to avoid overly strict classifications.

3.2 LOGIT RECTIFICATION

The generative nature of LLMs and their conversational interaction style, reinforced by instruc-
tion tuning, make their output inherently prone to deviate from the symbolic labels specified in

the prompting framework. For example, in our experiments with the Llama3-8B-Instruct model
(Llama Team, |2024), it frequently failed to directly generate the-classified symbols and instead pro-
duced responses explicitly designed to reject harmful content. This behavior is likely a consequence
of conservative safety alignment.

To effectively-extract valid classification symbols from a-an LLM’s potentially random output, we
propose to rectify its output logits by nullifying out-of-domain logits. More formally, given a-an
LLM M that generates a sequence tokens x = [x1, 22, ..., Z|,] conditioned on a provided prompt
p, the generation process can be denoted as . ~ M (- | p). Each token is selected by sampling
from its eerresponding-logit distribution. For example, the-selection-of-selecting token x; corre-
sponds to 1 ~ P(Softmax(l)), where | = {l1,l,...,ljy|} € RV, and V denotes the size-ofthe
voeabulary-of-vocabulary size of M. Armenﬂeﬁed—weLWe -We only consider logit values from a set
S of indices of pre-determined symbolic tokens which corresponds to the selected label system as
shown in Table &3 This corresponds to applying a multi-dimensional rectification layer N () to [,
and outputting the selected logits as N (1) = {l;cs}, fori = 1,..., V. Thus, only the logits in [that
correspond to the tokens in .S have their value preserved, while the rest are nullified to zero. The
remaining logits {l;c s} are then normalized to determine the final classification result.

This method is inspired by our hypothesis that a-an LLM following an instruction may have its
inclination toward a particular output embedded in the logits associated with its first output token.
To validate this hypothesis, we implemented a simplified prompt, where the model is asked to judge
whether a piece of text is harmful using an open-ended prompt such as “Give me your judgment
result” without specifying the output format. We randomly sampled 100 text-samples, consisting
of 50 harmful and 50 harmless samplesones, from the dataset published by Zheng et al. (Zheng
et al.,|2024). We then used the logits of the first output tokens of Gemma2-9B-IT (Team et al.| [2024)
across these 100 testing-samples to determine their harmfulness, following our logit rectification
method. By comparing the results from the logit rectification with the ground truth labels, we found
that this method resulted in only four false positives and achieved an accuracy rate of 96%. Similar

results with 500 and 1000 samples are presented in the appendix.

It is important to note that the benefits of adopting thislegitrectification-methed-logit rectification
are multi-dimensional. First, it simplifies %h&ea%pt&p&r%ﬁgﬂqd—pfeee%ag%ep%%m

as the detection results are transformed to be deterministic. Second, since the processing latency of a
an LLM is directly proportional to the number of tokens it generates, logit rectification minimizes the
token count, thereby accelerating the process. Last but not least, we consider this logit rectification
method to be a generic approach for unveiling the implicit intentions of a-an LLM. It can be readily
adapted to a variety of LLM-based classification tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We adopted multiple harmful text datasets comprising approximately 35K samples for
evaluation. The HateCheck dataset (Rottger et al., |2020) contains approximately 4K samples, di-
vided into two categories: a harmful category with 2,563 samples and a normal category with 1,165
samples. The HateXplain dataset (He et al.,[2024b) is designed to evaluate the explainability of hate
speech classifiers and comprises 20K samples across three categories: hate, offensive, and normal.
The OpenAl moderation dataset(OpenAl Mod) (Markov et al., |2023) consists of 1,680 samples that
adhere to OpenAI’s moderation criteria and include a fine-grained label system with 8 categories.
During the preparation of this work, OpenAl has expanded the number of categories in its Modera-
tion API from 8 to 11, by adding subeategory-labels-under-the-existing-categoriesmore subcategory
labels. The T0x1cChat dataset (Lin et al.| 2023) contains approximately-around 10K prompt samples
collected from real user queries, including 9,419 non-toxic prompts and 746 toxic prompts. Among
the toxie-promptslatter, 204 are also categorized as jailbreak prompts. The AdvBench dataset (Zou
et al} 2023) contains 520 harmful instructions as jailbreak prompts M%)ngwlumﬂmigggg;l

evaluation re%ult% are provided in the appendix.

Table 2: Performance of different models across all datasets. JudgeRail LLMs are denoted with the
prefix (JR). For the AdvBench dataset, which contains only harmful samples, we report accuracy
scores. For other datasets, we report F1 scores. The best performances are marked in bold. The
“Latency” column shows the average latency in seconds per sample across all datasets.

Model - Dataset - Latency
HateCheck HateXplain OpenAl Mod AdvBench ToxicChat

Martin-ha 0.592 0.511 0.504 0.000 0.114 0.001
ToxRoberta 0.839 0.685 0.612 0.210 0.274 0.002
S-nlp 0.812 0.664 0.684 0.019 0.265 0.001
heightPerspective API 0.862 0.683 0.701 0.054 0.250 1.000
OpenAl Mod. API 0.934 0.744 0.790 0.104 0.254 1.030
LlamaGuard3 0.926 0.720 0.791 0.979 0.497 0.159
ShieldGemma 0.892 0.729 0.794 0.612 0.684 0.191
heightSimple(Gemma2) 0887 0712 0.730° / i 7310
Simple COT(Gemma2) 0905 0711 0693 [/ 7392
GLMA4(JR) 0.894 0.719 0.714 0.729 0.385 0.102
Mistral0.2(JR) 0.884 0.706 0.676 0.950 0.586 0.088
Gemma2(JR) 0.910 0.746 0.756 0.992 0.584 0.098

JudgeRail Models With JudgeRail, we primarily evaluated three open-source LLMs: Gemma2-
9B-IT(Gemma?2) (Team et al., 2024), GLM-4-9B-Chat(GLM4) (GLM et al., 2024)), and-Mistral-
7B-Instruct-v0.2(Mistral0.2) (Jiang et al., 2023 AL 2024). %ammﬁemz%e#ﬂm&%&ﬁed
models-are-comparable-to-these-of- These selected LLMs have comparable size to ShieldGemma-
9B and LlamaGuard3-8B. We have also integrated Llama3-8B-Instruct and Llama3.1-8B-Instruct
(Llama Team| [2024) into JudgeRail for evaluation. However, both Llama3 models exhibited sur-
prisingly poor instruction-following capablhtres and overly conservative behav10rsE| Therefore, we
have-omitted-provide their evaluation results in tmﬁee&erﬁﬁd%aveﬂaeludeekthewrtgg%enché

erformance on three of the five selected datasets, due to the high cost. The evaluation results are
also presented in the appendix.

Baseline Models We compared JudgeRail models with a spectrum of harmful text detectors that
span conventional, commercial, and LLM-based models. For conventional models, we followed
a prior study (Balestriero et al.l 2024) to adopted ToxRoberta (Hartvigsen et al., |2022), Martin-ha
(Martin-ha, |2024), and S-nlp (Logacheva et al.,[2022). These models have been reported to achieve
the best performance among conventional toxicity detection models, with the latter two also having
high download records in the Hugging Face community. For commercial tools, we selected Google’s
Perspective API and the OpenAl Moderation API due to their popularity in the literature. For LLM-
based models, we compared our approach with the latest ShieldGemma-9B and LlamaGuard3-8B, as
these are the most recent moderation models built on top-performing LLMs. We also compared with

content moderation. Furthermore to demonstrate the effectiveness of JudgeRail prompts compared
to simple rom ts, we employed two simple prompt methods Sim le, Sim le_COT) from several

aimed at hate speech and toxic content, we selected the three hate s eech related datasets.

Except for Perspeetive-APHand-OpenAl-Moderation-APkL-al-other-the two APIs, all models were
run locally with 4 NVIDIA GeForce RTX 4090 GPUs.

4.2 JUDGERAIL PROMPTING IS UNIVERSALLY EFFECTIVE

We present the performance of all models across all datasets in Table 2] For Perspective API, we
converted its multi-label detection results into binary classifications by assigning the final result as
harmful if any harmful label had a score larger than 0.5, following the evaluation protocol described
in (He et al., [2024b). The OpenAl Moderation API directly outputs a binary detection result along

"When presented with harmful text, Llama3 models tended to respond with refusal replies.

with fine-grained, multi-dimensional harmful scores. For the JudgeRail models, we adopted the
label systems of Perspective API and LlamaGuard3 for toxic speech datasets and jailbreak prompt
datasets, respectively. We avoided using calibration examples in this section for ablation purposes.

Commercial moderation APIs. As shown in Table@ all LLM-based models except for SplineLLM
significantly outperformed conventional toxic speech detection models — namely, Martin-ha,
ToxRoberta, and S-nlp — especially on the jailbreak datasets such as AdvBench and ToxicChat. Note
that the performance of Perspective API on HateCheckand-HateXptain, HateXplain, and ToxicChat
is comparable to that of conventional models. OpenAl Moderation API achieved competitive per-
formance on the HateCheck, HateXplain, and OpenAl moderation datasets, closely matching LLM-
based models and even achieving the best performance on the HateCheck dataset. Nevertheless,
similar to conventional models, both commercial moderation-tools-APIs exhibit very limited perfor-
mance on the jailbreak datasets.

LLM moderation tools. Among LLM-based models, JudgeRail models achieved performance
comparable to the other two-fine-tuned-EEMs—Speeifieally-among LLM-based models. Between the
two fine-tuned LLMs, LlamaGuard3 exhibited slightly stronger overall performance, while Shield-

Gemma notably-outperformed-lamaGuard3-perform notably better on the ToxicChat dataset. Since
SplineLLM is trained on a specific toxic dataset — Jigsaw cjadams et al. QQ;]pW
erformance is limited when compared to other LLM-based models.

For JudgeRail models, Gemma2(JR) demonstrated the best overall performance. This result, com-
bined with ShieldGemma’s top performance on the OpenAl moderation and ToxicChat datasets,
imply that Gemma2-9B has superior capabilities in recognizing harmful text. On the other hand,
Mistral0.2(JR) obtained the worst performance across three toxic speech datasets when compared
to other LLM-based models, while demonstrating highly competitive results on the two jailbreak
datasets. In contrast, GLM4(JR)’s overall performance ranks in the middle; however, its perfor-
mance on the jailbreak datasets is notably worse than that of other JudgeRail models. To better

present the flexibility of JudgeRail, we also equip GPT-4 with JudgeRail (denoted as GPT4(JR)) and
evaluate its performance. Detailed results are shown in the appendix. GPT4(JR) obtains comparable
performance to our best-performing Gemma2(JR) on AdvBench and OpenAl Moderation datasets,
while performing worse on the HateCheck dataset. By examining its mistakenly classified samples,
we find that, while HateCheck primarily focuses on hate speech, some of its samples labeled as
Non-hate still contain offensive materials. This type of content is often recognized as harmful by
GPT4. We will discuss the impact of inaccurate labels in the following sections.

An interesting observation is that, by using the two previously mentioned simple promptin
techniques, we can shape an LLM to obtain satisfactory moderation performance. Meanwhile,
JudgeRail maintains superior performance across all datasets.

Detection latency. The last column of Table |2| presents the detection latency of all models. For
the two eemmeretal-APIs, according to their public guidelines (Google, 2024} |OpenAll 2024)), Per-
spective API sets a quota limit of an average of 1 query-per-second, whereas OpenAl imposes a
requests-per-minute quota limit for free accounts. During our experiments, we manually measured
their latency and found that both APIs have an average limit of 1 second per query.

As evident from Table[2] the average latency for conventional models was approximately 1 to 2 mil-
liseconds per sample, whereas LLM-based models exhibited an average preeessinglatency of around
100 milliseconds per sample. This significant tateney-difference suggests that LLM-based modera-
tion solutions face challenges when the required processing bandwidth is high. Among LLM-based
models, JudgeRail models demonstrated significantly lower processing-latency compared to Lla-
maGuard3 and ShieldGemma. Mistral0.2(JR) exhibited the fastest processing speed, reducing the
processing time by 45% compared to LlamaGuard3 and by 54% compared to ShieldGemma. Ad-
ditionally, Gemma2(JR) required only 51.3% of the time taken by ShieldGemma to process a text
sample on average.

The above results indicate that our proposed JudgeRail framework effectively adapts various open-
source LLMs into competitive harmful text detection models, while also enhancing practicality
through a significant acceleration in processing speed. In the following section, we further explore
potential improvements by thoroughly examining the key components of our JudgeRail framework.
Unless otherwise specified, we will focus on evaluating Gemma2(JR).

IN
S

HateCheck ToxicChat
HateXplain
OpenAl Mod

N
=3

w
=

-

o

N
o

=

=)

Rate(count/total)

i
=)
w

Rate(count/total)

o
o

P1 P2 P3 P4 P5 P6 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
Labels Labels
(a) False positives with Perspective API labels. (b) False positives with LlamaGuard3 labels.

Figure 2: The distribution of FP errors across different datasets and categories from the adopted
label system as shown in tabell For the HateCheck, HateXplain, and OpenAI moderation datasets,
we use the Perspective API label system, denoting categories as “P1”, “P2”, etc. For ToxicChat, we
use the LlamaGuard3 label system, denoting categories as “S17, “S2”, etc.

Table 3: Comparison of F1 and accuracy scores (F1/Acc) between the two label systems.

Model Perspective API Categories OpenAl Moderation API Categories
HateCheck HateXplain OpenAl Mod HateCheck HateXplain OpenAl Mod
GLM4(JR) 0.894/0.843 0.719/0.671 0.714/0.821 0.838/0.793 0.641/0.683 0.664/0.823

Mistral0.2(JR) 0.884/0.826 0.706/0.675 0.676/0.798 0.807/0.744 0.607/0.647 0.700/0.814
Gemma2(JR) 0.910/0.865 0.746/0.685 0.756/0.839 0.927/0.895 0.742/0.690 0.792/0.851

4.3 LABEL SYSTEM AND QUALITY MATTERS

The impact of ambiguous labels. By delving into the performance of JudgeRail models in identi-
fying each harmful category, we observed a significant imbalance in the ratio of false positives (FP)
to false negatives (FN), ranging from 4:1 to 20:1 El This suggests that the high rate of FP errors is
the primary factor limiting the overall performance of the JudgeRail models.

In Figure 2} we illustrate the distribution of FP errors across different datasets and categories, with
“P4” and “P5” denoting “Insult” and “Profanity”, and “S6” and “S14” representing “‘Specialized
Advice” and “Code Interpreter Abuse”, respectively. The FP errors observed in ToxicChat are less
severe than those found in toxic speech datasets. We can identify two key factors contributing to
these FP errors: the taxonomic structure of the adopted label system and the quality of the provided
labels. Upon analyzing the FP errors from HateCheck and HateXplain, a considerable number of
samples, as exemplified in Table —2?1 in the appendix, were categorized by Gemma2(JR) under
“Profanity” according to the Perspective API label system, despite being labeled as non-toxic or
not harmful. Therefore, we attribute the discrepancies between the JudgeRail models’ detection
outcomes and the human-annotated “ground-truth” labels to the relatively high degree of semantic
ambiguity inherent in the category designations of “Insult” and “Profanity”.

We then adopted the label system of OpenAl Modera-

tion API, which has less ambiguous semantic implica- 1004

tions, as shown in Table [T} Table 3] show that, switch- | £ | - |

ing categories led to a decrease in F1 scores. However, 5 Bm Perspective FP
the accuracy scores, which measure the ratio of correctly 5 697 Perspective FN
classified samples, slightly improved for JudgeRail mod- S 0l OpenAl Mod FP
els on the HateXplain and OpenAl moderation datasets. £ OpenAl Mod FN
These changes can be attributed to a reduction in FP er- 2 201

rors but an increase in FN errors when switching from S0l . L
the Perspective API’s harmful categories to those of the GLM4 Mistral0.2Gemmaz2
OpenAI Moderation API. Figure [3]illustrates the change

in the ratios between FP and FN errors before and after

the label system switch for three JudgeRail LLMs. As Figure 3: Change in the ratios between

FP and FN errors on HateCheck before
and after switching label systems.

2The specific FP and FN counts are detailed in the appendix.

expected, we observe an exchange between FP and FN

errors for both GLM4(JR) and Mistral0.2(JR), while FP

errors remain a prominent issue for Gemma2(JR). These results indicate that changing the label
system indeed influences detection performance, as expected. In JudgeRail, this can be adjusted by
simply editing the text segment reserved for the label system. However, both label systems from the
commercial moderation tools still exhibit a degree of ambiguity in their harmful taxonomies.

We-furthershifted-our-foeus-to-The Impact of Label Quality. We further focus on investigating the
quality of the ground-truth labels provided for the identified false-positive-(FP--FP samples. Specif-
ically, we employed GPT-4 to re-label the FP samples collected from Gemma2(JR) on HateCheck.
We asked GPT-4 to determine whether a sample labeled by Gemma2(JR) as “Insult” or “Profanity”
was actually harmful, and used its assessment as the new ground-truth. As shown in Figure] the
F1 scores of most evaluated models increase with the GPT-4 re-labeled samples. In particular, all
JudgeRail LLMs exhibit more significant performance improvements, with Gemma2(JR) achieving
the best performance on the HateCheck dataset These results hrghhght the 1mportance of label qual-
the OpenAI moderat1on dataset 1ncludes samples wrth ﬁne grarned labels that align w1th the taxon—
omy of OpenAl Moderation API. This allowed us-te-compare-the-the comparison of the fine-grained
deteetion-accuracy between Gemma2(JR) and OpenAl Moderation API. Specifically, we evaluated
each sample from the OpenAl moderation dataset to determine if its ground-truth label matched the
results of both Gemma2(JR) and OpenAl Moderation API, thereby obtaining the overall accuracy.
The results, presented as the light blue bars in Figure [5] show that Gemma2(JR) achieved better
detection accuracy.

1.00
0.787 O Al Mod
0.734 pen.
Martin-ha Original 2075 0.658 | Ultrasafety
S-nip Fixed S 050 0.431
ToxRoberta 2 0.362

OpenAl Mod. API

<

Perspective API 0.25

ShieldGemma 0.00
LlamaGuard3

I\ R) 43 M3 [\ R)
Gemma2(JR) pe\,\p\\ Wod- G emma’L\\ Bmaﬁ‘g?\(\e\dc’em o Mod malk\

Mistral0.2(JR)
GLM4(JR)

05> 06 07 08 095 10 Figure 5: A comparison of the—detection

accuracy tﬁdaee&nghﬂﬁmexggefm
Figure 4: F1 scores before and after re-labeling =~ Gemma2 (JR) and the OpenAl Moderation
with GPT-4 on HateCheck. “Original” denotes the ~ API (left), and in detecting jailbreak prompts
original F1 scores, while “Fixed” denotes the F1 from the-Ultrasafety dataset-among Gemma?2
scores calculated with GPT-4’s labels. (JR) and other eapable-models (right).

Few-shot calibration. To further improve the detection performance of JudgeRail models, we in-
corporate few-shot calibration examples into the prompting framework, as described in Section 3.1}
Given that FP errors dominate the errors of Gemma2(JR), our primary objective is to introduce
few-shot FP examples to calibrate its detection results.

We constructed a pool of FP samples by collecting such errors from all datasets. We then conducted
multiple sampling iterations, selecting 2, 4, or 8 samples from this pool to include in the JudgeRail
prompting framework as calibration examples. However, since the HateXplain dataset, with 20K
samples, contributes the majority of FP samples to the pool, random sampling fewer than 10 samples
would essentially rely on HateXplain as the primary source for calibration. Therefore, we also
sampled FP examples from each dataset individually and reported the best performance. Table
presents the experimental results obtained from the HateCheck and OpenAl moderation datasetsﬁ
We observe that on most datasets, sampling from individual datasets (“Individual”) is more effective
in reducing either FP or FN errors compared to sampling from the entire FP pool (“All”).

4.4 PERFORMANCE FOR DETECTING ADVANCED JAILBREAK PROMPTS

We further evaluate Gemma2(JR) for its performance in detecting advanced jailbreak prompts,
such as those provided by the UltraSafety dataset (Guo et al., |2024), which includes long jail-

3The results from other datasets are provided in the appendix.

Table 4: Few-shot calibration performance (FP/FN/F1) for Gemma2(JR). “Base” refers-to-the-case

witheut-denotes no calibration. “Individual” indicatessampling-from-individual-dataset-and "All”
denotes-denote sampling EPs from individual and all FP-samplesdatasets, respectively.

Dataset Base Individual All

FP FN F1 FP FN F1 FP FN F1
HateCheck 472 31 0.910 414 47 0.916 472 35 0.909
OpenAl Mod 167 103 0.756 170 83 0.776 185 77 0.773

Table 5: Performance of LLM-based detection models evaluated with BF16 and INT4 precision.
We report accuracy scores for AdvBench and F1 scores for other datasets. Latency is measured as
the average time in seconds required to process one sample.

Dataset

Model HateCheck HateXplain OpenAl Mod Advbench ToxicChar L-atency ~ Mem.
[lamaGuard3-BF16 0.926 0.720 0.791 0.979 0497 0159 126G
LlamaGuard3-INT4 0.885 0.689 0.780 0.983 0.489 0234 9G
ShieldGemma-BF16 0.892 0.729 0.794 0.612 0.684 0191 31G
ShieldGemma-INT4 0,892 0.728 0.790 0.477 0.675 0260 12G
Gemma2(R)-BFI6 0916 0.746 0.776 0.996 0,618 009 2IG
Gemma2(R)-INT4 0,920 0.755 0.748 0.992 0.687 0154 11G

break prompts for role-playing scenarios. The evaluation results for LlamaGuard3, ShieldGemma,
Gemma2(JR), and OpenAl Moderation API are presented in Figure [5] Our observations indicate
that LlamaGuard3 outperformed the other models by a large margin, while Gemma2(JR) achieved
the second-best performance, surpassing ShieldGemma. Given that both Gemma2(JR) and Shield-
Gemma share the same foundation LLM, these results suggest that JudgeRail is effective in stimu-
lating general-purpose LLMs to defend against more sophisticated jailbreak prompts.

4.5 IMPACT OF LOGIT RECTIFICATION AND MODEL PRECISION ON DETECTION LATENCY

In Figure[6] we illustrate the acceleration effect on detection achieved by adopting logit rectification.
Compared to using the “soft” prompt defined in JudgeRail for output regulation, logit rectification
significantly reduces processing latency for all three JudgeRail LLMs by rigorously-ensuring a valid
output format. The results in Table [2 also show that JudgeRail has a significant advantage over
simple prompting in terms of latency. To further assess the practicality of JudgeRail, we evaluated
the performance of 4-bit quantized LLMs under our framework, as well as the 4-bit versions of
LlamaGuard3 and ShieldGemm;ﬂ We monitored the running memory (as shown in the "Mem.”
column of Table5)) to validate the success of the configuration.

As shown in Table[5] most LLMs with 4-bit pre- 0383
cision exhibit Jimited-performance fluetuations CSMMAaZ2 Juuy 0,008 w

w/o
maintain rather stable performance across most . 034
datasets. However, ShieldGemma experiences ~ Mistral0.2 yuu 0 088 '

a noticeable performance degradation on the

AdvBench dataset when transitioning from GLM4 1 105"
BF16 to INT4 precision. In contrast, on the
ToxicChat dataset, Gemma2(JR) with INT4
precision outperforms its BF16 counterpart and
achieves the best performance. These results
indicate that open-source LLMs equipped with
JudgeRail can be effectively deployed at lower
precision while maintaining their detection performance. We also observed that all LLM-based
models experienced nearly twice the latency compared to their BF16 versions. This increase in la-
tency may be attributed to the current limitations in computational efficiency optimizations for 4-bit
quantized models. As lower-bit LLMs are anticipated to be better optimized, the practicality of
JudgeRail can be further boosted.

00 02 04 06 08 10
Latency/s

Figure 6: Compare latency with (label w) or with-
out (label w/o) logit rectification

*We configured all models to their 4-bit versions by setting “load_in_4bit=True".

10

5 LIMITATION

To ensure fast detection, we use a relatively simple in-context learning mechanism, which may
as Retrieval-Augmented Generation (RAG). Moreover, we have shown that existing label systems
have some degree of semantic ambiguity, which limits detection performance. This motivates our
future work on designing a more refined label system with better-separated semantic representations.
Additionally, note that the detection capabilities of JudgeRail essentially depend on its underlying
LLM. This indicates that one needs to perform model selection instead of using arbitrary LLMs.
However, JudgeRail also benefits from this as the underlying LLM evolves in its capability.

6 CONCLUSION

This paper introduces the JudgeRail framework, which effectively and efficiently adapts open-source

LLMs into harmful text detectors. Teﬁe*p}efeﬂqdﬁmpfeve%he?fepe%eekffamewe%k—w&We have

thoroughly investigated the influence of the label system, in-context few-shot calibration exam-
ples, and a novel logit rectlﬁcatlon method. flihe%&er—ﬁe%eﬁlryueﬁwfes—ﬂgefeﬁkbeh&wer—ﬁem

We have evaluated three open-
source LLMs equlpped with JudgeRaﬂ as well as several LLM- based and conventional moderation
tools, on five datasets that encompass toxic speech data and jailbreak prompts. Our experiments
demonstrate that LLM-based mederation-models achieve significantly better performance than con-
ventional detectors, while LLMs with JudgeRail are competitive with fine-tuned moderation LLMs.
The evaluation—results also show that LLMs with JudgeRail require approximately half the time
needed by LlamaGuard3 and ShieldGemma to process a sample on average.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mistral Al. mistralai/Mistral-7B-Instruct-v0.2 - Hugging Face — huggingface.co. https:
//huggingface.co/mistralai/Mistral-7B-Instruct-v0.2, 2024. [Accessed
28-09-2024].

Randall Balestriero, Romain Cosentino, and Sarath Shekkizhar. Characterizing large language
model geometry solves toxicity detection and generation. arXiv preprint arXiv:2312.01648, 2023.

Randall Balestriero, Romain Cosentino, and Sarath Shekkizhar. Characterizing large language
model geometry helps solve toxicity detection and generation. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=glfcwSsks8.

cjadams, Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, nithum, and Will
Cukierski. Toxic comment classification challenge, 2017a. URL https://kaggle.com/
competitions/jigsaw—-toxic—comment-classification—-challenge.

cjadams, Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, nithum, and Will Cukier-
ski. Toxic comment classification challenge. |https://kaggle.com/competitions/
jigsaw-toxic—-comment-classification-challenge, 2017b. Kaggle.

cjadams, Daniel Borkan, inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and nithum.
Jigsaw unintended bias in toxicity classification, 2019. URL https://kaggle.com/
competitions/jigsaw—unintended-bias—in-toxicity—-classificationl

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

11

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://openreview.net/forum?id=glfcwSsks8
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification

and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Jenny Fan and Amy X Zhang. Digital juries: A civics-oriented approach to platform governance. In
Proceedings of the 2020 CHI conference on human factors in computing systems, pp. 1-14, 2020.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao, and Rui Yan. What
makes quantization for large language model hard? an empirical study from the lens of pertur-
bation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18082—
18089, 2024.

Google. Perspective developers limits and errors. https://developers.
perspectiveapi.com/s/about-the—-api-limits—and-errors?language=

en_US, 2024. [Accessed 29-09-2024].

Mitchell L Gordon, Michelle S Lam, Joon Sung Park, Kayur Patel, Jeff Hancock, Tatsunori
Hashimoto, and Michael S Bernstein. Jury learning: Integrating dissenting voices into machine
learning models. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, pp. 1-19, 2022.

Guardrail. Guardrails Al — guardrailsai.com. https://www.guardrailsai.com/}, 2024.
[Accessed 27-09-2024].

Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Jiexin Wang, Huimin Chen, Bowen Sun, Ruobing
Xie, Jie Zhou, Yankai Lin, et al. Controllable preference optimization: Toward controllable multi-
objective alignment. arXiv preprint arXiv:2402.19085, 2024.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin
Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks, jailbreaks,
and refusals of 1lms. arXiv preprint arXiv:2406.18495, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Ka-
mar. ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech
detection. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3309-3326, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.234. URL https://aclanthology.org/2022.
acl-long.234.

Xinlei He, Savvas Zannettou, Yun Shen, and Yang Zhang. You only prompt once: On the capabilities
of prompt learning on large language models to tackle toxic content. In 2024 IEEE Symposium
on Security and Privacy (SP), pp. 770-787. IEEE, 2024a.

Xinlei He, Savvas Zannettou, Yun Shen, and Yang Zhang. You only prompt once: On the capabilities
of prompt learning on large language models to tackle toxic content. In 2024 IEEE Symposium
on Security and Privacy (SP), pp. 770-787. IEEE, 2024b.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ian Kivlichan, Jeffrey Sorensen, Julia Elliott, Lucy Vasserman, Martin Gorner, and Phil Culli-
ton. Jigsaw multilingual toxic comment classification, 2020. URL https://kaggle.com/
competitions/jigsaw-multilingual-toxic—comment—-classification.

12

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://developers.perspectiveapi.com/s/about-the-api-limits-and-errors?language=en_US
https://developers.perspectiveapi.com/s/about-the-api-limits-and-errors?language=en_US
https://developers.perspectiveapi.com/s/about-the-api-limits-and-errors?language=en_US
https://www.guardrailsai.com/
https://aclanthology.org/2022.acl-long.234
https://aclanthology.org/2022.acl-long.234
https://kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification
https://kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification

Alyssa Lees, Vinh Q Tran, Yi Tay, Jeffrey Sorensen, Jai Gupta, Donald Metzler, and Lucy Vasser-
man. A new generation of perspective api: Efficient multilingual character-level transformers. In
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp.
3197-3207, 2022.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024.

Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, and Jingbo Shang.
Toxicchat: Unveiling hidden challenges of toxicity detection in real-world user-ai conversation.
arXiv preprint arXiv:2310.17389, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Al @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783\l

Varvara Logacheva, Daryna Dementieva, Sergey Ustyantsev, Daniil Moskovskiy, David Dale, Irina
Krotova, Nikita Semenov, and Alexander Panchenko. ParaDetox: Detoxification with parallel
data. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6804—-6818, Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2022.acl-1long.469.

Todor Markov, Chong Zhang, Sandhini Agarwal, Florentine Eloundou Nekoul, Theodore Lee,
Steven Adler, Angela Jiang, and Lilian Weng. A holistic approach to undesired content detection
in the real world. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp- 15009-15018, 2023.

Martin-ha. martin-ha/toxic-comment-model - Hugging Face — huggingface.co. |https:
//huggingface.co/martin—ha/toxic—comment-model?text=god, 2024. [Ac-
cessed 29-09-2024].

Meta. meta-llama/Llama-Guard-3-8B - Hugging Face — huggingface.co. https://
huggingface.co/meta—1llama/Llama—-Guard—-3-8B, 2024. [Accessed 29-09-2024].

OpenAl. Openai docs rate limits. https://platform.openai.com/docs/guides/
rate—limits/usage—tiers, 2024. [Accessed 29-09-2024].

Yiting Qu, Xinyue Shen, Xinlei He, Michael Backes, Savvas Zannettou, and Yang Zhang. Unsafe
diffusion: On the generation of unsafe images and hateful memes from text-to-image models. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
pp- 3403-3417, 2023.

Traian Rebedea, Razvan Dinu, Makesh Sreedhar, Christopher Parisien, and Jonathan Cohen. Nemo
guardrails: A toolkit for controllable and safe 1lm applications with programmable rails. arXiv
preprint arXiv:2310.10501, 2023.

Paul Réttger, Bertram Vidgen, Dong Nguyen, Zeerak Waseem, Helen Margetts, and Janet B Pier-
rehumbert. Hatecheck: Functional tests for hate speech detection models. arXiv preprint
arXiv:2012.15606, 2020.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ” do anything now™:
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. arXiv
preprint arXiv:2308.03825, 2023.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. “Do Anything Now™:

Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2024.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2022.acl-long.469
https://huggingface.co/martin-ha/toxic-comment-model?text=god
https://huggingface.co/martin-ha/toxic-comment-model?text=god
https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://platform.openai.com/docs/guides/rate-limits/usage-tiers
https://platform.openai.com/docs/guides/rate-limits/usage-tiers

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Prakash Gupta, Hyung Won Chung, Dara Bahri, Zhen
Qin, Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers
via gradient-based subword tokenization. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=JtBRnr1OEFN.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Yongjin Yang, Joonkee Kim, Yujin Kim, Namgyu Ho, James Thorne, and Se-young Yun. Hare:
Explainable hate speech detection with step-by-step reasoning. arXiv preprint arXiv:2311.00321,
2023.

Zhuowen Yuan, Zidi Xiong, Yi Zeng, Ning Yu, Ruoxi Jia, Dawn Song, and Bo Li. Rigorllm:
Resilient guardrails for large language models against undesired content. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=QAGRPiC3FS.

Wenjun Zeng, Yuchi Liu, Ryan Mullins, Ludovic Peran, Joe Fernandez, Hamza Harkous, Karthik
Narasimhan, Drew Proud, Piyush Kumar, Bhaktipriya Radharapu, et al. Shieldgemma: Genera-
tive ai content moderation based on gemma. arXiv preprint arXiv:2407.21772, 2024.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, and
Nanyun Peng. On prompt-driven safeguarding for large language models. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, Yejin Choi, and Noah Smith. Challenges in
automated debiasing for toxic language detection. In Paola Merlo, Jorg Tiedemann, and Reut
Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pp. 3143-3155, Online, April 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.274. URL https:
//aclanthology.org/2021.eacl-main.274l

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

14

https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=QAGRPiC3FS
https://aclanthology.org/2021.eacl-main.274
https://aclanthology.org/2021.eacl-main.274

	Introduction
	Related Work
	LLM-based Moderation Models
	Conventional Moderation Models

	Methodology
	JudgeRail Prompting Framework
	Logit Rectification

	Experiments
	Experimental Setup
	JudgeRail prompting is universally effective
	Label system and quality matters
	Performance for Detecting Advanced Jailbreak Prompts
	Impact of Logit Rectification and Model Precision on Detection Latency

	Limitation
	Conclusion

