
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

JUDGERAIL: HARNESSING OPEN-SOURCE LLMS FOR
FAST HARMFUL TEXT DETECTION WITH JUDICIAL
PROMPTING AND LOGIT RECTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) simultaneously facilitate the generation and de-
tection of harmful text. Leading LLM developers, such as OpenAI, Meta, and
Google, are driving a paradigm shift in the detection of harmful text, moving from
conventional detectors to fine-tuned LLMs. However, these newly released mod-
els, which require substantial computational and data resources, have not yet been
thoroughly investigated for their effectiveness in this new paradigm. In this work,
we propose JudgeRail, a novel and generic framework that guides open-source
LLMs to adhere to judicial principles during text moderation.Additionally, we in-
troduce a new logit rectification method that accurately interprets

:::
can

::::::
extract an

LLM’s classification intent, rigorously
::::::::
effectively

:
controls its output format, and

significantly accelerates detection. By integrating several top-performing open-
source LLMs into JudgeRail without any fine-tuning and evaluating them against
OpenAI Moderation API, LlamaGuard3, ShieldGemma, and other conventional
moderation solutions across various datasets, including those specifically designed
for jailbreaking LLMs, we demonstrate that JudgeRail can adapt these LLMs to
be competitive with fine-tuned moderation models and significantly outperform
conventional solutions. Moreover, we evaluate all models for detection latency, a
critical yet rarely examined practical aspect, and show that LLMs with JudgeRail
require only 46% to 55% of the time needed by LlamaGuard3 and ShieldGemma.
The generic nature and competitive performance of JudgeRail highlight its poten-
tial for promoting the practicality of LLM-based harmful text detectors. Warning:
some text examples presented in this paper may be offensive to some readers.

1 INTRODUCTION

Harmful text exhibits the inherent flexibility of natural language, making its detection an enduring
research challenge and a critical practical concern. As large language models (LLMs)(Llama Team,
2024; Team et al., 2024; GLM et al., 2024) are rapidly evolving, they can be exploited to generate
a wide array of harmful text, including discriminatory, obscene, and hateful content(Lees et al.,
2022). Beyond these harmful categories, jailbreaking LLMs has expanded the scope of harmful text
to encompass more severe categories such as crime planning, self-harm, and defamation(Inan et al.,
2023; Meta, 2024). Furthermore, the jailbreak prompts used to tame LLMs for generating harmful
content, are themselves emerging as a distinct and concerning category of harmful text.

These threats have not been adequately addressed by conventional text moderation solutions(Lees
et al., 2022; Hartvigsen et al., 2022). For example, we have investigated Perspective API, a commer-
cial tool primarily designed for detecting harmful text, and have listed the harmful content it covers
in Table 1. Some aforementioned newly identified harmful text clearly fall outside these categories.
On the other hand, as detailed in the bottom of Table 1, the latest OpenAI Moderation API moderates
a broader range of harmful text, with a particular focus on malicious instructions designed to jail-
break LLMs. LlamaGuard models (Inan et al., 2023) further expand detection capabilities to include
a more fine-grained taxonomy of harmful content. However, according to public reports(Lees et al.,
2022; Markov et al., 2023), Perspective API requires a large-scale proprietary corpus to train its
toxic content classifiers. Similarly, the OpenAI Moderation API takes approximately 220K training
samples, along with sophisticated data augmentation and label quality control mechanisms. Given

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Perspective API, OpenAI Moderation API, and LlamaGuard3 moderation categories.

API/Model Categories
Perspective API Toxicity, Severe toxicity, Identity attack, Insult, Profanity, Threat
OpenAI Hate, Hate/threatening, Harassment, Harassment/threatening, Self-harm
Moderation API Self-harm/instructions, Self-harm/intent,Sexual, Sexual/minors

Violence, Violence/graphic
Violent crimes, Non-violent crimes, Sex-related crimes, Privacy

LlamaGuard3 Child sexual exploitation,Specialized advice, Intellectual property
Suicide & Self-harm , Indiscriminate weapons, Hate, Sexual content
Elections, Code interpreter abuse, Defamation

the scarcity of newly identified harmful text across various categories and the daily emergence of
unknown risks, it has become increasingly evident that training and updating specific moderation
models to generalize across implicit and novel threats is unsustainable.

Recently, leading developers of LLMs, such as Meta and Google, have released moderation models
supported by their respective LLMs. Meta’s LlamaGuard series (Llama Team, 2024) and Google’s
ShieldGemma models (Zeng et al., 2024) have demonstrated improved capabilities for detecting
both common toxic speech and jailbreak prompts. This signals a paradigm shift towards detecting
harmful text using fine-tuned LLMs. Nevertheless, it does not alleviate the demand for large-scale
training data and substantial computational resources. For example, building ShieldGemma (Zeng
et al., 2024) requires more than 130K samples. Additionally, fine-tuning even a moderately sized 7B
model takes four A100 GPUs and approximately five hours of compute time (Han et al., 2024). This
implies that the landscape of text moderation is increasingly dominated by organizations with sub-
stantial computation and data resources. Consequently, it can be challenging for users to customize
these tools to prioritize certain harmful categories, such as discrimination or politically sensitive
content, without relying on the tool providers to adjust their moderation capabilities.

Given that general-purpose LLMs are both the source and target of text content risks, they inherently
possess the capability to recognize harmful text. More importantly, LLMs can infer the harmful cat-
egory to which a piece of text belongs, making them well-suited for moderation when provided
with a well-designed harmful taxonomy. Using these ideas, we propose JudgeRail, a generic and
efficient framework that leverages top-performing open-source LLMs to act as a judge, adhering to
the presumption of innocence principle in moderating harmful text. However, the outputs of LLMs
are often difficult to control, typically requiring complex data parsing or even multi-round process-
ing. This significantly increases detection latency and diminishes their practicality as detectors. To
efficiently extract valid outputs that align with a pre-determined taxonomy, we have designed a logit
rectification method that enables rigorous

:::::::
effective control over the LLM’s output while simultane-

ously accelerating the detection process in JudgeRail. Notably, detection latency, a critical aspect
for practical text moderation, has been rarely discussed in existing literature, yet it is essential for
building effective LLM guardrails (Rebedea et al., 2023; Guardrail, 2024).

We evaluate JudgeRail with various open-source LLMs on diverse harmful text detection datasets
comprising over 34K samples, and compare LLMs equipped with JudgeRail to different BERT-
based detection models, commercial moderation tools, and specialized moderation LLMs. The re-
sults show that LLMs with JudgeRail significantly outperform conventional moderation solutions
while remaining on par with LLM-based moderation tools. Moreover, LLMs with JudgeRail re-
quire only 46% to 55% of the time needed by LlamaGuard3 and ShieldGemma. We also evaluated
4-bit versions of all LLMs, for the first time, revealing that these models consume significantly less
memory with negligible performance degradation. These findings suggest that text moderation tasks
have lower requirements for high-precision computing compared to text generation tasks

::::::
contrast

::::
with

::::::
studies

:::::::::::::::::::::::::::::
Li et al. (2024); Gong et al. (2024)

:::
that

::::
have

::::::::::::
demonstrated

:::
the

::::::
crucial

::::
role

:::
of

:::::
model

:::::::
precision

:::
in

:::::::::
generative

:::::
tasks.

::::::
This

::::::::
differing

::::::
impact

:::::
leads

:::
us

::
to
:::::::

wonder
::::

that
::::::::::::::

decision-making
:::::::::
moderation

:::::
tasks

::::
may

::::
have

:::::::
distinct

:::::::::::
requirements

:::
for

::::::
model

::::::::
precision. Our results shed light on

a new paradigm for efficiently developing practical text moderation tools that can evolve along with
open-source LLMs.

We summarize our contributions below.

• We design a simple yet effective JudgeRail framework for adapting general LLMs to detect harm-
ful text. We thoroughly investigate the impact of different safety taxonomies on detection perfor-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

mance, emphasizing the importance of well-defined label systems and validated labels, as well as
the utility of in-context few-shot calibration.

• We propose a novel logit rectification method that ensures valid output results and significantly re-
duces detection latency. This method is generic and can be readily adapted to various classification
tasks using LLMs.

• We comprehensively evaluate and compare various LLMs using JudgeRail with a wide spectrum
of moderation solutions, including BERT-based detectors, commercial tools like Perspective API
and OpenAI Moderation API, and specialized LLMs such as LlamaGuard and ShieldGemma.
Our results show that open-source LLMs equipped with JudgeRail achieve highly competitive
performance and are significantly faster than specialized moderation LLMs. We also find that
4-bit LLMs exhibit trivial performance degradation but increased latency, highlighting the need
for improved optimization for quantized models.

2 RELATED WORK

2.1 LLM-BASED MODERATION MODELS

Recently, LLMs have been increasingly utilized for content moderation. For example, SplineLLM
(Balestriero et al., 2024) introduces a method to extract a small set of unsupervised

:::::
latent features

from LLMs that characterize users’ prompts, which are then
::
can

::::
then

:::
be used for detecting harmful

text. RigorLLM (Yuan et al., 2024) is a moderation framework that combines an optimized safe
suffix with a fine-tuned LLM and a K-Nearest Neighbor algorithm. Leading LLM providers, such
as Google and Meta, supported by a substantial amount of meticulously collected and labeled data,
as well as

::::::::::
constructed

::::
data,

:::
and

:
significant computational resources, have released their own LLM-

based moderation tools, including ShieldGemma (Zeng et al., 2024) and the LlamaGuard series
(Llama Team, 2024). These recent developments illustrate a trend where LLMs are increasingly
becoming the foundational models in the content moderation domain.

2.2 CONVENTIONAL MODERATION MODELS

Prior to the widespread adoption of LLMs, the prevalent approaches to detecting harmful text in-
volved using extensive datasets to train classifiers based on pre-trained models such as BERT (Devlin
et al., 2019) and Transformer (Vaswani, 2017). For example, ToxRoberta (Hartvigsen et al., 2022)
has demonstrated effectiveness in detecting both explicit and implicit toxic language. It is fine-tuned
from ToxDectRoBERTa (Zhou et al., 2021) using the TOXIGEN dataset. As an effective toxicity
classifier, S-nlp(Logacheva et al., 2022) is a fine-tuned RoBERTa(Liu, 2019) model, trained on the
English samples from three datasets provided by Jigsaw(cjadams et al., 2017a; 2019; Kivlichan et al.,
2020). In addition, several commercial moderation APIs have been developed, including Perspective
API and OpenAI Moderation API. Specifically, Perspective API (Lees et al., 2022) utilizes a sin-
gle compact pre-trained Charformer-based Transformer (Tay et al., 2022) to identify six categories
of toxic speech. OpenAI Moderation API (Markov et al., 2023) is built on a sophisticated system
designed to capture rare harmful content, incorporating a holistic approach that includes content tax-
onomies, labeling instructions, data quality control, and an active learning pipeline.

:::::::::
Moreover,

::::
Some

::::::
studies

::::
have

:::::::::
attempted

::
to

::::::
design

::
a

::::::::
court-like

::::
jury

::::::::::
mechanism

::
to

:::::
assist

:::::
with

::::::
content

::::::::::
moderation,

::::::
aiming

::
to

:::::::
enhance

:::
the

:::::::
fairness

::::
and

::::::::
reliability

:::
of

:::
the

:::::::::
evaluation

:::::::
process,

::::::::
including

:::::
Jury

:::::::
Learning

:::::::::::::::::
(Gordon et al., 2022)

:::
and

::::::
Digital

::::::
Juries

:::::::::::::::::
(Fan & Zhang, 2020)

:
.
::::
Jury

::::::::
Learning

:::::::::
integrates

::::::::
dissenting

:::::
voices

:::
by

::::::::
modeling

::::::::
individual

:::::::::
annotators

:::
and

::::::::
allowing

::::::::::
practitioners

:::
to

:::::
define

:::
the

::::
jury

::::::::::
composition.

::::::
Digital

:::::
Juries

::::::::
proposes

:
a
:::::::::::::
civics-oriented

:::::::
approach

:::
for

:::::::::::
adjudicating

::::::
content

::::::::::
moderation

::::::
cases. De-

spite their effectiveness in identifying explicit toxic text, these specialized models and tools have
faced challenges in moderating more implicit and previously unseen forms of harmful content, such
as diverse jailbreak prompts (Shen et al., 2023).

3 METHODOLOGY

The role-play capability of LLMs has been extensively exploited for conducting jailbreak attacks
(Shen et al., 2024). This capability can be viewed as a double-edged sword, as it can

:
be

::::::::
exploited

::
for

::::::::::
conducting

:::::::
jailbreak

:::::::
attacks

:::::::::::::::
(Shen et al., 2024),

::
it
:
also be harnessed for detecting harmful text

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: Overview of the JudgeRail framework and its working pipeline.

and countering jailbreak instructions. In our proposed
::
the

:
JudgeRail framework, we assign a judge

role to the integrated LLMs, prompting them to adhere to the presumption of innocence judicial
principle, thereby making precise and fair judgmentswhen moderating text content. In conjunction
with this framework, we introduce a logit rectification method to rigorously extract valid detection
results from the potentially random output of LLMs

::::::::
generated

:::::::
content.

3.1 JUDGERAIL PROMPTING FRAMEWORK

The JudgeRail prompting framework comprises three key components: character description, label
system, and calibration examples, as shown in Figure 1.

Character Description A
:::
An LLM is assigned a judge character to determine whether an input

text is harmful and to classify it into specific harmful categories. Similar to real-world judicial
practice, we instruct the LLM to adhere to the presumption of innocence principle, which can be
considered common knowledge, implying that there is no need for specific fine-tuning of the model
to comprehend and comply with this principle. Moreover, we employ the Chain-of-Thought (CoT)
technique to guide the LLM in identifying explicit and concrete indicators of harmful content before
classifying the text. This structured reasoning process ensures that the model makes informed deci-
sions based on clear evidence of harmful content. The complete prompt is provided in the appendix.

Label System A label system with semantically distinct harmful categories is crucial for enabling
a
::
an

:
LLM to make more precise detection. Unlike conventional supervised detection models, which

learn the correlation between input data and output labels, a
::
an LLM makes decisions by identifying

the semantic relationships between the input text and the output categories. We follow the label
systems of existing commercial moderation tools to design our own. Specifically, for toxic text, we
adopt the label system from either Perspective API (1st row in Table 1) or OpenAI Moderation API
(2nd row in Table 1). For jailbreak prompts, we have selected the label system from LlamaGuard3
(3rd row in Table 1), as the LlamaGuard model series have been shown to be effective in detecting
jailbreak prompts (Inan et al., 2023). We assign a unique character symbol to each category, includ-
ing both harmful and non-harmful ones. This allows for the design of a simple character-matching
mechanism, which guides the LLM to act similarly to a classifier and facilitates the parsing of out-
put results. For example, we assign numerical labels such as 0, 1, 2, and so forth, to categories
“Not Harmful”, “Toxicity”, “Severe Toxicity”, etc., as defined by Perspective API. The label system
serves as a “soft” guide to encourage LLMs to adhere to the desired symbolic output format.

Calibration Examples The in-context learning capabilities of LLMs enable a significant boost
in their generation quality with just a few relevant examples. During our initial exploration, we
observed that most LLMs tend to produce abnormally high false positive rates. To mitigate this
issue, we incorporate in-context examples of falsely classified text into our prompting framework,
thereby reminding the model to avoid overly strict classifications.

3.2 LOGIT RECTIFICATION

The generative nature of LLMs and their conversational interaction style, reinforced by instruc-
tion tuning, make their output inherently prone to deviate from the symbolic labels specified in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the prompting framework. For example, in our experiments with the Llama3-8B-Instruct model
(Llama Team, 2024), it frequently failed to directly generate the classified symbols and instead pro-
duced responses explicitly designed to reject harmful content. This behavior is likely a consequence
of conservative safety alignment.

To effectively extract valid classification symbols from a
::
an

:
LLM’s potentially random output, we

propose to rectify its output logits by nullifying out-of-domain logits. More formally, given a
:
an

LLM M that generates a sequence tokens x = [x1, x2, . . . , x|x|] conditioned on a provided prompt
p, the generation process can be denoted as x ∼ M(· | p). Each token is selected by sampling
from its corresponding logit distribution. For example, the selection of

:::::::
selecting

:
token x1 corre-

sponds to x1 ∼ P (Softmax(l)), where l = {l1, l2, . . . , l|V |} ∈ RV , and V denotes the size of the
vocabulary of

:::::::::
vocabulary

:::
size

:::
of M . As mentioned, we

:::
We

:
only consider logit values from a set

S of indices of pre-determined symbolic tokens
:::::
which

::::::::::
corresponds

:::
to

:::
the

:::::::
selected

::::
label

::::::
system

::
as

:::::
shown

::
in

:::::
Table

:::
4.3. This corresponds to applying a multi-dimensional rectification layer N(·) to l,

and outputting the selected logits as N(l) = {li∈S}, for i = 1, . . . , V . Thus, only the logits in l that
correspond to the tokens in S have their value preserved, while the rest are nullified to zero. The
remaining logits {li∈S} are then normalized to determine the final classification result.

This method is inspired by our hypothesis that a
::
an

:
LLM following an instruction may have its

inclination toward a particular output embedded in the logits associated with its first output token.
To validate this hypothesis, we implemented a simplified prompt, where the model is asked to judge
whether a piece of text is harmful using an open-ended prompt such as “Give me your judgment
result” without specifying the output format. We randomly sampled 100 text samples, consisting
of 50 harmful and 50 harmless samples

:::
ones, from the dataset published by Zheng et al. (Zheng

et al., 2024). We then used the logits of the first output tokens of Gemma2-9B-IT (Team et al., 2024)
across these 100 testing samples to determine their harmfulness, following our logit rectification
method. By comparing the results from the logit rectification with the ground truth labels, we found
that this method resulted in only four false positives and achieved an accuracy rate of 96%.

:::::
Similar

:::::
results

::::
with

::::
500

:::
and

:::::
1000

:::::::
samples

:::
are

::::::::
presented

::
in

:::
the

::::::::
appendix.

:

It is important to note that the benefits of adopting this logit rectification method
:::
logit

::::::::::
rectification

are multi-dimensional. First, it simplifies the output parsing and processingsteps
:::::
output

:::::::::
processing,

as the detection results are transformed to be deterministic. Second, since the processing latency of a
::
an LLM is directly proportional to the number of tokens it generates, logit rectification minimizes the
token count, thereby accelerating the process. Last but not least, we consider this logit rectification
method to be a generic approach for unveiling the implicit intentions of a

::
an LLM. It can be readily

adapted to a variety of LLM-based classification tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We adopted multiple harmful text datasets comprising approximately 35K samples for
evaluation. The HateCheck dataset (Röttger et al., 2020) contains approximately 4K samples, di-
vided into two categories: a harmful category with 2,563 samples and a normal category with 1,165
samples. The HateXplain dataset (He et al., 2024b) is designed to evaluate the explainability of hate
speech classifiers and comprises 20K samples across three categories: hate, offensive, and normal.
The OpenAI moderation dataset(OpenAI Mod) (Markov et al., 2023) consists of 1,680 samples that
adhere to OpenAI’s moderation criteria and include a fine-grained label system with 8 categories.
During the preparation of this work, OpenAI has expanded the number of categories in its Modera-
tion API from 8 to 11, by adding subcategory labels under the existing categories

::::
more

::::::::::
subcategory

:::::
labels. The ToxicChat dataset (Lin et al., 2023) contains approximately

:::::
around

:
10K prompt samples

collected from real user queries, including 9,419 non-toxic prompts and 746 toxic prompts. Among
the toxic prompts

::::
latter, 204 are also categorized as jailbreak prompts. The AdvBench dataset (Zou

et al., 2023) contains 520 harmful instructions as jailbreak prompts.
:::
We

::::
also

:::::::
evaluate

::::::::
JudgeRail

::::
with

:
4
:::::::::::
text-to-image

:::::::
prompt

::::::
datasets

:::::
from

::::
prior

:::::::
research

::::::::::::::
(Qu et al., 2023)

:
.
::::
Due

::
to

:::::
space

::::
limit,

::::
their

::::::::
evaluation

::::::
results

:::
are

:::::::
provided

:::
in

::
the

:::::::::
appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Performance of different models across all datasets. JudgeRail LLMs are denoted with the
prefix (JR). For the AdvBench dataset, which contains only harmful samples, we report accuracy
scores. For other datasets, we report F1 scores. The best performances are marked in bold. The
“Latency” column shows the average latency in seconds per sample across all datasets.

Model Dataset LatencyHateCheck HateXplain OpenAI Mod AdvBench ToxicChat
Martin-ha 0.592 0.511 0.504 0.000 0.114 0.001
ToxRoberta 0.839 0.685 0.612 0.210 0.274 0.002
S-nlp 0.812 0.664 0.684 0.019 0.265 0.001
heightPerspective API 0.862 0.683 0.701 0.054 0.250 1.000
OpenAI Mod. API 0.934 0.744 0.790 0.104 0.254 1.030
LlamaGuard3 0.926 0.720 0.791 0.979 0.497 0.159
ShieldGemma 0.892 0.729 0.794 0.612 0.684 0.191
::::::::
SplineLLM

: ::::
0.815

: ::::
0.667

: ::::
0.481

: ::::
0.892

: ::::
0.139

: ::::
0.063

:

height
:::::::::::::
Simple(Gemma2)

: ::::
0.887

: ::::
0.712

: ::::
0.730

: :
/

:
/

::::
7.310

:

:::::::::::::::::
Simple COT(Gemma2)

: ::::
0.905

: ::::
0.711

: ::::
0.693

: :
/

:
/

::::
7.392

:

GLM4(JR) 0.894 0.719 0.714 0.729 0.385 0.102
Mistral0.2(JR) 0.884 0.706 0.676 0.950 0.586 0.088
Gemma2(JR) 0.910 0.746 0.756 0.992 0.584 0.098

JudgeRail Models With JudgeRail, we primarily evaluated three open-source LLMs: Gemma2-
9B-IT(Gemma2) (Team et al., 2024), GLM-4-9B-Chat(GLM4) (GLM et al., 2024), and Mistral-
7B-Instruct-v0.2(Mistral0.2) (Jiang et al., 2023; AI, 2024). The parameter sizes of these selected
models are comparable to those of

:::::
These

:::::::
selected

:::::
LLMs

:::::
have

::::::::::
comparable

::::
size

::
to ShieldGemma-

9B and LlamaGuard3-8B. We have also integrated Llama3-8B-Instruct and Llama3.1-8B-Instruct
(Llama Team, 2024) into JudgeRail for evaluation. However, both Llama3 models exhibited sur-
prisingly poor instruction-following capabilities and overly conservative behaviors.1 Therefore, we
have omitted

::::::
provide

:
their evaluation results in this section and have included them

::
the

::::::::
appendix.

::::::::::
Additionally,

:::
we

:::::
have

::::
also

::::::::
equipped

:::::
GPT4

::::::::::::::::::
(Achiam et al., 2023)

::::
with

::::::::
JudgeRail

::::
and

::::::::
evaluated

::
its

::::::::::
performance

:::
on

::::
three

:::
of

:::
the

:::
five

:::::::
selected

::::::::
datasets,

:::
due

::
to

:::
the

::::
high

:::::
cost.

::::
The

:::::::::
evaluation

:::::
results

:::
are

:::
also

::::::::
presented

:
in the appendix.

Baseline Models We compared JudgeRail models with a spectrum of harmful text detectors that
span conventional, commercial, and LLM-based models. For conventional models, we followed
a prior study (Balestriero et al., 2024) to adopted ToxRoberta (Hartvigsen et al., 2022), Martin-ha
(Martin-ha, 2024), and S-nlp (Logacheva et al., 2022). These models have been reported to achieve
the best performance among conventional toxicity detection models, with the latter two also having
high download records in the Hugging Face community. For commercial tools, we selected Google’s
Perspective API and the OpenAI Moderation API due to their popularity in the literature. For LLM-
based models, we compared our approach with the latest ShieldGemma-9B and LlamaGuard3-8B, as
these are the most recent moderation models built on top-performing LLMs.

:::
We

:::
also

:::::::::
compared

:::
with

:::::::::
SplineLLM

:::::::::::::::::::::
(Balestriero et al., 2023),

::::::
which

::::
uses

:::::
latent

:::::::
features

::::::::
extracted

::::
from

::::::
LLMs

::
to
:::::::

perform
::::::
content

::::::::::
moderation.

:::::::::::
Furthermore,

::
to

:::::::::::
demonstrate

:::
the

::::::::::
effectiveness

:::
of

::::::::
JudgeRail

:::::::
prompts

::::::::
compared

::
to

:::::
simple

::::::::
prompts,

:::
we

:::::::::
employed

:::
two

::::::
simple

::::::
prompt

::::::::
methods

:::::::
(Simple,

::::::::::::
Simple COT)

::::
from

::::::
several

:::::
related

:::::::
studies

:::::::::::::::
(He et al., 2024a)

:::::::::::::::
(Yang et al., 2023)

::
for

:::::::::::
comparisons.

::::::
Given

::::
that

::::
these

:::::::
prompts

:::
are

:::::
aimed

::
at

::::
hate

::::::
speech

:::
and

::::
toxic

:::::::
content,

:::
we

:::::::
selected

:::
the

:::::
three

:::
hate

::::::
speech

::::::
related

::::::::
datasets.

Except for Perspective API and OpenAI Moderation API, all other
::
the

::::
two

:::::
APIs,

:::
all models were

run locally with 4 NVIDIA GeForce RTX 4090 GPUs.

4.2 JUDGERAIL PROMPTING IS UNIVERSALLY EFFECTIVE

We present the performance of all models across all datasets in Table 2. For Perspective API, we
converted its multi-label detection results into binary classifications by assigning the final result as
harmful if any harmful label had a score larger than 0.5, following the evaluation protocol described
in (He et al., 2024b). The OpenAI Moderation API directly outputs a binary detection result along

1When presented with harmful text, Llama3 models tended to respond with refusal replies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

with fine-grained, multi-dimensional harmful scores. For the JudgeRail models, we adopted the
label systems of Perspective API and LlamaGuard3 for toxic speech datasets and jailbreak prompt
datasets, respectively. We avoided using calibration examples in this section for ablation purposes.

:::::::::::
Commercial

::::::::::
moderation

::::
APIs

:
.
:
As shown in Table 2, all LLM-based models

:::::
except

:::
for

:::::::::
SplineLLM

significantly outperformed conventional toxic speech detection models – namely, Martin-ha,
ToxRoberta, and S-nlp – especially on the jailbreak datasets such as AdvBench and ToxicChat. Note
that the performance of Perspective API on HateCheckand HateXplain,

::::::::::
HateXplain,

::::
and

::::::::
ToxicChat

is comparable to that of conventional models. OpenAI Moderation API achieved competitive per-
formance on the HateCheck, HateXplain, and OpenAI moderation datasets, closely matching LLM-
based models and even achieving the best performance on the HateCheck dataset. Nevertheless,
similar to conventional models, both commercial moderation tools

::::
APIs

:
exhibit very limited perfor-

mance on the jailbreak datasets.

:::::
LLM

::::::::::
moderation

:::::
tools

:
.
:

Among LLM-based models, JudgeRail models achieved performance
comparable to the other two fine-tuned LLMs. Specifically, among

:::::::::
LLM-based

:::::::
models.

::::::::
Between the

two fine-tuned LLMs, LlamaGuard3 exhibited slightly stronger overall performance, while Shield-
Gemma notably outperformed LlamaGuard3

:::::::
perform

::::::
notably

:::::
better on the ToxicChat dataset.

::::
Since

:::::::::
SplineLLM

::
is
::::::
trained

:::
on

:
a
:::::::
specific

:::::
toxic

::::::
dataset

:
–
::::::
Jigsaw

:::::::::::::::::::
cjadams et al. (2017b),

:::
its

:::::::::::
generalization

::::::::::
performance

::
is

::::::
limited

:::::
when

::::::::
compared

::
to
:::::
other

::::::::::
LLM-based

:::::::
models.

For JudgeRail models, Gemma2(JR) demonstrated the best overall performance. This result, com-
bined with ShieldGemma’s top performance on the OpenAI moderation and ToxicChat datasets,
imply that Gemma2-9B has superior capabilities in recognizing harmful text. On the other hand,
Mistral0.2(JR) obtained the worst performance across three toxic speech datasets when compared
to other LLM-based models, while demonstrating highly competitive results on the two jailbreak
datasets. In contrast, GLM4(JR)’s overall performance ranks in the middle; however, its perfor-
mance on the jailbreak datasets is notably worse than that of other JudgeRail models.

::
To

:::::
better

::::::
present

:::
the

::::::::
flexibility

::
of

:::::::::
JudgeRail,

:::
we

:::
also

:::::
equip

::::::
GPT-4

::::
with

::::::::
JudgeRail

::::::::
(denoted

::
as

:::::::::
GPT4(JR))

:::
and

:::::::
evaluate

::
its

:::::::::::
performance.

:::::::
Detailed

::::::
results

:::
are

::::::
shown

::
in

::
the

:::::::::
appendix.

::::::::
GPT4(JR)

:::::::
obtains

:::::::::
comparable

::::::::::
performance

::
to

:::
our

::::::::::::::
best-performing

:::::::::::
Gemma2(JR)

:::
on

:::::::::
AdvBench

:::
and

:::::::
OpenAI

::::::::::
Moderation

:::::::
datasets,

::::
while

::::::::::
performing

:::::
worse

:::
on

:::
the

:::::::::
HateCheck

:::::::
dataset.

:::
By

::::::::
examining

:::
its

:::::::::
mistakenly

::::::::
classified

:::::::
samples,

::
we

::::
find

::::
that,

::::::
while

:::::::::
HateCheck

::::::::
primarily

:::::::
focuses

:::
on

::::
hate

::::::
speech,

:::::
some

:::
of

::
its

::::::::
samples

::::::
labeled

::
as

:::::::
Non-hate

::::
still

:::::::
contain

::::::::
offensive

::::::::
materials.

:::::
This

::::
type

::
of

::::::
content

::
is
:::::

often
::::::::::
recognized

::
as

:::::::
harmful

::
by

::::::
GPT-4.

:::
We

::::
will

::::::
discuss

:::
the

::::::
impact

::
of

:::::::::
inaccurate

:::::
labels

::
in

:::
the

::::::::
following

:::::::
sections.

:

::
An

::::::::::
interesting

::::::::::
observation

:::
is

::::
that,

:::
by

::::::
using

:::
the

::::
two

:::::::::
previously

::::::::::
mentioned

::::::
simple

:::::::::
prompting

:::::::::
techniques,

:::
we

::::
can

:::::
shape

:::
an

:::::
LLM

::
to

::::::
obtain

::::::::::
satisfactory

::::::::::
moderation

:::::::::::
performance.

:::::::::::
Meanwhile,

::::::::
JudgeRail

::::::::
maintains

:::::::
superior

:::::::::::
performance

:::::
across

:::
all

:::::::
datasets.

:

::::::::
Detection

:::::::
latency.

::
The last column of Table 2 presents the detection latency of all models. For

the two commercial APIs, according to their public guidelines (Google, 2024; OpenAI, 2024), Per-
spective API sets a quota limit of an average of 1 query-per-second, whereas OpenAI imposes a
requests-per-minute quota limit for free accounts. During our experiments, we manually measured
their latency and found that both APIs have an average limit of 1 second per query.

As evident from Table 2, the average latency for conventional models was approximately 1 to 2 mil-
liseconds per sample, whereas LLM-based models exhibited an average processing latency of around
100 milliseconds per sample. This significant latency difference suggests that LLM-based modera-
tion solutions face challenges when the required processing bandwidth is high. Among LLM-based
models, JudgeRail models demonstrated significantly lower processing latency compared to Lla-
maGuard3 and ShieldGemma. Mistral0.2(JR) exhibited the fastest processing speed, reducing the
processing time by 45% compared to LlamaGuard3 and by 54% compared to ShieldGemma. Ad-
ditionally, Gemma2(JR) required only 51.3% of the time taken by ShieldGemma to process a text
sample on average.

The above results indicate that our proposed JudgeRail framework effectively adapts various open-
source LLMs into competitive harmful text detection models, while also enhancing practicality
through a significant acceleration in processing speed. In the following section, we further explore
potential improvements by thoroughly examining the key components of our JudgeRail framework.
Unless otherwise specified, we will focus on evaluating Gemma2(JR).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

P1 P2 P3 P4 P5 P6
Labels

0

10

20

30

40

Ra
te

(c
ou

nt
/to

ta
l) HateCheck

HateXplain
OpenAI Mod

(a) False positives with Perspective API labels.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
Labels

0

5

10

15

20

Ra
te

(c
ou

nt
/to

ta
l) ToxicChat

(b) False positives with LlamaGuard3 labels.

Figure 2: The distribution of FP errors across different datasets and categories from the adopted
label system

::
as

::::::
shown

::
in

:::::
tabel1. For the HateCheck, HateXplain, and OpenAI moderation datasets,

we use the Perspective API label system, denoting categories as “P1”, “P2”, etc. For ToxicChat, we
use the LlamaGuard3 label system, denoting categories as “S1”, “S2”, etc.
False positive examples collected from HateCheck and HateXplain. Dataset Example 1 Example
2HateCheck You can all go f*** yourselves.I gotchu, my n****.HateXplaineat your di* wait thats
ga*. f***ing twitter done with that f*****.

Table 3: Comparison of F1 and accuracy scores (F1/Acc) between the two label systems.

Model Perspective API Categories OpenAI Moderation API Categories
HateCheck HateXplain OpenAI Mod HateCheck HateXplain OpenAI Mod

GLM4(JR) 0.894/0.843 0.719/0.671 0.714/0.821 0.838/0.793 0.641/0.683 0.664/0.823
Mistral0.2(JR) 0.884/0.826 0.706/0.675 0.676/0.798 0.807/0.744 0.607/0.647 0.700/0.814
Gemma2(JR) 0.910/0.865 0.746/0.685 0.756/0.839 0.927/0.895 0.742/0.690 0.792/0.851

4.3 LABEL SYSTEM AND QUALITY MATTERS

:::
The

:::::::
impact

::
of

::::::::::
ambiguous

:::::
labels

:
. By delving into the performance of JudgeRail models in identi-

fying each harmful category, we observed a significant imbalance in the ratio of false positives (FP)
to false negatives (FN), ranging from 4:1 to 20:1 2. This suggests that the high rate of FP errors is
the primary factor limiting the overall performance of the JudgeRail models.

In Figure 2, we illustrate the distribution of FP errors across different datasets and categories, with
“P4” and “P5” denoting “Insult” and “Profanity”, and “S6” and “S14” representing “Specialized
Advice” and “Code Interpreter Abuse”, respectively. The FP errors observed in ToxicChat are less
severe than those found in toxic speech datasets. We can identify two key factors contributing to
these FP errors: the taxonomic structure of the adopted label system and the quality of the provided
labels. Upon analyzing the FP errors from HateCheck and HateXplain, a considerable number of
samples, as exemplified in Table ??

:
1
:::

in
:::
the

::::::::
appendix, were categorized by Gemma2(JR) under

“Profanity” according to the Perspective API label system, despite being labeled as non-toxic or
not harmful. Therefore, we attribute the discrepancies between the JudgeRail models’ detection
outcomes and the human-annotated “ground-truth” labels to the relatively high degree of semantic
ambiguity inherent in the category designations of “Insult” and “Profanity”.

GLM4 Mistral0.2Gemma2
0

20

40

60

80

100

Fa
lse

 P
re

di
ct

io
n

Ra
te

 (%
)

Perspective FP
Perspective FN
OpenAI Mod FP
OpenAI Mod FN

Figure 3: Change in the ratios between
FP and FN errors on HateCheck before
and after switching label systems.

We then adopted the label system of OpenAI Modera-
tion API, which has less ambiguous semantic implica-
tions, as shown in Table 1. Table 3 show that, switch-
ing categories led to a decrease in F1 scores. However,
the accuracy scores, which measure the ratio of correctly
classified samples, slightly improved for JudgeRail mod-
els on the HateXplain and OpenAI moderation datasets.
These changes can be attributed to a reduction in FP er-
rors but an increase in FN errors when switching from
the Perspective API’s harmful categories to those of the
OpenAI Moderation API. Figure 3 illustrates the change
in the ratios between FP and FN errors before and after
the label system switch for three JudgeRail LLMs. As

2The specific FP and FN counts are detailed in the appendix.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

expected, we observe an exchange between FP and FN
errors for both GLM4(JR) and Mistral0.2(JR), while FP
errors remain a prominent issue for Gemma2(JR). These results indicate that changing the label
system indeed influences detection performance, as expected. In JudgeRail, this can be adjusted by
simply editing the text segment reserved for the label system. However, both label systems from the
commercial moderation tools still exhibit a degree of ambiguity in their harmful taxonomies.

We further shifted our focus to
:::
The

:::::::
Impact

::
of

:::::
Label

:::::::
Quality

:
.
:::
We

::::::
further

::::
focus

:::
on investigating the

quality of the ground-truth labels provided for the identified false positive (FP)
:::
FP samples. Specif-

ically, we employed GPT-4 to re-label the FP samples collected from Gemma2(JR) on HateCheck.
We asked GPT-4 to determine whether a sample labeled by Gemma2(JR) as “Insult” or “Profanity”
was actually harmful, and used its assessment as the new ground-truth. As shown in Figure 4, the
F1 scores of most evaluated models increase with the GPT-4 re-labeled samples. In particular, all
JudgeRail LLMs exhibit more significant performance improvements, with Gemma2(JR) achieving
the best performance on the HateCheck dataset. These results highlight the importance of label qual-
ityin conducting more accurate evaluations of text moderation models. In addition

:
.
:::::::::::
Additionally,

the OpenAI moderation dataset includes samples with fine-grained labels that align with the taxon-
omy of OpenAI Moderation API. This allowed us to compare the

:::
the

:::::::::
comparison

::
of
:::
the

:
fine-grained

detection accuracy between Gemma2(JR) and OpenAI Moderation API. Specifically, we evaluated
each sample from the OpenAI moderation dataset to determine if its ground-truth label matched the
results of both Gemma2(JR) and OpenAI Moderation API, thereby obtaining the overall accuracy.
The results, presented as the light blue bars in Figure 5, show that Gemma2(JR) achieved better
detection accuracy.

0.5 0.6 0.7 0.8 0.9 1.0
GLM4(JR)

Mistral0.2(JR)
Gemma2(JR)

LlamaGuard3
ShieldGemma

Perspective API
OpenAI Mod. API

ToxRoberta
S-nlp

Martin-ha Original
Fixed

Figure 4: F1 scores before and after re-labeling
with GPT-4 on HateCheck. “Original” denotes the
original F1 scores, while “Fixed” denotes the F1
scores calculated with GPT-4’s labels.

OpenAI Mod. API
Gemma2(JR)

LlamaGuard3
ShieldGemma

OpenAI Mod. API
Gemma2(JR)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

0.734 0.787
0.658

0.362

0.065

0.431

OpenAI Mod
Ultrasafety

Figure 5: A comparison of the
::::::::
detection

accuracy in detecting harmful text between
Gemma2 (JR) and the OpenAI Moderation
API (left), and in detecting jailbreak prompts
from the Ultrasafety dataset among Gemma2
(JR) and other capable models (right).

::::::::
Few-shot

::::::::::
calibration.

:
To further improve the detection performance of JudgeRail models, we in-

corporate few-shot calibration examples into the prompting framework, as described in Section 3.1.
Given that FP errors dominate the errors of Gemma2(JR), our primary objective is to introduce
few-shot FP examples to calibrate its detection results.

We constructed a pool of FP samples by collecting such errors from all datasets. We then conducted
multiple sampling iterations, selecting 2, 4, or 8 samples from this pool to include in the JudgeRail
prompting framework as calibration examples. However, since the HateXplain dataset, with 20K
samples, contributes the majority of FP samples to the pool, random sampling fewer than 10 samples
would essentially rely on HateXplain as the primary source for calibration. Therefore, we also
sampled FP examples from each dataset individually and reported the best performance. Table 4
presents the experimental results obtained from the HateCheck and OpenAI moderation datasets 3.
We observe that on most datasets, sampling from individual datasets (“Individual”) is more effective
in reducing either FP or FN errors compared to sampling from the entire FP pool (“All”).

4.4 PERFORMANCE FOR DETECTING ADVANCED JAILBREAK PROMPTS

We further evaluate Gemma2(JR) for its performance in detecting advanced jailbreak prompts,
such as those provided by the UltraSafety dataset (Guo et al., 2024), which includes long jail-

3The results from other datasets are provided in the appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Few-shot calibration performance (FP/FN/F1) for Gemma2(JR). “Base” refers to the case
without

::::::
denotes

::
no

:
calibration. “Individual” indicates sampling from individual dataset, and ”All”

denotes
:::::
denote sampling

:::
FPs

:
from

::::::::
individual

::::
and all FP samples

:::::::
datasets,

::::::::::
respectively.

Dataset Base Individual All
FP FN F1 FP FN F1 FP FN F1

HateCheck 472 31 0.910 414 47 0.916 472 35 0.909
OpenAI Mod 167 103 0.756 170 83 0.776 185 77 0.773

Table 5: Performance of LLM-based detection models evaluated with BF16 and INT4 precision.
We report accuracy scores for AdvBench and F1 scores for other datasets. Latency is measured as
the average time in seconds required to process one sample.

Model Dataset Latency Mem.HateCheck HateXplain OpenAI Mod Advbench ToxicChat
LlamaGuard3-BF16 0.926 0.720 0.791 0.979 0.497 0.159 26G
LlamaGuard3-INT4 0.885 0.689 0.780 0.983 0.489 0.234 9G
ShieldGemma-BF16 0.892 0.729 0.794 0.612 0.684 0.191 31G
ShieldGemma-INT4 0.892 0.728 0.790 0.477 0.675 0.260 12G
Gemma2(JR)-BF16 0.916 0.746 0.776 0.996 0.618 0.094 21G
Gemma2(JR)-INT4 0.920 0.755 0.748 0.992 0.687 0.154 11G

break prompts for role-playing scenarios. The evaluation results for LlamaGuard3, ShieldGemma,
Gemma2(JR), and OpenAI Moderation API are presented in Figure 5. Our observations indicate
that LlamaGuard3 outperformed the other models by a large margin, while Gemma2(JR) achieved
the second-best performance, surpassing ShieldGemma. Given that both Gemma2(JR) and Shield-
Gemma share the same foundation LLM, these results suggest that JudgeRail is effective in stimu-
lating general-purpose LLMs to defend against more sophisticated jailbreak prompts.

4.5 IMPACT OF LOGIT RECTIFICATION AND MODEL PRECISION ON DETECTION LATENCY

In Figure 6, we illustrate the acceleration effect on detection achieved by adopting logit rectification.
Compared to using the “soft” prompt defined in JudgeRail for output regulation, logit rectification
significantly reduces processing latency for all three JudgeRail LLMs by rigorously ensuring a valid
output format.

:::
The

::::::
results

::
in

:::::
Table

::
2
::::
also

:::::
show

::::
that

::::::::
JudgeRail

::::
has

:
a
:::::::::

significant
:::::::::

advantage
::::

over
:::::
simple

:::::::::
prompting

::
in

:::::
terms

:::
of

::::::
latency.

:
To further assess the practicality of JudgeRail, we evaluated

the performance of 4-bit quantized LLMs under our framework, as well as the 4-bit versions of
LlamaGuard3 and ShieldGemma4. We monitored the running memory (as shown in the ”Mem.”
column of Table 5) to validate the success of the configuration.

0.0 0.2 0.4 0.6 0.8 1.0
Latency/s

GLM4

Mistral0.2

Gemma2

0.102

0.088

0.098

0.203

1.037

0.383 w
w/o

Figure 6: Compare latency with (label w) or with-
out (label w/o) logit rectification

As shown in Table 5, most LLMs with 4-bit pre-
cision exhibit limited performance fluctuations
:::::::
maintain

:::::
rather

:::::
stable

:::::::::::
performance across most

datasets. However, ShieldGemma experiences
a noticeable performance degradation on the
AdvBench dataset when transitioning from
BF16 to INT4 precision. In contrast, on the
ToxicChat dataset, Gemma2(JR) with INT4
precision outperforms its BF16 counterpart and
achieves the best performance. These results
indicate that open-source LLMs equipped with
JudgeRail can be effectively deployed at lower
precision while maintaining their detection performance. We also observed that all LLM-based
models experienced nearly twice the latency compared to their BF16 versions. This increase in la-
tency may be attributed to the current limitations in computational efficiency optimizations for 4-bit
quantized models. As lower-bit LLMs are anticipated to be better optimized, the practicality of
JudgeRail can be further boosted.

4We configured all models to their 4-bit versions by setting “load in 4bit=True”.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

5
::::::::::::
LIMITATION

::
To

::::::
ensure

::::
fast

::::::::
detection,

:::
we

::::
use

::
a

::::::::
relatively

::::::
simple

:::::::::
in-context

:::::::
learning

:::::::::::
mechanism,

:::::
which

::::
may

::::
limit

::::::::::
performance

::::::::::::
improvement.

:::
In

:::::
future

:::::
work,

:::
we

::::
will

::::::
explore

:::::
more

:::::::
complex

:::::::::::
mechanisms,

::::
such

::
as

::::::::::::::::::
Retrieval-Augmented

:::::::::
Generation

:::::::
(RAG).

::::::::
Moreover,

:::
we

:::::
have

::::::
shown

:::
that

:::::::
existing

:::::
label

::::::
systems

::::
have

:::::
some

:::::
degree

:::
of

:::::::
semantic

::::::::::
ambiguity,

:::::
which

:::::
limits

::::::::
detection

:::::::::::
performance.

:::::
This

::::::::
motivates

:::
our

:::::
future

::::
work

:::
on

::::::::
designing

:
a
:::::
more

::::::
refined

::::
label

::::::
system

::::
with

:::::::::::::
better-separated

:::::::
semantic

:::::::::::::
representations.

::::::::::
Additionally,

:::::
note

:::
that

:::
the

::::::::
detection

::::::::::
capabilities

::
of

:::::::::
JudgeRail

:::::::::
essentially

::::::
depend

:::
on

::
its

:::::::::
underlying

:::::
LLM.

::::
This

::::::::
indicates

:::
that

::::
one

:::::
needs

::
to
::::::::

perform
:::::
model

::::::::
selection

::::::
instead

:::
of

:::::
using

:::::::
arbitrary

::::::
LLMs.

::::::::
However,

::::::::
JudgeRail

::::
also

:::::::
benefits

::::
from

:::
this

:::
as

::
the

::::::::::
underlying

::::
LLM

:::::::
evolves

::
in

::
its

:::::::::
capability.

:

6 CONCLUSION

This paper introduces the JudgeRail framework, which effectively and efficiently adapts open-source
LLMs into harmful text detectors. To explore and improve the proposed framework, we

::
We

:
have

thoroughly investigated the influence of the label system, in-context few-shot calibration exam-
ples, and a novel logit rectification method. The latter not only ensures rigorous behavior from
the underlying LLMs but also significantly accelerates detection. We have evaluated three open-
source LLMs equipped with JudgeRail, as well as several LLM-based and conventional moderation
tools, on five datasets that encompass toxic speech data and jailbreak prompts. Our experiments
demonstrate that LLM-based moderation models achieve significantly better performance than con-
ventional detectors, while LLMs with JudgeRail are competitive with fine-tuned moderation LLMs.
The evaluation results also show that LLMs with JudgeRail require approximately half the time
needed by LlamaGuard3 and ShieldGemma to process a sample on average.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mistral AI. mistralai/Mistral-7B-Instruct-v0.2 · Hugging Face — huggingface.co. https:
//huggingface.co/mistralai/Mistral-7B-Instruct-v0.2, 2024. [Accessed
28-09-2024].

Randall Balestriero, Romain Cosentino, and Sarath Shekkizhar. Characterizing large language
model geometry solves toxicity detection and generation. arXiv preprint arXiv:2312.01648, 2023.

Randall Balestriero, Romain Cosentino, and Sarath Shekkizhar. Characterizing large language
model geometry helps solve toxicity detection and generation. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=glfcwSsks8.

cjadams, Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, nithum, and Will
Cukierski. Toxic comment classification challenge, 2017a. URL https://kaggle.com/
competitions/jigsaw-toxic-comment-classification-challenge.

cjadams, Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, nithum, and Will Cukier-
ski. Toxic comment classification challenge. https://kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge, 2017b. Kaggle.

cjadams, Daniel Borkan, inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and nithum.
Jigsaw unintended bias in toxicity classification, 2019. URL https://kaggle.com/
competitions/jigsaw-unintended-bias-in-toxicity-classification.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

11

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://openreview.net/forum?id=glfcwSsks8
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Jenny Fan and Amy X Zhang. Digital juries: A civics-oriented approach to platform governance. In
Proceedings of the 2020 CHI conference on human factors in computing systems, pp. 1–14, 2020.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao, and Rui Yan. What
makes quantization for large language model hard? an empirical study from the lens of pertur-
bation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18082–
18089, 2024.

Google. Perspective developers limits and errors. https://developers.
perspectiveapi.com/s/about-the-api-limits-and-errors?language=
en_US, 2024. [Accessed 29-09-2024].

Mitchell L Gordon, Michelle S Lam, Joon Sung Park, Kayur Patel, Jeff Hancock, Tatsunori
Hashimoto, and Michael S Bernstein. Jury learning: Integrating dissenting voices into machine
learning models. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, pp. 1–19, 2022.

Guardrail. Guardrails AI — guardrailsai.com. https://www.guardrailsai.com/, 2024.
[Accessed 27-09-2024].

Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Jiexin Wang, Huimin Chen, Bowen Sun, Ruobing
Xie, Jie Zhou, Yankai Lin, et al. Controllable preference optimization: Toward controllable multi-
objective alignment. arXiv preprint arXiv:2402.19085, 2024.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin
Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks, jailbreaks,
and refusals of llms. arXiv preprint arXiv:2406.18495, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Ka-
mar. ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech
detection. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3309–3326, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.234. URL https://aclanthology.org/2022.
acl-long.234.

Xinlei He, Savvas Zannettou, Yun Shen, and Yang Zhang. You only prompt once: On the capabilities
of prompt learning on large language models to tackle toxic content. In 2024 IEEE Symposium
on Security and Privacy (SP), pp. 770–787. IEEE, 2024a.

Xinlei He, Savvas Zannettou, Yun Shen, and Yang Zhang. You only prompt once: On the capabilities
of prompt learning on large language models to tackle toxic content. In 2024 IEEE Symposium
on Security and Privacy (SP), pp. 770–787. IEEE, 2024b.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ian Kivlichan, Jeffrey Sorensen, Julia Elliott, Lucy Vasserman, Martin Görner, and Phil Culli-
ton. Jigsaw multilingual toxic comment classification, 2020. URL https://kaggle.com/
competitions/jigsaw-multilingual-toxic-comment-classification.

12

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://developers.perspectiveapi.com/s/about-the-api-limits-and-errors?language=en_US
https://developers.perspectiveapi.com/s/about-the-api-limits-and-errors?language=en_US
https://developers.perspectiveapi.com/s/about-the-api-limits-and-errors?language=en_US
https://www.guardrailsai.com/
https://aclanthology.org/2022.acl-long.234
https://aclanthology.org/2022.acl-long.234
https://kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification
https://kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Alyssa Lees, Vinh Q Tran, Yi Tay, Jeffrey Sorensen, Jai Gupta, Donald Metzler, and Lucy Vasser-
man. A new generation of perspective api: Efficient multilingual character-level transformers. In
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp.
3197–3207, 2022.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024.

Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, and Jingbo Shang.
Toxicchat: Unveiling hidden challenges of toxicity detection in real-world user-ai conversation.
arXiv preprint arXiv:2310.17389, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Varvara Logacheva, Daryna Dementieva, Sergey Ustyantsev, Daniil Moskovskiy, David Dale, Irina
Krotova, Nikita Semenov, and Alexander Panchenko. ParaDetox: Detoxification with parallel
data. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6804–6818, Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2022.acl-long.469.

Todor Markov, Chong Zhang, Sandhini Agarwal, Florentine Eloundou Nekoul, Theodore Lee,
Steven Adler, Angela Jiang, and Lilian Weng. A holistic approach to undesired content detection
in the real world. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 15009–15018, 2023.

Martin-ha. martin-ha/toxic-comment-model · Hugging Face — huggingface.co. https:
//huggingface.co/martin-ha/toxic-comment-model?text=god, 2024. [Ac-
cessed 29-09-2024].

Meta. meta-llama/Llama-Guard-3-8B · Hugging Face — huggingface.co. https://
huggingface.co/meta-llama/Llama-Guard-3-8B, 2024. [Accessed 29-09-2024].

OpenAI. Openai docs rate limits. https://platform.openai.com/docs/guides/
rate-limits/usage-tiers, 2024. [Accessed 29-09-2024].

Yiting Qu, Xinyue Shen, Xinlei He, Michael Backes, Savvas Zannettou, and Yang Zhang. Unsafe
diffusion: On the generation of unsafe images and hateful memes from text-to-image models. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3403–3417, 2023.

Traian Rebedea, Razvan Dinu, Makesh Sreedhar, Christopher Parisien, and Jonathan Cohen. Nemo
guardrails: A toolkit for controllable and safe llm applications with programmable rails. arXiv
preprint arXiv:2310.10501, 2023.

Paul Röttger, Bertram Vidgen, Dong Nguyen, Zeerak Waseem, Helen Margetts, and Janet B Pier-
rehumbert. Hatecheck: Functional tests for hate speech detection models. arXiv preprint
arXiv:2012.15606, 2020.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ” do anything now”:
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. arXiv
preprint arXiv:2308.03825, 2023.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. “Do Anything Now”:
Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2024.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2022.acl-long.469
https://huggingface.co/martin-ha/toxic-comment-model?text=god
https://huggingface.co/martin-ha/toxic-comment-model?text=god
https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://platform.openai.com/docs/guides/rate-limits/usage-tiers
https://platform.openai.com/docs/guides/rate-limits/usage-tiers

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Prakash Gupta, Hyung Won Chung, Dara Bahri, Zhen
Qin, Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers
via gradient-based subword tokenization. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=JtBRnrlOEFN.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Yongjin Yang, Joonkee Kim, Yujin Kim, Namgyu Ho, James Thorne, and Se-young Yun. Hare:
Explainable hate speech detection with step-by-step reasoning. arXiv preprint arXiv:2311.00321,
2023.

Zhuowen Yuan, Zidi Xiong, Yi Zeng, Ning Yu, Ruoxi Jia, Dawn Song, and Bo Li. Rigorllm:
Resilient guardrails for large language models against undesired content. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=QAGRPiC3FS.

Wenjun Zeng, Yuchi Liu, Ryan Mullins, Ludovic Peran, Joe Fernandez, Hamza Harkous, Karthik
Narasimhan, Drew Proud, Piyush Kumar, Bhaktipriya Radharapu, et al. Shieldgemma: Genera-
tive ai content moderation based on gemma. arXiv preprint arXiv:2407.21772, 2024.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, and
Nanyun Peng. On prompt-driven safeguarding for large language models. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, Yejin Choi, and Noah Smith. Challenges in
automated debiasing for toxic language detection. In Paola Merlo, Jorg Tiedemann, and Reut
Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pp. 3143–3155, Online, April 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.274. URL https:
//aclanthology.org/2021.eacl-main.274.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

14

https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=QAGRPiC3FS
https://aclanthology.org/2021.eacl-main.274
https://aclanthology.org/2021.eacl-main.274

	Introduction
	Related Work
	LLM-based Moderation Models
	Conventional Moderation Models

	Methodology
	JudgeRail Prompting Framework
	Logit Rectification

	Experiments
	Experimental Setup
	JudgeRail prompting is universally effective
	Label system and quality matters
	Performance for Detecting Advanced Jailbreak Prompts
	Impact of Logit Rectification and Model Precision on Detection Latency

	Limitation
	Conclusion

