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A DIFFERENT DESIGN OF GRAPH WAVELETS

There are many off-the-shelf, well-developed graph wavelets we can choose. They mainly focus
on extracting features from multiple frequency bands of input signal spectrum. Some of them are
shown as follows.

Monic Cubic wavelets. Monic Cubic wavelets (Hammond et al., 2011) define the kernel function
h(λ) as

h(λ) =


λ for λ < 1;

−5 + 11λ− 6λ2 + λ3 for 1 ≤ λ ≤ 2;

2/λ for λ > 2.

Different scales of filters are implemented by scaling and translation of above kernel function.

Itersine wavelets. Itersine wavelets define the kernel function at scale j as

hj(λ) = sin

(
π

2
cos2(π(λ− j − 1

2
))

)
1

[
j

2
− 1 ≤ λ ≤ j

2

]
.

Itersine wavelets form tight frames.

Geometric scattering wavelets. Geometric scattering wavelet filter bank (Gao et al., 2019) contains
a set of filters based on lazy random walk matrix. The filter at scale j is defined as Hj(S) =

S2j−1 −S2j = S2j−1

(I−S2j−1

), where S = 1
2 (I + AD−1) is the lazy random walk matrix and D

is the degree matrix.

Note that one is also allowed to customize either spatial or temporal graph wavelets, once they
conform a frame and satisfy integral Lipschitz constraint shown as follows

A2‖x‖2 ≤
J∑

j=1

‖Hjx‖2 ≤ B2‖x‖2, |λh′(λ)| ≤ const ∀λ,

where A,B are scalar constants and h′(·) is the gradient of the kernel function.

B PROOFS

B.1 PROOF OF LEMMA 1

By reshaping the signal from Z to z with Zs,t = z(s−1)T+t, we can have that

Js,Jt∑
j1,j2=1

‖(Hj1(Ss)⊗Gj2(St))z‖2 =

Js,Jt∑
j1,j2=1

∥∥Hj1(Ss)ZG>j2(St)
∥∥2 .

Since Ss and St do not change over computation process, we just use Hj1 and Gj2 to represent

Hj1(Ss) and Gj2(St), respectively. Suppose Hj1 =

h11 h1N
. . .

hN1 hNN

 ∈ RN×N , then we have

the Kronecker product as Hj1 ⊗Gj2 =

h11Gj2 h1NGj2

. . .
hN1Gj2 hNNGj2

. Apply it to vector z and we

can have a filtered signal yj1,j2 = (Hj1 ⊗Gj2)z ∈ RNT . The first T elements of y can also be
written as

yj1,j2(1 : T ) =

N∑
i=1

h1iGj2


Zi,1

Zi,2

...
Zi,T

 = Gj2

N∑
i=1

h1i


Zi,1

Zi,2

...
Zi,T

 .
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Therefore we have

A2
2

∥∥∥∥∥∥∥∥
N∑
i=1

h1i


Zi,1

Zi,2

...
Zi,T


∥∥∥∥∥∥∥∥
2

≤
∑
j2

‖yj1,j2(1 : T )‖2 ≤ B2
2

∥∥∥∥∥∥∥∥
N∑
i=1

h1i


Zi,1

Zi,2

...
Zi,T


∥∥∥∥∥∥∥∥
2

.

Thus
∑

j2
‖yj1,j2‖2 can be sandwiched as

A2
2

N∑
k=1

∥∥∥∥∥∥∥∥
N∑
i=1

hki


Zi,1

Zi,2

...
Zi,T


∥∥∥∥∥∥∥∥
2

≤
∑
j2

‖yj1,j2‖2 ≤ B2
2

N∑
k=1

∥∥∥∥∥∥∥∥
N∑
i=1

hki


Zi,1

Zi,2

...
Zi,T


∥∥∥∥∥∥∥∥
2

.

By definition of vector `2 norm, we can rewrite the upper and lower bound in Eq. (6) as

A2
2

T∑
i=1

∥∥∥∥∥∥∥∥Hj1


Z1,i

Z2,i

...
ZN,i


∥∥∥∥∥∥∥∥
2

≤
∑
j2

‖yj1,j2‖2 ≤ B2
2

T∑
i=1

∥∥∥∥∥∥∥∥Hj1


Z1,i

Z2,i

...
ZN,i


∥∥∥∥∥∥∥∥
2

.

Summing above quantity over j1 gives us that

A2
1A

2
2‖Z‖2 = A2

1A
2
2

T∑
i=1

∥∥∥∥∥∥∥∥


Z1,i

Z2,i

...
ZN,i


∥∥∥∥∥∥∥∥
2

≤
∑
j1,j2

‖yj1,j2‖2 ≤ B2
1B

2
2

T∑
i=1

∥∥∥∥∥∥∥∥


Z1,i

Z2,i

...
ZN,i


∥∥∥∥∥∥∥∥
2

= B2
1B

2
2‖Z‖2,

which completes the proof. Lemma 1 is a very handful result. It shows that we can easily construct
new spatio-temporal wavelets just by combining spatio and temporal ones. Moreover, the constants
for new frame bound can be easily obtained once we know the characteristics of the wavelets in each
domain. In particular, it also provides us a convenient way to build tight frames for spatio-temporal
data analysis with A = B, because we just need to choose tight frames for spatial and temporal
domain separately without considering possible correlations.

B.2 PROOF OF THEOREM 1

We are considering pooling operatorU(·) as average in spatial domain in this proof, so U = 1
N 11×N

and φ = UZ ∈ RT . The proof techniques can be easily generalized to any form of U(·). When
reshaping Z ∈ RN×T to z ∈ RNT , the new pooling operator can be simply represented as

U′ =
1

N
(IT , IT , · · · , IT ) ∈ RT×NT , φ = U′z.

Note that ‖U′‖2 = 1√
N

. Consider scattering tree nodes at the last layer L − 1. Suppose they are
indexed from 1 to JL−1 associated with signal a1, · · · ,aJL−1 , and their parent nodes are indexed
from 1 to JL−2 associated with signal b1, · · · ,bJL−2 . When the input data X is perturbed, all
signals in scattering tree will change correspondingly. Here we simply denote them as ã, b̃. Then
for the change of feature vector located at node with a1, it holds that

‖φa1
− φã1

‖2 = ‖U′(a1 − ã1)‖2 ≤ ‖U′‖2‖a1 − ã1‖2 ≤
1

N
‖σ((Hj1 ⊗Gj2)(b1 − b̃1))‖2, (6)

where j1 = j2 = 1. The last inequality holds because we are using absolute value function as
nonlinear activation, which is non-expansive. Summing above quantity over j1, j2 and by the frame
bound proved in Lemma 1, we can have that

JL−1∑
i=1

‖φai
− φãi

‖2 ≤ B2

N

JL−2∑
i=1

‖bi − b̃i‖2. (7)
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Note that for sum of square norm of change at layer L− 2 it is

JL−2∑
i=1

‖φbi
− φb̃i

‖2 ≤ 1

N

JL−2∑
i=1

‖bi − b̃i‖2. (8)

Compare Eq. (7) and (8). The upper bound only differs with a factor B2. Then by induction we can
have that

‖Φ(Ss,St,X)− Φ(Ss,St, X̃)‖2 ≤ 1

N

L−1∑
`=0

B2`‖x− x̃‖2 =
1

N

L−1∑
`=0

B2`‖∆‖2.

Normalize it with the dimension of final feature map, we have

‖Φ(Ss,St,X)− Φ(Ss,St, X̃)‖√
T
∑L−1

`=0 J
`

≤ 1√
NT

√√√√∑L−1
`=0 B

2`∑L−1
`=0 J

`
‖∆‖. (9)

B.3 PROOF OF THEOREM 2

Perturbations on the underlying graph usually happen when the graph is unknown or when the graph
changes over time (Segarra et al., 2017). Take skeleton-based action recognition as an example.
Some joints may be misrecognized with others due to measurement noise of devices during certain
frames, thus the location signals of those joints are interchanged. This leads to different spatial graph
structures at those time stamps. Since such kind of perturbations usually happen in spatial domain,
here we simply consider the structure perturbations on the spatial graph only. But the results can be
extended to more general cases.

Consider the original spatio-temporal graph as G with spatial graph shift matrix Ss and tempo-
ral one St, and the perturbed graph as Ĝ with Ŝs and St. We first show that ST-GST is invari-
ant to node permutations in spatial domain, where the set of permutation matrices is defined as
P =

{
P ∈ {0, 1}N×N : P1 = 1,P>1 = 1,PP> = IN

}
. Note that we are considering average in

spatial domain for U(·), so U = 1
N 11×N and φ = UZ ∈ RT , Û = UP.

Lemma 2. Consider the spatial permutation Ŝs = P>SsP and input data X̂ = P>X are also
permuted in spatial domain correspondingly. Then, it holds that

Φ(Ss,St,X) = Φ(Ŝs,St, X̂) (10)

Proof. Note that the permutation holds for all signals computed in scattering tree; that is to say,
Ẑ(p(`)) = P>Z(p(`)). Suppose for path p(`) the last two filter are chosen as H(Ŝs) and G(St), then
the feature vector after pooling with respect to new graph support and data can be written as

φ(p(`))(Ŝs,St, Ẑ(p(`))) = Û(σ(H(Ŝs)Ẑ(p(`))G
>(St)))

= UPσ(P>H(Ss)PP>Z(p(`))G
>(St))

The last equation holds due to definition of H(S). Since nonlinear activation is applied element-
wise, we can rewrite it as

φ(p(`))(Ŝs,St, Ẑ(p(`))) = Uσ(PP>H(Ss)PP>Z(p(`))G
>(St))

= Uσ(H(Ss)Z(p(`))G
>(St))

= φ(p(`))(Ss,St,Z(p(`))).

This conclusion holds independently of specific path p(`), so it holds for all feature vector after
pooling in scattering tree. Since final feature map is just a concatenation of all feature vectors, the
proof is complete.

Lemma 2 shows that the output of ST-GST is essentially independent of the node ordering in spatial
domain, as long as the permutation is consistent across all time stamps. This result is intuitive
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because the output of graph convolution should only depend on relative neighborhood structure of
each node. Since node reordering will not alter neighborhood topology, the output should remain
unchanged.

Based on Lemma 2, we use a relative perturbation model for structure modifications (Gama et al.,
2019b), which focuses more on the change of neighborhood topology compared to absolute per-
turbations adopted in Levie et al. (2019). Define the set of permutations that make Ss and Ŝ

the closet as Ps := arg minP∈P ‖P>ŜsP − Ss‖2. Consider the set of perturbation matrices
E(S, Ŝ) = {E|P>ŜsP = Ss + E>Ss + SsE,P ∈ Ps,E ∈ RN×N}. Then the relative distance to
measure structure perturbations can be defined as

d(Ss, Ŝs) = min
E∈E(Ss,Ŝs)

‖E‖2

Note that if Ŝs = P>SsP, meaning that the structure perturbation is purely permutation, then the
relative distance d(Ss, Ŝs) = 0, which is consistent with result shown in Lemma 2. Therefore,
without loss of generality, we can assume that P = IN and Ŝs = Ss + E>Ss + SsE in later
context. With this formulation, we are ready to prove Lemma 3.

Lemma 3. Suppose eigenvalues {mi}Ni=1 of E are organized in order such that |m1| ≤ |m2| ≤
· · · ≤ |mN |, satisfying |mN | ≤ ε/2 and |mi/mN − 1| ≤ ε for ε > 0. For spatial graph filter H(Ss)
and temporal graph filter G(St), denote their kernel functions as h(λ) and g(λ), respectively. If for
all λ, h(λ) is chosen to satisfy integral Lipschitz constraint |λh′(λ)| ≤ C and g(λ) has bounded
spectral response |g(λ)| ≤ D. Then it holds that

‖H(Ss)⊗G(St)−H(Ŝs)⊗G(St)‖2 ≤ εCD +O(ε2). (11)

Proof. From Proposition 2 in Gama et al. (2019b) we can have that when E satisfies above condi-
tions, ‖H(Ss)−H(Ŝs)‖2 ≤ εC +O(ε2). So

‖H(Ss)⊗G(St)−H(Ŝs)⊗G(St)‖2 = ‖(H(Ss)−H(Ŝs))⊗G(St)‖2
≤ ‖H(Ss)−H(Ŝs)‖2‖G(St)‖2
≤ εCD +O(ε2),

The second line holds because H(Ss) − H(Ŝs) is a symmetric matrix, which can be written as
eigen-decomposition as FΩF>. And (FΩF>)⊗ (VΛVT ) = (F⊗V)(Ω⊗Λ)(F⊗V)> holds,
which finishes the proof. As for general structural perturbations, where we want to find ‖H(Ss) ⊗
G(St)−H(Ŝs)⊗G(Ŝt)‖2, we can add and subtract term H(Ŝs)⊗G(Ŝt), use triangle inequality
and further bound those two terms with more assumptions on h(λ) and g(λ).

The bound shown in Lemma 3 indicates that the difference of output caused by changing spatial
graph support from Ss to Ŝs is proportional to ε, which is a scalar characterizing the level of the
perturbation. Constraints on eigenvalues of E limits the change of graph structure. A more detailed
description explaining the necessity of such constraints can be found in Gama et al. (2019b). With
Lemma 3 in hand, we are ready to show the change of feature vector after pooling at each node in
scattering tree when such structure perturbations happen.

Lemma 4. Consider a ST-GST with L layers and J = Js×Jt scales at each layer. Suppose that the
graph filter bank forms a frame with upper boundB = B1×B2, whereB1, B2 are frame bounds for
spatial and temporal domain, respectively. Suppose for all λ, spatial wavelet filter bank {Hj1}

Js
j1=1

satisfies maxi |λh′i(λ)| ≤ C and temporal wavelet filter bank {Gj2}
Jt
j2=1 satisfies maxi |gi(λ)| ≤

D, and other conditions the same as Lemma 3. Then for the change of feature vector φp(`) associated
with path p(`) it holds that

‖φp(`)(Ss,St,X)− φp(`)(Ŝs,St,X)‖ ≤ 1√
N
ε`CDB`−1‖X‖. (12)
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Proof. Expand ‖φp(`)(Ss,St,X)− φp(`)(Ŝs,St,X)‖ as

‖U′(σ(H
j
(`)
1

(Ss)⊗G
j
(`)
2

(St)))p(`)x−U′(σ(H
j
(`)
1

(Ŝs)⊗G
j
(`)
2

(St)))p(`)x‖

≤ 1√
N
‖(σ(H

j
(`)
1

(Ss)⊗G
j
(`)
2

(St)))p(`)x− (σ(H
j
(`)
1

(Ŝs)⊗G
j
(`)
2

(St)))p(`)x‖,

where ‖U′‖2 = 1/
√
N and (σ(H

j
(`)
1

(Ss) ⊗ G
j
(`)
2

(St)))p(`) is a shorthand for applying spatio-

temporal filters and nonlinear activation in order to input data ` times according to the path p(`).
Add and subtract term σ(H

j
(`)
1

(Ss)⊗G
j
(`)
2

(St))σ(H
j
(`−1)
1

(Ŝs)⊗G
j
(`−1)
2

(St)) · · ·σ(H
j
(1)
1

(Ŝs)⊗
G

j
(1)
2

(St))x and apply triangle inequality, we can have that

‖(σ(H
j
(`)
1

(Ss)⊗G
j
(`)
2

(St)))p(`)x− (σ(H
j
(`)
1

(Ŝs)⊗G
j
(`)
2

(St)))p(`)x‖

≤ ‖σ(H
j
(`)
1

(Ss)⊗G
j
(`)
2

(St))
(

(σ(H
j
(`−1)
1

(Ss)⊗G
j
(`−1)
2

(St)))p(`−1)−

(σ(H
j
(`−1)
1

(Ŝs)⊗G
j
(`−1)
2

(St)))p(`−1)

)
x‖+

‖
(
σ(H

j
(`)
1

(Ss)⊗G
j
(`)
2

(St))− σ(H
j
(`)
1

(Ŝs)⊗G
j
(`)
2

(St))
)
·

(σ(H
j
(`−1)
1

(Ŝs)⊗G
j
(`−1)
2

(St)))p(`−1)x‖.

Recursive quantities can be observed above and the bound can be solved explicitly (Gama et al.,
2019b). By induction and conclusion from Lemma 3, we can get that

‖(σ(H
j
(`)
1

(Ss)⊗G
j
(`)
2

(St)))p(`)x− (σ(H
j
(`)
1

(Ŝs)⊗G
j
(`)
2

(St)))p(`)x‖ ≤ `εCDB`−1‖x‖.

Multiplying the coefficient 1/
√
N caused by pooling gets us the final result.

Note that the upper bound in Lemma 4 holds for all path of length `. Thus the square norm of change
in final feature map can be summarized by the sum of square norm of change at each layer, which
finishes the proof of Theorem 2.

C ADDITIONAL EXPERIMENTS

C.1 DATASET

MSR Action3D dataset (Li et al., 2010) is a small dataset capturing indoor human actions. It covers
20 action types and 10 subjects, with each subject repeating each action 2 or 3 times. The dataset
contains 567 action clips with maximum number of frames 76; however, 10 of them are discarded
because the skeleton information are either missing or too noisy (Wang et al., 2012). For each
clip, locations of 20 joints are recorded, and only one subject is present. Training and testing set is
decided by cross-subject split for this dataset, with 288 samples for training and 269 for testing.

NTU-RGB+D (Liu et al., 2019) is currently the largest dataset with 3D joints annotations for human
action recognition task. It covers 60 action types and 40 subjects. The dataset contains 56,880 action
clips with maximum number of frames 300, and there are 25 joints for each subject in one clip. Each
clip is guaranteed to have at most 2 subjects. The cross-subject benchmark of NTU-RGB+D includes
40,320 clips for training and 16,560 for testing.

Full table of performance on MSR Action3D dataset. The table contains performance comparison
for different algorithms with different set of parameters on MSR Action3D dataset. Note that the
triple shown after ST-GST represents the value for (Js, Jt, L). Methods labeled “fixed topology”
are modified so as not to use adaptive training of the adjacency matrix in order for the comparison
with ST-GST to be fair. Methods labeled “learnable topology” means that we use adaptive training
for adjacency matrix to further validate our claim. Other configurations of compared methods are
then set by default. From the table we can see that ST-GST outperforms all other methods even
when the graph topology can be learned by neural networks. The intuition behind this is that deep
learning methods need large amount of training data due to the complex structures, and it can easily
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Method Accuracy (%)
GFT+TPM 74.0

HDM 81.8

G
N

N
s

ST-GCN (fixed topology) 52.0
ST-GCN (learnable topology) 56.0

Temporal Conv. (resnet) 67.3
Temporal Conv. (resnet-v3-gap) 69.9
Temporal Conv. (resnet-v4-gap) 72.1

MS-G3D (GCN scales=10, G3D scales=6) 80.3
MS-G3D (GCN scales=5, G3D scales=5) 81.4
MS-G3D (GCN scales=8, G3D scales=5) 82.2

Sc
at

te
ri

ng

Separable ST-GST (5, 5, 3) 73.6
Separable ST-GST (5, 5, 4) 72.9
Separable ST-GST (5, 10, 3) 81.4
Separable ST-GST (5, 15, 3) 85.9
Separable ST-GST (5, 20, 3) 87.0

Joint Kronecker ST-GST (15, 3) 61.0
Joint Cartesian ST-GST (15, 3) 59.1

Joint Strong ST-GST (15, 3) 61.7

Table 3: Full comparison of classification accuracy (MSR Action3D with 288 training and 269
testing samples).

Method Accuracy (%)
Separable ST-GST (5, 5, 3) 73.4± 0.8
Separable ST-GST (5, 20, 3) 86.7± 0.4

Joint Kronecker ST-GST (5, 3) 46.3± 1.2
Joint Cartesian ST-GST (5, 3) 42.2± 1.1

Joint Strong ST-GST (5, 3) 45.0± 1.2
Joint Kronecker ST-GST (15, 3) 59.6± 0.5
Joint Cartesian ST-GST (15, 3) 58.6± 1.0

Joint Strong ST-GST (15, 3) 60.0± 1.0

Table 4: Performance for different methods on MSR Action3D with standard deviations.

be trapped into bad local optima due to overfitting when the size of training set is limited, which is
common in practice. Also the good performance of ST-GST in sparse label regime could potentially
inspire active learning for processing spatio-temporal data (Bilgic et al., 2010).

Performance on MSR Action3D dataset with standard deviations. We repeat part of our exper-
iments 20 times on MSR Action3D dataset, especially for joint approaches, to obtain the standard
deviations of classification accuracy. The results are shown in Table 4. Note that since ST-GST is a
mathematically designed transform, the output features should be the same for different trails, and
the randomness comes from classifiers used later (random forest in this case). It can be seen that the
standard deviations are comparable in all these methods, and therefore the conclusion that separable
ST-GST consistently outperforms joint ST-GST still holds.

Comparison between different choices of wavelets. In practice we find that using graph geometric
scattering wavelets (Gao et al., 2019) for both spatial and temporal domain can achieve the best
performance, which is reported in main text. Classification accuracy using other type of wavelets is
shown here. All experiments performed here are separable ST-GST with Js = 5, Jt = 15, L = 3 on
MSR Action3D dataset. An interesting observation is that there is a significant reduction in accuracy
when we change temporal wavelet from diffusion based one (Geometric) to spectrum based one
(MonicCubic or Itersine). This may caused by the design of different wavelets.

Stability of ST-GST. We also show the classification accuracy under different level of perturba-
tions on spatio-temporal signals and spatial graph structures in Fig. 4. The experiments are con-
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Spatial wavelet Temporal wavelet Accuracy (%)
Geometric Geometric 85.9
Geometric MonicCubic 76.6
Geometric Itersine 73.6

MonicCubic Geometric 82.9
Itersine Geometric 82.5

MonicCubic MonicCubic 80.7
MonicCubic Itersine 78.4

Itersine MonicCubic 76.2
Itersine Itersine 80.7

Table 5: Performance for different choices of spatial and temporal wavelets (MSR Action3D) with
setting (5, 15, 3).

(a) Signal perturbations. (b) Structure perturbations.

Figure 4: Comparisons on performance under different level of perturbations.

ducted on MSR Action3D dataset. For signal perturbation, signal-to-noise ratio (SNR) is defined as
10 log ‖X‖

2

‖∆‖2 . For structure perturbation, E is set to be a diagonal matrix, whose diagonal elements
satisfy corresponding constraints on ε. From both Fig. 4(a) and (b) we can see that ST-GST is stable
and will not deviate much from original output when the perturbations are small.
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