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APPENDIX FOR ANARCHIC FEDERATED BILEVEL OPTIMIZATION

A PROOF OF THEOREMS AND LEMMAS

We first cite some useful Lemmas in the previous papers, then we provide the required Lemmas and
its proof in our paper.

A.1 USEFUL LEMMAS FROM PREVIOUS RESULTS

Lemma 3 ((Ghadimi & Wang, [2018) Lemma 2.2) Under Assumptions[Ijand 2} we have
[V@(21) — V@(22)[| < Ly [[1 — 22|,
ly* (1) — y*(2)[| < Ly [lz1 — 22|,

lg,1lg,2
ly.0(lg,2+-2-2=) 1
= "o — and L, = -4,
Hg Hg

— lga(ly1+My)
where Ly := 1y 1 + -2 ™ +
For all i € M, we have

IV fi(x1,y) = Vii(zr, y™ (x0)) || < My |y — y* (z1)]] 5
IV fi(z1,y) =V fi(z2,y)|| < My ||z — 22|,
— _ Lol
where V fi(x,y) = Vafi(,y) — V2,92, 9)[V5,9(x, 9] Vy fi(x,y) and My =1y + 200 +
ﬂ(l o+ M)

Hg N9 Hg

Proof. The proof is similar to (Ghadimi & Wang, [2018)), Lemma 2.2.

Lemma 4 ( (Chen et al., 2021) Lemma 2) Under Assumptions[I} 2] and[3] we have

[Vy*(z1) = vy (22)l] < Lya [l — 22,

where L, := 19’2(;?%) + lg';lgq’z (1+Ly).

Proof. The proof is similar to Lemma 2 of (Chen et al., 2021).
Lemma 5 (Huang et al| 2023) Under Assumption 2} we have

V() = Vf(w,y* (2) = Vo f @,y (2) = V2,90, (@) x [92,9(x,y" (@)] " Vyf(@ys(@)),

4)
where Viyg(:c, y) is defined as the Hessian matrix of g w.r.t y and Viyg(x, y) is defined as
2 2
3$?aylg(xa y) . am?ang(xv )
Viyg(x,y) = " -
mg(m,y) mg(x,y)

Proof. The proof is similar to (Huang et al., 2023)) Lemma 3.

Lemma 6 ((Hong et al.| |2020) Lemma 1 and (Chen et al.| |2021) Lemma 2) Suppose Assump-
tions 1} 23} and 4| hold, we can get

E [HHi(CCt,ytH) _ Fi(xt’yt+1)H2] <4
E || Hi('y )" 1F] < Dy

where 6 = 0% + 55 ((0% +13,0)(07 2 + 202 1) + 0712 1) and Dy = (Iy0 + Z5502)2 4 6.

The proof is similar to (Hong et al.}2020) Lemma 1 and (Chen et al.},2021) Lemma 2.
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Lemma 7 ((Tarzanagh et al [2022), Lemma 2.2) Suppose Assumptions [I| 2|3| and[{] hold, we can
get

E[[H !y ) - vty ] < 02
W

where b = kgly1(1 — , Kg 1= %, and N is the input parameter ofAlgorithm
g

1
Proof. The proof is similar to Lemma 2 of (Tarzanagh et al.| [2022).

A.2 PROPOSITION[I]AND ITS PROOF

Proposition 1 Suppose Assumptions[I} 2} B and[|hold, we can get
2

t tJrl F(xt’yt+1) S 4ml§f

Proof:
2

<oy {E [ty ]+ )]}

§4me,

where we use the Lemmal6]for the last inequality.

A.3 PROPOSITION[2JAND ITS PROOF

Proposition 2 Suppose Assumptions[I} 2} B and[@| hold, we can get

2 .
12D

f E Tt + 305+ 7]0

i=1

1 « et g —
S HE Ty ) S H )| | <

3
m

where Uf—0f+ ((Uf+lfo)(03,2+2l§, )+ 12’12 )

g,1
Proof:
- . 9
E = Hy(xt™™ b7+ — H(at,
m ZZZI (37 Y ) (SL’ Y )

- . 2
<F iz (Hl(xt_” YY) H (2t gt o Hy(af ytY) — Ha(at, yth) + Hi(at, t+1)) ~H(at ytt
B m =1 7

L . , - )
<3E E Z (Hi(l't_‘r ’yt T, +1) H ( t’yt-l-l)) +3E ’ Z (H‘(l‘t7yt+1) H ( t7yt+1))

i=1 i=1
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3 - t—rt t—ritl byt H o YY)~ Hi(at, gt 2 12[))“
sm;EﬂHxx : ) — Hy( + ZE[HH —Hi(z',y M*T
% fZT + 305 + Df
A.4 PROOF OF LEMMA[I
Proof:
E[@(z"")] — E[@(a")]
<E [(2! - 2t vB(at))] + %IE {th-i-l _ xt’ﬂ
2
1 : ‘ L ¢
Then, for —E [<% SO e H (T gyt ), v@(xt)ﬂ . we have
< ZmH Ly, v<b<xt>>]
ntE< ZH Ly, v¢><xt>>|Ff
= E[<ntH(x yt“),V(I)( )>]
— [ t+1>|ﬂ—@uvq> I+ 28 [t ) - vote) ]
=~ TE (G ] - 5 7o)+ TE [[HE ) - Ty + Ty - vee)|]
<- PE[JAG v 7] - S IlveE@)| +nE [[Ha ) - Ty D] + 0k [Ty - v
< - LE[|[HG O] - Tlve@)|” +mb? +mME | [y -y @)]]

2
Next, for %E M LS meH, (a;t—Tf Lyt H ] , we have

i

L 1 & bt T il
fnt 2t R [ E Z ( _7'1' t Ti +1) — H(;Ct’yt+1) + H(xt,yt+1))

Znt —Tf t T +1)

|
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2 2

1 mi
LE |||= H(xt, oyttt
+ Lgn; |m2 (' y™)

=1

1 & ot —
<LniE HmZ(Hi(xt Lyt i“)—H(ﬂft,yt“))
=1

Lin? 3 ~ . 12D —
<=Lh (=D, ;ﬁ +30; + — L)+ LB [[H (', y )]

Combining the above inequalities yields

E[0(a")] - E[0(@")] < (L — DIE [[H @',y - Z[voet)|” +ndfE [y ™+ -y @")]’]
Lin? 3 o . 12D
+ me(an ZTf +365 + Tf) + mb?

i=1
A.5 LEMMAI[SJAND ITS PROOF
Lemma8 Let 1 = 3.\, ﬁ we have
_ 9n
t—rt k—pk
BRI
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A.6 PROOF OF LEMMA [2]

Proof:
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2 2
2ﬁt,kgg

We first show that E [Hyt’k“ - y*(xt)HQ} < (1= Brkg)E [Hyt’k - y*(xt)HQ} +

E |:Hyt,k+l _ y*(xt)}ﬂ

2
/Bt k t—rt k—pk
—E yt7k_77ZG' i R—P; _y*(xt)
m ieM '
2
1 oty k 1 oty k
=E |||y — y*@")|*] - BB < SO G y*(fvt)> + BL4E H ST
m ieM m ieM
2
1 e
=E ([l — 4" @")]*] = BB [(7ug(a' )y =y @)] + BLE ||| - D G g
ieM
2

1 t—7t k—pk
72 Gi i R—P;
m :

ieM

<(1— Bitg)E {Hyt”“ - y*(mt)HQ} — 2B 4E [g(a',y"F) — g(a',y* (2))] + B LE

EFF 1 . .
where Gﬁ’k = ﬁ Moo Vygi(at ytks 5:Ztk) as defined in Algorlthm We use the fact that

Gf’k is an unbiased gradient estimator in the third equality and employ the fi4-strong convexity of
g(x,y) w.t.t. y in the last inequality.

2
e |[IIL ) Gkt
m - i
ieM
r 2
ot k—pk
1 & BT .
_ t—7! | t—1! kfpl.c, t—1}k—py
=E - Z p——_ Z Vygi(a' Tyt TR Etlffit,kip!;)
i=1 El- ' =0 R
r Et—ﬁ,k—pf 1
m i -
1 1 ¢ t t k t k
o (ot—=TE t—rl k—pF . ft—T k—p;
=E a Z tf-rf,lcfpf Z vygz(x Y i ’ ’54 Etl*'rf"i%’f)
-1 B =0 &,

ot bty pt—1h k—pk st gty at—7h k—p¥
—Vygi(z"T Yy (2 )€ Zng,kip§)+Vygi(wt Tyt (a5 Tt“r?v:l%‘)>

T

i B, 0B,
—rt k—pk
1 & BT
_ t—7t b7t k—ph. t—r! k—pF
=2E E Z t—‘rf,k—pf Z (Vygz(l' Y ‘ * 75_ Et’f"z‘t’k"’ﬁ)
i=1 E; =0 L
t k 2
t—r, s t—7E\. ft—T k—p
—Vygi(@ Ty (@ ) T )
Et—fit,k—pi-C 1 2
m ;
oF 1 1 ‘ R t—rt k—pk
+ - Z t—TitJC—pk Z Vygz(fﬁ 7y (m )75 Ef,.,.;ﬁ k?p;c)
=1 1%; c=0 Rl
_ _pk
719 O BTN
2 (At t—Tt,k—pk, t*’f}t k*P?
< m E t—Tit,k—pk E E Vygz(x » Y 75' E,,,,.it)k,p;v)
i=1 EZ c=0 it
2 2 2
[ S S S NP S Alog +041)
vygl(x 'Y (.’,E ),éi, f*"'f’k*p?) + mEt’k

17



Under review as a conference paper at ICLR 2024

L BTORN
7.24 1 ‘ t t k t t Lt ek
g,1 t—rt  pgt k—pk . =Tl k—pF t—1! t—7lN. ¢t k—p;
= > — T > E[Qi(x Ty TR ) — gyt @) 6 )
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2., 2
ot by t—Tik ot bk et d(og +oy 1)
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i, E, R mE®t

4(og + 03,1)

:Z-ng,l]E [g(xt7yt) - g(xth’y*(xt))] + mEtk

where 7.1 uses Lemmaand 7.2 uses Lemma 1 in (Woodworth et al., [2020). Enforcing 5; 5, < ﬁ
yield

E [Hyt,kJrl _ y*(xt)Hz]
A(BF)2 (07 + 07 1)

<(1 = By ipg)E [||yt”“ - y*(xf)||2] + 261k (2B klg1 — DE [g(z",y"") — g(2', 5" (2"))] + peOTT
4(BY4)2 (02 + o2
S(l _ Bt,k,u/g)E |:Hyt,k _ y*(xt)H2:| + ( )Tn(E‘;]’k g,l)
Summing k = 0to K,,, — 1 and let 27 f”b Eb* we have
K=l s ]|2 ot 80y A(a; +091 -
E[|ly" " =y @)]F] < CTT (= Buang)E |y = o @) |*] + =Lt Z Bl
k=0

A.7 LEMMA AND ITS PROOF
Lemma 9 Suppose Assumptions[I) 2] B} and@] hold, Algorithm[I|guarantees:

E [Hyt+1 -~ y*(xt+1)H2} < U,E [Hﬁ(xt’yt—kl)HQ} + ULE {Hyt+1 _ y*(xt)’ﬂ + Usés,

where Uy = u77t 411(/?; + Wm » Up = 1+ 4MyLyn; + aLwinm and Us = # + LQyofrZ? Jor
any o > 0.
Proof:
We can get that
E |:Hyt+1 _ y*(mt-&-l)HQ} _E |:Hyt+1 “ H } U t+1 H } 1 9E [<yt+1 _ y*(xt)’y*(xt) _ y*<xt+1)>
Then,
27252

E[ *(2t*) H ] < LiE |:th+1 _th2} < LZQJE {Hntﬁ(xt’yt—o—l)HQ} n UD Tsof,

and

B (41 — 3 ()" (@) — v (2 1))] = = 2B (41 — g o), 7y (@) " - a))]
28 [y (@), (@) — 97 (@) — Ty (@) ')
Then, for —E [(y**! — y* ("), vy* (') (z' T — 2*))], we have

—E[(y"*! -y (2), vy (') (e - 2h))]
=-E [(y'*! —y* ("), n vy (") H (2", y"™))]
E [y —y* @) [Jmevy* (@) H (2, 5]
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SLyE [[[y™ =y @) [meH ",y )]

<E |+ @] + SR [t ]

=2M;L,nE [Hyt'H —y (=) ] ym [HH(xt,yt“)HZ} :
where Young’s inequality is applied in all inequality and set v =DM;Lyn,.

Next, for —E [(y'T! — y*(a?), y* (") — y*(2') — vy*(a®)(z'T — 2'))], we have
SB[ - @)y @) -y @) - (o e

<E [|ly™*" =y @] ly* 1) — y* (2') — vy* (@) (@ — 2]
<Len [l -y o -]
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OZL a:.D 772 * z’f] 2 LT m7720".2
<SSR [ -] + St [HH I+ 2

Combining the above inequalities and rearranging, we can get that

E [”ytH - y*(xt—H)HQ} <U,E [Hﬁ(l‘t,ytﬂ)uq + U2E [HytH — y*(mt)Hz} + UsGy.

A.8 PROOF OF THEOREM/I]

From above lemmas, we have
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k=0 k=0

19



Under review as a conference paper at ICLR 2024
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where 1.1 follows the fact that Lyn? — % + 21 < 0if py < (2Ls +4M; L, + 25E0e2)~1 1.2
uses Lemmal[2l

If we choose f3; ), < = and K, be an oven number, then equatloncan be transferred to
2L 3MUs SL n? 12L n?
Ewt+1 _Ewt < b2 nt f f f t f t D
) []_m+(—m+Ly> Z s
M U, 4(a + 2 ) e
- 2 [|[veE)|’] + (< MMy Z B

Then telescoping from¢ =0to¢ =T — 1, we can get

-1 T-1 m
1 1 n; L 3M,Us . . 1 3L 12L¢m; | -
Z [EWH — EIWO] <p? + = t &~ f f 2, & t t t\DH
7 B0V~ <8+ 7 5 B0+ g Lt ot
T-1 T-1 2 2 K,,—1
1 Nt MfU2 2 40y +041) 2
“T2.5 E [||ve@)|’] + Z L Mp) =ty B
t=0 t=0 v k=0
Then, if let n = % (ZtT o 7],5), and using Chebyshev’s Inequality, we have
() (S E(Ivr@)’]) < S aE[I9/6H1°]. Ths, we can rewrite

above equation as

T—1 T-1 Kmn—1
1 12 2 0 . 2 MU, 4(0 +02))
TZE[HV‘I’(@")H } Sﬁ? [EW°] —E[W H+777TZ( 7t th)Tg Z Bik
t=0 t=0 Y k=0
T—1 T—1 m
1 n?L 3MU. 1 3L n? 12Lsn? | -
2 i Lf fU3 .2 fh t £
t=0 , t=0 i=1

B EXPERIMENTS

All experiments are implemented in Matlab 2023a onana ASUS laptop with an Nvidia GeForce GTX
GPU. Note that the current experiments and the results in other related works are all simulations on
a single laptop and simulate for distributed communication. The linear speedup improvement can
be shown by implementing the model and the algorithms on a distributed setting with multiple
machines.

To prove the efficiency of the proposed AFBO algorithm, we use a similar setting in (Jiao et al.,
2023)).

B.1 SIMULATION SETUP

Experiments are conducted on hyper-parameter optimization tasks (i.e., data hyper-cleaning task and
regularization coefficient optimization task) in the distributed setting to evaluate the performance of
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the proposed AFBO. The proposed AFBO is compared with the state-of-the-art distributed bilevel
optimization method FedNest (Tarzanagh et al., |2022) and ADBO (Jiao et al., |2023). In the data
hyper-cleaning task, experiments are carried out on MNIST (LeCun et al.| |1998). In coefficient op-
timization task, following (Chen et al.| [2022a)), experiments are conducted on Covertype (Blackard
& Deanl 1999).

In the MNIST dataset to impose data heterogeneity, we split the data based on the classes (p) of im-
ages each client contains (McMabhan et al., 2017} |Li et al.,2020a} |Yang et al.| 2021a). We distribute
the data to M clients such that each client contains only certain p classes with the same number
of training/test samples. Specifically, each client randomly chooses p classes of labels and evenly
samples training/testing data points only with these p class labels from the whole dataset without
replacement. For example, for p = 2, each client only has training/testing samples with 2 classes,
which causes heterogeneity among different clients. For p = 10, each client has samples with 10
classes, which is nearly the IID case. In this way, we can use p to represent the non-IID degree
qualitatively (i.e., the smaller p is the higher the non-IID degree is).

B.2 SIMULATION RESULTS
B.2.1 DATA HYPER-CLEANING TASK

Following (Ji et al.l 2021} |Yang et al.l 2021b), the proposed AFBO algorithm is compared with
ADBO (Jiao et al.l 2023) and distributed bilevel optimization method FedNest (Tarzanagh et al.,
2022) on the distributed data hyper-cleaning task (Chen et al.l [2022b) on MNIST datasets (LeCun
et al.,|1998). Data hyper-cleaning (Chen et al.,[2022b)) involves training a classifier in a contaminated
environment where each training data label is changed to a random class number with a probability
(i.e., the corruption rate). In addition, we further consider the effect of heterogeneous data distri-
bution on the training performance. The distributed data hyper-cleaning problem can be expressed
as,

Z L(w?w7 Yj)

(x5, yj)EDlv’“l

mll’lF (’b’ Z |Duul|

s.t. w—argmlnf (¢, w Z Z o(¢;)L (CE W' y5) + o’ ||

ID"I
(x;,y;)€D; i

where D!" and D?® denote the training and validation datasets on i-th client, espectively. (z i Yj)
denotes the j-th data and label. o(.) is the sigmoid function, L is the cross-entropy loss, and m is
the number of clients in the distributed system. In the MNIST dataset, we set m = 18 and 7 = 10.
As in (Cohen et al.| [2021)), we assume that the communication delay of each client obeys the heavy-
tailed distribution. The proposed AFBO is compared with the state-of-the-art distributed bilevel
optimization method FedNest, ADBO and SDBO (Synchronous Distributed Bilevel Optimization,
i.e., ADBO without asynchronous setting). The test accuracy results of the 4 algorithms with I1ID
and non-IID datasets are shown in Fig. [I| and Fig.[2] We can observe that the proposed AFBO is
the most efficient algorithm. Since the asynchronous setting is considered in AFBO, the server can
update its variables once it receives updates from updating clients, It allows multiple local iterations,
which makes full use of clients’ computing resources.

B.2.2 REGULARIZATION COEFFICIENT OPTIMIZATION TASK

Following (Chen et al., [2022a), we compare the performance of AFBO with baseline algorithms
FedNest, SDBO, and ADBO on the regularization coefficient optimization task using Covertype
datasets. The distributed regularization coefficient optimization problem is defined as,

min F (¢, w Z|DW| Y. L@jwy)

(.)€ Dye!
D L)+ 6i(w))

(zj,y;)€DL" Jj=1

s.t. wfargmmf b, w Zlth
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Figure 5: Test accuracy vs time on IID MIN- Figure 6: Test accuracy vs time on non-IID
IST. MINIST.

where ¢ € R”, w € R™ and L, respectively denote the regularization coefficient, model parameter,
and logistic loss, and w’ = [w], ..., w}]. In the regularization coefficient optimization task with the
Covertype dataset, we set NV = 18 and 7 = 15. We also assume that the delay of each client obeys
the heavy-tailed distribution. Firstly, we compare the performance of the proposed AFBO, ADBO,
SDBO, and FedNest in terms of test accuracy on the Covertype dataset. The results on the Covertype
dataset are shown in Fig. 3] which shows that AFBO achieves the best performance among all the
schemes.

Next, we assume there are at most five stragglers in the distributed system, and the mean of (com-
munication + computation) delay of stragglers is five times the delay of normal clients. The result
is shown in Fig. [ It is found that the efficiency of the synchronous distributed algorithms (FedNest
and SDBO) has been significantly affected, while the proposed AFBO and ADBO suffer slightly
from the straggler problem since they are asynchronous methods and only consider the updating
clients.

0.7 0.7
0.6 0.6
> >
Q [S]
© ©
505 ——AFBO 505
Q ——ADBO Q
2 SDBO 2
7 041 FedNest k7 0.4
(O] [0}
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O LSS S SS S S \QQQ O S S SSSSS \QQQ
Time (s) Time (s)
Figure 7: Test accuracy vs. time on Cover- Figure 8: Test accuracy vs. time on Cover-
type. type.

B.3 CONVERGENCE OF DIFFERENT ALGORITHMS UNDER DIFFERENT INNER AND OUTER
LOOP DELAYS

In the previous sections, we assume there are only outer loop asynchronous delays, it shows that
AFBO performs similarly to the ADBO and AFBO performs better than other algorithms. In this
section, we allow there exists both inner loop and outer loop asynchronous delays. In the MNIST
dataset, we set m = 18, 7 = 10, and p = 10. In the regularization coefficient optimization task with
the Covertype dataset, we set N = 18, 7 = 15, and p = 10. As in (Cohen et al., [2021]), we assume
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that the communication delay of each client obeys the heavy-tailed distribution. We first compare
AFBO, ADBO, SDBO, FedNest, and Prometheus algorithms’ performance on
the IID MINIST dataset, then we conduct the experiments on the non-IID MINIST dataset and the
Covertype dataset.

0.6

T

Test Accuracy
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Figure 9: Test accuracy vs time Figure 10: Test accuracy vs Figure 11: Test accuracy vs
on IID MINIST. time on non-IID MINIST. time on Covertype.

Fig.[ fig.[I0} and Fig.[IT]show that AFBO performs best among all algorithms. In addition, it shows
that all algorithms expect AFBO to suffer an obvious convergence degeneration as there exists an
inner loop asynchronous delay. Among them, synchronous algorithms (e.g., SDBO, FedNest, and
Prometheus) degenerate more than AFBO and ADBO. Moreover, from Fig. 0] and fig. [I0] we can
find that convergence degeneration is much more obvious in the non-IID MINIST dataset than in
the IID MINIST dataset. This is because the bias of using the most recent update of a client is
much larger in the non-IID MINIST dataset case than in the IID MINIST dataset case. Intuitively,
a reusing of past gradients inducts a new bias of SGD, as some of the SGD gradients use more than
others. Finally, Fig.[9]and Fig.[IT} show that the convergence degeneration in the Covertype dataset
is slighter than in the MINIST dataset.

B.4 ROUND CONVERGENCE OF DIFFERENT ALGORITHMS

In this subsection, we compare the convergence rate vs round of AFBO, ADBO, SDBO, FedNest,
and Prometheus 2023). We allow there exists both inner loop and outer loop asyn-
chronous delays. In the MNIST dataset, we set m = 18, 7 = 10, and p = 10. In the regularization
coefficient optimization task with the Covertype dataset, we set N = 18, 7 = 15, and p = 10. As
in (Cohen et al 2021), we assume that the communication delay of each client obeys the heavy-
tailed distribution. For AFBO, ADBO, SDBO, and FedNest algorithm, one global round means the
server updates the global model. For the Prometheus algorithm, one global round means the server
communicates with clients.
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Figure 12: Test accuracy vs Figure 13: Test accuracy vs Figure 14: Test accuracy vs
rounds on IID MINIST. rounds on non-IID MINIST. rounds on Covertype.

Fig.[12] Fig.[I3] and Fig.[T4]show that the proposed AFBO algorithm performs best among all base-
line algorithms. It can be found that there is nearly no difference in convergence rates of AFBO,
ADBO, SDBO, and FedNest. However, there are some differences in the Prometheus algorithm.
This is because the Prometheus algorithm communicates with the server fewer than the rest algo-
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rithms. Based on the definition of one global round in this subsection, the figure of the Prometheus
algorithm is different from Fig.[9] fig.[I0] and Fig.[IT} Although the figures have some differences,
the final test accuracy of these algorithms is similar to Fig.[9] fig.[I0] and Fig.[T1] These results
show that though AFBO provides the most flexibility to clients, the convergence rate and accuracy

are stable.

B.5 COMPARISON WITH AFL

AFL (Yang et all [2022D) is a well-known algorithm which allows clients flexible participation.
Our proposed AFBO also allows clients to have the maximum flexibility to participate in the FBO
training. In this subsection, we compare the performance of AFL and AFBO. We use AFL and
AFBO to perform the data hyper-cleaning task in IID and non-IID MINIST datasets. We setm = 18,
7 =10, and p = 10 for AFBO algorithm and set m = 18 and 7 = 10 for AFL algorithm.
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From Fig[T3] Fig[T6] Fig[T7] and Fig[I8] we can get that AFL performs worse in FBO tasks. This is
because AFL does not design a distributed estimator for the hyper-parameter (V®). The difference
M  OF;(z,y) 0y

between ﬁ =18y b and %ﬁ’y) % leads to the low training accuracy of AFL performing

FBO tasks. From the training loss aspect, it shows that the convergence rates and speeds of AFBO
and AFL are similar. The reason is that both AFL and AFBO use the most recent gradients stored
in the server memory, and both algorithms can achieve linear speed-up. Moreover, both AFL and
AFBO consider the effect of the dataset’s non-IID degree, thus Fig[I5]and Fig[I7]show that there is
little convergence degeneration as the dataset’s non-1ID degree increases.

B.6 IMPACT OF ASYNCHRONOUS DELAY

In this subsection, we evaluate the impact of asynchronous delay on the AFBO algorithm. We first
conduct the data hyper-cleaning task on the IID and non-IID MINIST datasets, and then we perform
the regularization coefficient optimization task on the Covertype dataset. In experiments, we set
the total number of clients as 18, and we set the 7 = 0, 1, 5, 10, respectively. The impact of the
asynchronous delays on the AFBO algorithm is shown in Fig.[T9] Fig.[20] and Fig. 2]
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Figure 19: Test accuracy vs Figure 20: Test accuracy vs Figure 21: Test accuracy vs
time on IID MINIST. time on non-IID MINIST. time on Covertype.
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It shows that the test accuracy becomes smaller as the asynchronous delay increases, which matches
our theoretical results. In addition, there is little convergence degradation due to the asynchronous
delay, which proves the effectiveness and robustness of AFBO. Moreover, Fig.[I9]and Fig. 20|show
that the convergence degradation under the non-IID MINIST dataset is slightly higher than under
the IID MINIST dataset. This is because the contribution of all clients is equal in the IID dataset
which means the straggler has low effects on the test accuracy, but some clients owning unique
datasets under non-IID dataset settings with higher asynchronous delay can cause a larger conver-
gence degradation due to straggler effects.
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