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Abstract

The strong performance of neural networks typ-
ically hinges on the availability of extensive la-
beled data, yet acquiring ground-truth labels is of-
ten challenging. Instead, noisy supervisions from
multiple sources, e.g., by multiple well-designed
rules, are more convenient to collect. In this pa-
per, we focus on the realistic problem of learn-
ing from multiple noisy label sources, and argue
that prior studies have overlooked the crucial self-
cognition ability of neural networks, i.e., the in-
herent capability of autonomously distinguishing
noise during training. We theoretically analyze
this ability of neural networks when meeting mul-
tiple noisy label sources, which reveals that neu-
ral networks possess the capability to recognize
both instance-wise noise within each single noisy
label source and annotator-wise quality among
multiple noisy label sources. Inspired by the theo-
retical analyses, we introduce an approach named
Self-cognitive Denoising for Multiple noisy label
sources (SDM), which exploits the self-cognition
ability of neural networks to denoise during train-
ing. Furthermore, we build a selective distillation
module following the theoretical insights to opti-
mize computational efficiency. The experiments
on various datasets demonstrate the superiority of
our method.

1. Introduction

Neural networks have made remarkable strides across vari-
ous applications (Goodfellow et al., 2016; He et al., 2016;
Tarvainen & Valpola, 2017), and the success hinges signifi-
cantly on the availability of extensive labeled datasets. How-
ever, acquiring accurate ground-truth labels is often costly
and time-consuming in realistic scenarios, thus these labels
may not always be obtainable. In practice, an alternative is
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to utilize noisy supervisions from multiple sources, which
is more economical and easier to collect (Gao et al., 2022;
Zhao et al., 2023). For example, domain experts can create
labeling rules that swiftly generate noisy labels for a vast
number of samples. Moreover, when these rules are crafted
from different perspectives, they can yield diverse sets of
labels. This inherent diversity can prove advantageous for
training in the absence of ground-truth labels.

In this paper, we address a prevalent and practical challenge:
binary classification with multiple noisy label sources, a
scenario that falls within the realm of weakly supervised
learning (Zhou, 2018). This area of study is characterized by
the reliance on several sets of inaccurate labels. To illustrate,
consider the task of constructing user profiles to predict a
user’s likelihood to purchase a car. Obtaining ground-truth
labels for this task would entail costly and time-consuming
investigations. Alternatively, one could apply thoughtfully
crafted heuristic rules—for instance, determining whether
users have recently engaged in car-related transactions or
visited automotive dealerships—to generate multiple poten-
tial groups of target users with relative ease. Given this
context, it becomes desirable to devise methodologies for
harnessing these various noisy label sets effectively.

Existing related methods, called learning from multiple
noisy label sources, can be generally categorized into two
groups, i.e., two-stage approaches (Dawid & Skene, 1979;
Whitehill et al., 2009; Welinder et al., 2010; Ibrahim et al.,
2019) and end-to-end approaches (Rodrigues & Pereira,
2018; Tanno et al., 2019; Khetan et al., 2017; Guan et al.,
2018; Cao et al., 2019; Li et al., 2020c; Gao et al., 2022;
Zhao et al., 2023; Ibrahim et al., 2023). The first group
of methods often separate the steps of label aggregation
and model training. The observed multiple sets of noisy
labels are first aggregated into a single set via an estimated
probabilistic model. Then, the downstream model is trained
with input samples and aggregated labels in a traditional
supervised manner. However, these works often neglect the
information of input samples when aggregating multiple
sets of noisy labels, causing low-quality aggregated labels
in practice. The second group of methods often simultane-
ously learn the annotators’ confusions and the classifier in
an end-to-end manner. For example, Rodrigues & Pereira
(2018) employed a crowdlayer to estimate the confusion
matrices of multiple annotators and simultaneously update
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the classifier. Tanno et al. (2019) designed a similar crite-
rion to estimate multiple confusion matrices with a trace
regularization. Zhao et al. (2023) implicitly estimated the
annotator’s confusions during training with a Mixture-of-
Experts (MoE) model. However, it is often unclear if the
estimated confusion matrices can correctly identify the an-
notators’ confusion characteristics.

While prior methods have generally enhanced performance,
the self-cognition ability of neural networks, i.e., the inher-
ent capability of autonomously distinguishing noise during
training, which is crucial for learning from single noisy label
source, has been neglected. Specifically, neural networks
have been both theoretically and empirically validated to
possess the capability of autonomously distinguishing noisy
samples during training (Arpit et al., 2017; Li et al., 2020b;
Liu et al., 2020; Gui et al., 2021), which has inspired a num-
ber of studies (Han et al., 2018; Yu et al., 2019; Wei et al.,
2020; Li et al., 2020a) to explore strategies that enable the
model to detect and handle noisy samples throughout the
training process. Despite its importance, the further explo-
ration of neural networks’ self-cognition ability in scenarios
involving multiple noisy label sources remains limited.

In this paper, we investigate the self-cognition capability
of neural networks in the presence of multiple noisy label
sources. The main contributions of this work are as follows:

• We theoretically reveal that neural networks possess
the capability to recognize both the instance-wise noise
within each single noisy label source and the annotator-
wise quality among multiple noisy label sources.

• Inspired by the theoretical analyses, we propose an
approach named Self-cognitive Denoising for Mul-
tiple noisy label sources (SDM), which employs a
self-cognition module to identify both instance-wise
noise and annotator-wise quality and adopts a mutual-
denoising module to aggregate these identifications
and accordingly refine the model. Additionally, we de-
sign a selective distillation module to adaptively distill
valuable knowledge from the original model to a more
deployment-friendly version.

• We empirically validate the proposed method across
various datasets and demonstrate that our method sur-
passes other competing approaches in performance.

2. Theoretical Insight

2.1. Preliminaries

We focus on the binary classification task with multi-
ple noisy label sources in this paper. Let x ∈ X and
y ∈ Y = {0, 1} denote the sample from sample space
X and the associated true label, which is drawn from the

true data distribution p(x, y). Suppose that the true label
y is determined by the target concept f∗, i.e., y = f∗(x).
Let ỹ1 ∈ Y, . . . , ỹs ∈ Y denote the observed noisy labels
from s different sources. We write the training dataset with
multiple noisy label sources as D̃ = {(xi, ỹ

1
i , . . . , ỹ

s
i )}ni=1.

Consider the neural network hΘ(x) : X → R with output
probability hΘ(xi) = p̂(xi), where Θ is the parameters of
the neural network and p̂(xi) denotes the predicted proba-
bility after the activation function, e.g., sigmoid. The binary
cross-entropy loss function ℓ of the pair (x, ỹ) when training
the neural network hΘ can be formulated as:

ℓ(hΘ(x), ỹ) = −
[
ỹ log hΘ(x) + (1− ỹ) log(1− hΘ(x))

]
Let the classifier induced by hΘ be fΘ : X → Y with pre-
dictions fΘ(xi) = I (hΘ (xi) > 0.5), where I(·) denotes
the indicator function. Our goal is to obtain the optimal
classifier fΘ∗ , which satisfies fΘ∗(x) = f∗(x) for any x.

2.2. Theoretical Analyses

In this section, we will analyze the self-cognition ability of
neural networks with multiple noisy label sources. Within
each source, we assume that the instance-wise noise satisfies
the well-used class-dependent assumption (Ghosh et al.,
2017; Patrini et al., 2017; Wang et al., 2019; Gui et al.,
2021), i.e., p(ỹk|y,x) = p(ỹk|y),∀k ∈ {1, . . . , s}. Under
this assumption, The noise transition matrix in the k-th
source can be formulated as T k ∈ R2×2, where T k

ij =

p(ỹk = j|y = i) denotes the probability of an i-th class
sample flipped into the j-th class in the k-th source.

Derived from Gui et al. (2021), we give the following the-
orem to analyze the instance-wise self-cognition ability of
neural networks within each single noisy label source:
Theorem 2.1. (Single noisy label source) Let hΘ∗

k
denote

the neural network minimizing the expected loss in the k-
th noisy label source, i.e., E(x,ỹk)[ℓ(hΘ(x), ỹ

k)]. (x1, ỹ
k)

and (x2, ỹ
k) are any two samples with the same observed

label ỹk satisfying that f∗(x1) = ỹk and f∗(x2) ̸= ỹk. If
T k satisfies that T k

ii > 0.5, ∀i ∈ {0, 1}, then we have

ℓ(hΘ∗
k
(x1), ỹ

k) < ℓ(hΘ∗
k
(x2), ỹ

k).

Remark. Theorem 2.1 indicates that if diagonal elements
of the noise transition matrix T k are bigger than 0.5, clean
samples will have smaller losses than noisy ones for neural
network hΘ∗

k
. The revelation here is that, when meeting

multiple noisy label sources, neural networks still enjoy
the instance-wise self-cognition ability within each single
source by the small-loss criterion.

Then, we expand the above theorem from the scenario of
single source to two sources:
Theorem 2.2. (Two noisy label sources) Let hΘ∗

1
and hΘ∗

2

denote the neural networks minimizing the expected loss
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in the 1-th and 2-nd noisy label source respectively, i.e.,
E(x,ỹ1)[ℓ(hΘ(x), ỹ

1)] and E(x,ỹ2)[ℓ(hΘ(x), ỹ
2)]. If T 1

ii >
T 2
ii > 0.5, ∀i ∈ {0, 1}, then we have

E(x,ỹ1)ℓ(hΘ∗
1
(x), ỹ1) < E(x,ỹ2)ℓ(hΘ∗

2
(x), ỹ2), (1)

and

E(x,y)ℓ(hΘ∗
1
(x), y) < E(x,y)ℓ(hΘ∗

2
(x), y). (2)

Remark. Compared to Theorem 2.1, Theorem 2.2 offers a
novel viewpoint on expected losses, which yields insights
at the level of individual annotators. Specifically, when
T 1
ii > T 2

ii > 0.5, ∀i ∈ {0, 1}, i.e., the 1-th noisy label
source is more accurate than the 2-nd, Theorem 2.2 in-
spires us that: Firstly, Eq (1) indicates that the induced
neural networks by the 1-th noisy label source hΘ∗

1
will

have smaller expected loss than hΘ∗
2

on the according noisy
distribution. It reveals that neural networks tend to fit closer
to a higher-quality noisy label source when meeting two
different sources, which opens doors for us to discern the
annotator-wise quality over two noisy label sources. Sec-
ondly, Eq (2) indicates that hΘ∗

1
will also have smaller ex-

pected loss than hΘ∗
2

on the true data distribution. It inspires
us that the discerned higher-quality noisy label source will
induce more precise predictions, thereby serving as helpful
guidance for denoising in another source.

Furthermore, we expand Theorem 2.2 from the scenario of
two sources to multiple sources:
Corollary 2.3. (Multiple noisy label sources) Let hΘ∗

k

denote the neural network minimizing the expected loss
in the k-th noisy label source among s sources, i.e.,
E(x,ỹk)[ℓ(hΘ(x), ỹ

k)]. If T 1
ii > · · · > T s

ii > 0.5, ∀i ∈
{0, 1}, then we have

E(x,ỹ1)ℓ(hΘ∗
1
(x), ỹ1) < · · · < E(x,ỹs)ℓ(hΘ∗

s
(x), ỹs), (3)

and

E(x,y)ℓ(hΘ∗
1
(x), y) < · · · < E(x,y)ℓ(hΘ∗

s
(x), y). (4)

Remark. Corollary 2.3 is a natural extension of Theorem
2.2, which reveals that the inspirations from two noisy label
sources still hold when facing the more realistic scenario
of multiple noisy label sources. That is, Eq (3) suggests
that neural networks have the potential to distinguish the
annotator-wise quality among multiple noisy label sources,
and Eq (4) implies that the higher-quality noisy label sources
can offer constructive guidance for the denoising process in
other, lower-quality sources.

2.3. Empirical Verifications

Many previous works (Han et al., 2018; Yu et al., 2019; Li
et al., 2020a; Gui et al., 2021) have empirically verified simi-
lar results of Theorem 2.1. Furthermore, we will empirically
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Figure 1. Preliminary studies on the Yelp dataset. p̂j and ỹj denote
the predicted probabilities and the noisy labels on the j-th source
over training samples respectively. y denotes the ground-truth
labels over training samples. Left: Verifications of Eq (1) and
Eq (3). Right: Verifications of Eq (2) and Eq (4).

demonstrate that inspirations of Theorem 2.2 and Corollary
2.3 still hold in practice without some basic assumptions.

Theoretically, we analyze the self-cognition ability of indi-
vidual networks for simplicity. In practice, we unite these
individual networks using a multi-tower MLP, which bor-
rows the insight from multi-task learning (Zhang & Yang,
2018) to extract public information from different sources.
Meanwhile, we use varying percentages (10%, 30%, 50%)
of ground-truth labels to train three LightGBM classifiers
(Ke et al., 2017) on the Yelp dataset and consider their pre-
dictions as noisy labels from three sources, which breaks
the class-dependent assumption. Obviously, the classifier’s
predictions will be more accurate with more ground-truth
labels for training. Under such conditions, we conduct ex-
periments to empirically verify Theorem 2.2 and Corollary
2.3, and the results are illustrated in Figure 1. Instead of loss
function in theories, we employ cosine similarity in practice
because its normalization term makes it more comparable
between different sources. The left part of Figure 1 indicates
that neural networks are easier to fit noisy supervisions in a
higher-quality source, which empirically verifies the insights
from Eq (1) and Eq (3). Meanwhile, the right part of Figure
1 indicates that neural networks’ predictions are closer to
true label distributions in a higher-quality source, which em-
pirically verifies the insights from Eq (2) and Eq (4). More
empirical verifications on different datasets with different
types of noise can be found in Appendix C.6.

3. Method

Based on the theoretical insights, we design a self-cognition
module to identify both instance-wise noise and annotator-
wise quality. Aggregating these identifications to assess
the reliability of each noisy label, a subsequent mutual-
denoising module is crafted to refine the training paradigm
accordingly. Additionally, a selective distillation module
is designed to distill valuable knowledge from the original
model to a more deployment-friendly and lightweight one.
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3.1. Self-cognition

When meeting multiple noisy label sources, it is desirable to
distinguish noise from two perspectives: the instance-wise
noise within each source, and the annotator-wise quality
among different sources. Thanks to the theoretical analyses,
i.e., Theorem 2.1 for the former and Eq (3) in Corollary
2.3 for the latter, we can exploit the self-cognition power of
neural networks to identify noise from both perspectives.

Specifically, we can begin with a multi-tower neural net-
work that simultaneously learns from various noisy la-
bel sources. Let GΘ(x) : X → Rs denote a multi-
tower neural network with parameters Θ and outputs
GΘ(x) = [G1

Θ(x), . . . , G
s
Θ(x)]

⊤ = [p̂1(x), . . . , p̂s(x)]⊤,
where p̂j(x) = σ(zj(x)) is the predicted probability of x
for the j-th source, zj(x) is the corresponding output logit
and σ(·) denotes the sigmoid function. For the noisy dataset
D̃, the binary cross entropy loss among different noisy label
sources is

LB =
1

n

n∑
i=1

s∑
j=1

l(Gj
Θ(xi), ỹ

j
i ). (5)

To distinguish the instance-wise noise within each sin-
gle noisy label source, we follow the inspiration of The-
orem 2.1 to record the instance-wise loss in each source as
l(Gj

Θt(xi), ỹ
j
i ), which means the loss of i-th sample of j-th

source in training epoch t. In this way, the recorded loss
information can be gathered into a matrix

Lt ∈ Rn×s : Lt
i,j = l(Gj

Θt(xi), ỹ
j
i ). (6)

According to Theorem 2.1, the samples with true labels
yield smaller loss than those with wrong labels in each
noisy label source, which motivates us to select small-loss
samples on a column-by-column basis within the loss matrix
Lt. Therefore, we calculate a matrix for filtering samples as

M t ∈ Rn×s : M t
i,j =

1

t

t∑
e=1

I(Le
i,j < τej ), (7)

where τej is an adhoc loss threshold for filtering samples of j-
th source in epoch e. We record the averaging matrix during
t epochs to obtain more stable results. The element M t

i,j

is closer to zero if sample xi has a larger loss in the j-th
source, making it more likely to be filtered out. In practice,
we set τej as the P -th percentile of the whole recorded losses
in j-th source, i.e., Le

·,j = [Le
1,j , . . . , L

e
n,j ]

⊤. Due to the
common class-imbalance problem, we also calculate the
thresholds for positive and negative classes respectively.

Building upon the insights provided by Eq (3) in Corollary
2.3, we can capture the relationships between predictions
and labels to discern the annotator-wise quality among dif-
ferent noisy label sources. Specifically, in epoch e and j-th

source, we calculate the cosine similarity between model’s
predictions Gj

Θe = [Gj
Θe(x1), . . . , G

j
Θe(xn)]

⊤ and noisy
labels ỹj = [ỹj1, . . . , ỹ

j
n]

⊤ as

Cos
(
Gj

Θe , ỹ
j
)
=

∑n
i=1 G

j
Θe(xi) · ỹji

∥Gj
Θe∥ · ∥ỹj∥

. (8)

The findings derived from Eq (3) in Corollary 2.3 suggest
that neural networks tend to fit closer to higher-quality noisy
label sources. Consequently, the observed similarity be-
tween the model’s predictions and noisy labels correlates
with the annotator-wise quality, which motivates the follow-
ing estimation of the annotator-wise quality as

qt ∈ Rs : qti =
1

t

t∑
e=1

exp
(

Cos
(
Gi

Θe , ỹi
)
/T

)
∑s

j=1 exp
(

Cos
(
Gj

Θe , ỹj
)
/T

) , (9)

where t denotes the training epoch and T is a hyperparam-
eter of temperature. We also average estimations during
t epochs to obtain more stable results. In practice, the
self-cognition module is only employed during the initial
t0 epochs to determine M t and qt. Subsequently, these
estimates are held constant to mitigate the over-fitting issue.

3.2. Mutual-denoising

Based on Eq (4) in Corollary 2.3, we know that higher-
quality noisy label sources can be beneficial for denoising
in other sources. The inherent self-cognition of neural net-
works—namely, the instance-wise filter matrix M t that re-
veals ‘which sample is better’ and annotator-wise quality
vector qt that reveals ‘which source is better’—enables us
to identify more reliable noisy labels for the exchange and
enhancement of knowledge across different sources.

Specifically, the self-cognition from two perspectives, i.e.,
the instance-wise filter matrix M t and annotator-wise qual-
ity vector qt, can be aggregated into one weighting matrix
to assess the reliability of each noisy label:

W t ∈ Rn×s : W t
i,j =

M t
i,j · qtj + ϵ∑s

k=1

(
M t

i,k · qtk + ϵ
) , (10)

where ϵ is a tiny constant for numerical stability. W t is
row-wisely normalized to the range between 0 and 1, and
its each element W t

i,j indicates the reliability of the noisy
label ỹji . Based on it, we can gather knowledge from the
other noisy label sources for the j-th source:

p̂ ̸=j,t(xi) = σ

(∑s
k=1,k ̸=j W

t
i,kz̄

t
k(xi)∑s

k=1,k ̸=j W
t
i,k

)
, (11)

where σ(·) denotes the sigmoid function, and z̄tk(x) =
λz̄t−1

k (x) + (1 − λ)ztk(x) is the Exponential Moving Av-
erage (EMA) over output logits, which is a well-used tech-
nique (Tarvainen & Valpola, 2017) for aggregating the tem-
poral information. In Eq (11), the EMA output logits from
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Algorithm 1 Self-cognitive Denoising for Multiple noisy
label sources (SDM)

Input: Noisy Dataset D̃. Epochs for self-cognition t0.
Output: Multi-tower neural network GΘ.

1: for t = 1 to max epoch do
2: if t = 1 then
3: Initialize the elements of M t, qt to 1.
4: else if t ≤ t0 then
5: Obtain instance-wise filter matrix M t by Eq (7).
6: Obtain annotator-wise quality vector qt by Eq (9).
7: else
8: Set M t = M t0 , qt = qt0 .
9: end if

10: Gather M t and qt into one matrix W t by Eq (10).
11: for o = 1 to max iteration do
12: Draw a batch of noisy data B̃ from D̃.
13: Compute loss LB on B̃ by Eq (5).
14: Compute loss LM on B̃ by Eq (12).
15: Update parameters Θ with loss L on B̃ by Eq (13).
16: end for
17: end for

different sources are fused by the weighting matrix W t, en-
hancing the reliability of the aggregated knowledge denoted
by p̂ ̸=j,t. Subsequently, we devise a loss function that facil-
itates the mutual exchange of valuable knowledge among
different noisy label sources as

LM =
1

n

n∑
i=1

s∑
j=1

(
1−W t

i,j

)
· l

(
Gj

Θ(xi), p̂
̸=j,t (xi)

)
. (12)

The motivation behind the weighing term 1−W t
i,j is that

W t
i,j indicates the reliability of the noisy label ỹji , and

1 − W t
i,j can represent how xi need the knowledge from

other sources. Note that we stop gradients for p̂ ̸=j,t (xi) in
practice, which means only the gradients from Gj

Θ(xi) are
used for updating parameters.

During training, the overall loss can be formulated as

L = LB + αLM , (13)

where α is the hyperparameter to balance these two losses.
The overall training process of Self-cognitive Denoising for
Multiple noisy label sources (SDM) is shown in Algorithm
1, and the ensemble score σ

(
1
s

∑s
j=1 zj (x)

)
is used for

any test sample x during the inference process.

3.3. Selective Distillation

Owing to the multi-tower architecture of our method, which
involves concurrent learning from multiple noisy label
sources, there is a potential challenge of computational
resource demands when meeting a vast number of such

sources. To address this, we also follow the theoretical in-
sights to introduce a selective distillation module, aiming at
generating a lightweight single-tower model.

Building upon the insights from theoretical analyses, we
can quantify the reliability of each noisy label ỹji via
W t

i,j , which motivates us to selectively distill more valu-
able knowledge from the original model. Specifically, let
gθ(x) : X → R denote a single-tower neural network with
parameters θ. The distillation loss can be formulated as

LD =
1

n

n∑
i=1

[l (gθ(xi),R (ỹi,wi)) + βl (gθ(xi),R (p̂i,wi))] ,

(14)
where ỹi = [ỹ1i , . . . , ỹ

s
i ]

⊤ denotes all noisy labels of
xi, p̂i = [G1

Θ(xi), . . . , G
s
Θ(xi)]

⊤ denotes the predictions
of the trained multi-tower model GΘ for xi, and wi =
[W t

i,1, . . . ,W
t
i,s]

⊤ represents the weighting vector for xi.
Furthermore, the notation R(a, b) describes a weighted ran-
dom selection process where one element is chosen from the
vector a according to the probabilities specified in the asso-
ciated probability vector b. Since the weighting matrix W t

aggregates the instance-wise and annotator-wise cognition,
the weighted random selection in Eq (14) will generally
provide more reliable signals from both noisy labels and the
teacher’s predictions. We will later demonstrate in Section
4 that gθ is capable of producing results on par with GΘ,
while requiring significantly fewer parameters.

4. Experiments

We conduct experiments to answer the following questions:

Q1: Whether SDM can outperform prior methods in the
presence of multiple noisy label sources?

Q2: How does SDM perform in different settings, e.g., vary-
ing label qualities and number of noisy label sources?

Q3: Can the distilled model gθ achieve comparable results
with fewer parameters?

Q4: Can SDM appropriately estimate instance-wise filter
matrix M t and annotator-wise quality vector qt?

4.1. Datasets

Six benchmark datasets are adopted in experiments, i.e.,
Yelp, IMDb, AgNews (AN), SVHN, MNIST, and Bank. De-
tails about these datasets are given in Appendix B.1 due
to space constraints. Since these datasets do not have ex-
isting noisy labels, we simulate noisy labels from s = 4
sources per dataset considering both class-dependent and
instance-dependent noise with pre-defined basic label qual-
ity r = 0.05:
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Table 1. Results of learning from multiple noisy labels sources with percentage of AUC.

Type Class-dependent Noise Instance-dependent Noise

Dataset Yelp IMDb AN SVHN MNIST Bank Yelp IMDb AN SVHN MNIST Bank

Single 64.40 56.04 60.91 42.23 59.71 83.07 58.97 50.07 76.85 46.89 95.53 91.61
Major 70.51 57.63 57.44 46.89 79.58 89.93 52.83 53.83 73.63 64.95 95.46 92.50
EBCC 75.49 72.00 67.62 67.62 81.62 88.47 68.36 56.76 77.72 68.08 96.79 93.17
DoctorNet 68.46 61.60 70.35 57.42 63.13 88.87 73.38 64.38 76.26 78.52 97.03 92.80
CrowdLayer 66.98 62.63 69.23 61.58 62.21 88.84 73.55 62.96 87.71 82.67 96.35 93.41
CVL 82.48 68.10 69.54 70.32 88.65 86.86 74.73 59.47 73.80 80.16 95.13 93.16
WeaSEL 77.81 68.28 73.35 68.62 85.46 90.61 71.94 63.07 73.48 73.45 94.82 93.05
HE M 80.15 67.19 68.99 62.12 76.51 85.01 71.60 62.48 83.16 78.16 97.75 92.95
HE A 80.30 68.77 65.96 58.82 75.78 85.31 71.13 61.72 80.51 78.76 98.00 93.22
SLF 78.52 69.61 69.75 68.81 86.02 85.33 70.46 61.16 80.44 74.47 96.00 93.07
ADMoE 78.20 69.04 75.12 71.19 78.44 86.41 75.85 66.07 88.28 79.84 95.40 92.93

SDM (ours) 85.43 75.93 81.39 69.01 87.50 91.91 77.07 66.50 89.45 83.75 98.17 93.44

• Class-dependent: We swap 1− r of positive samples’
labels and the same number of negative samples’ labels
to generate noisy labels from the 4-th source. Similarly,
we repeat the process with 0.9−r, 0.8−r, and 0.7−r
to generate noisy labels from the 3-rd, 2-nd, and 1-st
sources respectively. Consequently, the four sources
will exhibit a descending order of label quality.

• Instance-dependent: Following Zhao et al. (2023),
we use r of ground-truth labels to train 4 different
classifiers, i.e., Decision Tree, LightGBM, MLP, and
Random Forest, and regard their inaccurate predictions
as noisy labels from 4 different noisy label sources. In
this way, the four sources will naturally have different
label quality due to the diversity of the classifiers.

4.2. Setup

For the multi-tower neural networks GΘ, we use a 3-layer
MLP with hidden dimension 128, whose first layer extracts
the public features among noisy label sources, and the other
two layers are constructed with s = 4 towers to model the in-
formation of each source. Similarly, we use a simple 3-layer
MLP with hidden dimension 128 to construct the single-
tower neural network gθ. More implementation details are
given in Appendix B.2. We evaluate the performance with
AUC (the Area Under the ROC Curve).

4.3. Compared Methods

We compare our method with various related methods for
learning from multiple noisy label sources, including: (1)
Single means the model is directly learned from one of
the noisy label sources; (2) Major (Raykar et al., 2009)
aggregated the multiple label sets by majority voting; (3)
Enhanced Bayesian Classifier Combination (EBCC) (Li
et al., 2019) aggregated the multiple label sets based on a
mean-field variational approach; (4) DoctorNet (Guan et al.,

2018) automatically learned the weighted vector for anno-
tation integration; (5) CrowdLayer (Rodrigues & Pereira,
2018) simultaneously estimated the confusion matrices and
updated the neural networks; (6) Coupled-View deep classi-
fier Learning (CVL) (Li et al., 2020c) incorporated the idea
of multi-view learning, in which the learning view from data
was represented by deep neural networks for data classifi-
cation and the learning view from labels was described by
a Naive Bayes classifier for label aggregation; (7) Weakly
Supervised End-to-end Learner (WeaSEL) (Rühling Cachay
et al., 2021) trained a downstream model by maximizing the
agreement of its predictions with probabilistic labels gener-
ated by another network. (8) HyperEnsemble (Wenzel et al.,
2020) trained an individual model for noisy labels from
each source, and gathered their outputs by maximizing, i.e.,
HE M and averaging, i.e., HE A; (9) Sample-wise Label
Fusion (SLF) (Gao et al., 2022) jointly learned instance-
dependent weight vectors and annotator confusion matrices
during training; (10) Anomaly Detection with Mixture-of-
Experts (ADMoE) (Zhao et al., 2023) learned annotators’
confusions from noisy label sources without explicit label
mapping using a MoE architecture.

4.4. Results

Q1: Whether SDM can outperform prior methods in the
presence of multiple noisy label sources?

The experimental results of the performance by our method
and the compared methods on both class-dependent and
instance-dependent noise are summarized in Table 1. It
indicates that our method surpasses the compared methods
on most of the datasets for both noise types.

Q2: How does SDM perform in different settings, e.g.,
varying label qualities and number of noisy label sources?

We conduct experiments with various label quality (0.01,
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Figure 2. Additional experimental results with different (a) label quality r and (b) number of noisy source s.

Major HE_A SLF ADMoE G g
Method

0.65

0.70

0.75

0.80

0.85

AU
C

(a) Class-dependent Noise

Major HE_A SLF ADMoE G g
Method

0.70

0.74

0.78

0.82

0.86

AU
C

(b) Instance-dependent Noise

Figure 3. The number of parameters (represented by the area of
scatters) and performance of different methods.

0.05, 0.1, 0.2, and 0.3) on Yelp and IMDb datasets with
class-dependent noise, and the results are shown in Figure
2(a). It can be found that our method demonstrates con-
sistently superior performance over the compared methods
across different levels of label quality. Notably, the ad-
vantage of our approach becomes more pronounced as the
quality of labels decreases.

We also conduct experiments with various numbers of noisy
label source s (from 1 to 4) on Yelp and IMDb datasets
with class-dependent noise, and the results are shown in
Figure 2(b). It is observed that the performance of the
compared methods may deteriorate when they utilize an
increasing number of noisy label sources. In contrast, our
method shows improved performance with the addition of
more noisy label sources, owing to its ability to harness the
self-cognition power of neural networks to assess both the
instance-wise and annotator-wise reliability of noisy labels.

Q3: Can the distilled model gθ achieve comparable results
with fewer parameters?

To reduce computing resources, we distill the valuable
knowledge from the original model GΘ to a lightweight
model gθ. We conduct experiments to compare their pa-
rameters and performance and benchmark them against Ma-
jor, HE A, SLF, and ADMoE. The average results over six
datasets are demonstrated in Figure 3. The findings reveal
that the distilled model gθ, despite having fewer parame-
ters, achieves performance on par with the original model
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Figure 4. Illustration for the class-wise loss distributions over clean
and noisy samples with the associated threshold.
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Figure 5. Demonstration for the estimated annotator-wise quality
vector qt and the associated performance of each tower.

GΘ and consistently surpasses the other methods compared.
Detailed results for each dataset, also supporting these con-
clusions, can be found in Appendix C.1.

Q4: Can SDM appropriately estimate instance-wise filter
matrix M t and annotator-wise quality vector qt?

To demonstrate that the filter matrix M t by Eq (7) indeed
filters out noisy samples in each noisy label source, we illus-
trate class-wise loss distributions of the first tower in epoch
t0 in Figure 4. It is evident that noisy samples typically ex-
hibit higher loss values compared to clean samples, and the
majority of samples that are excluded by our designed class-
wise thresholds are indeed noisy samples. The complete
demonstrations of all four towers are given in Appendix C.2
due to space constraints.

To demonstrate that the quality vector qt by Eq (9) indeed
quantifies the reliability of each noisy label source, we con-
duct experiments on Yelp dataset and illustrate the estimated
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Table 2. Ablation study for the modules in Self-cognitive Denoising for Multiple noisy label sources (SDM).

Type Class-dependent Noise Instance-dependent Noise

Output Tower Tower1 Tower2 Tower3 Tower4 Ensemble Tower1 Tower2 Tower3 Tower4 Ensemble

Naive 82.54 73.59 66.48 47.79 80.76 70.30 58.52 70.94 46.15 63.59
+ with M t 82.16 77.61 71.83 61.72 81.42 71.04 63.42 68.72 63.13 68.58
+ with qt 83.26 82.85 79.42 73.11 85.43 71.96 71.94 76.24 73.14 77.07

Table 3. Ablation study for the modules in distilling gθ .

Ablation Class-dependent Instance-dependent

Naive 78.13 71.95
+ with qt 83.83 73.10
+ with distillation 85.45 75.94

quality vector qt. For comparison, we also illustrate the per-
formance of each tower when training the naive multi-tower
model, i.e., by Eq (5) only. Hence, the performance of each
tower reflects the reliability of its corresponding noisy label
source. The illustration provided in Figure 5 shows that
there is a positive correlation between the elements of the
estimated quality vector qt and the reliability of their re-
spective sources. This property will encourage the model
to distance itself from potentially detrimental sources and
instead focus more on those that are beneficial.

4.5. Ablation Study

In this section, we investigate the contribution of each mod-
ule in our proposed method on the Yelp dataset.

Effectiveness of the modules in training GΘ. In our pro-
posed method, we estimate the instance-wise filter matrix
M t and annotator-wise quality vector qt, and then mutual-
denoise the model based on them. The ablation study for
these two parts is summarized in Table 2, in which the naive
method means the model that is trained by Eq (5) only. With
mutual-denoising based on instance-wise filter matrix M t

only, i.e., W t = M t, each tower and the final ensemble
scores perform better than the naive model. Combined with
the annotator-wise quality vector qt, the model’s perfor-
mance is further improved.

Effectiveness of the modules in distilling gθ. The ablation
study for the proposed selective distillation strategy is shown
in Table 3. The naive method means the model is trained
with completely random noisy labels only, i.e., β = 0 and
qti = 1,∀i. With the estimated annotator-wise quality vector
qt as sample weights, the model can receive reliable training
signals more frequently and perform better than the naive
one. Combined with the distillation technique, i.e., β = 1,
the model can learn the valuable knowledge of the multi-
tower model GΘ, which yields a further better performance.

5. Related Works

Learning from single noisy label source is a typical topic
in weakly supervised learning (Zhou, 2018; Zhang et al.,
2019) with inaccurate supervisions. The early works of-
ten tackle noisy labels via robust loss functions (Ghosh
et al., 2017; Zhang & Sabuncu, 2018; Wang et al., 2019)
or learning a noisy transition matrix (Patrini et al., 2017;
Hendrycks et al., 2019; Goldberger & Ben-Reuven, 2017).
Recently, a lot of works (Arpit et al., 2017; Li et al., 2020b;
Liu et al., 2020; Gui et al., 2021) empirically or theoretically
proved the memorization phenomenon of neural networks,
i.e., neural networks start to fit correct labels and then overfit
incorrect ones. It indicates that the neural networks are able
to self-recognize noisy samples during training, which is
named the self-cognition ability of the neural networks in
this paper. Based on this phenomenon, a lot of works have
been proposed to identify and select more accurate samples
for training (Han et al., 2018; Yu et al., 2019; Wei et al.,
2020; Li et al., 2020a).

Learning from multiple noisy label sources aims to use
the wisdom from multiple label sets to obtain a more robust
model. Early methods often treat annotation integration and
downstream classification as separate tasks. For example,
majority voting (Raykar et al., 2009) aggregated all labels
via a weighted summation over multiple labels with a con-
stant weight vector. Some other works (Dawid & Skene,
1979; Whitehill et al., 2009; Welinder et al., 2010; Ibrahim
et al., 2019) first estimate the annotators’ confusions, and
then train the downstream classifiers with the integrated
labels. However, these works often neglect the information
of input samples when aggregating multiple noisy labels, re-
sulting in unsatisfactory aggregated labels in practice. More
recently, learning the annotators’ confusions and the follow-
ing classifier in an end-to-end manner has shown improved
performance (Rodrigues & Pereira, 2018; Tanno et al., 2019;
Guan et al., 2018; Cao et al., 2019; Li et al., 2020c; Gao
et al., 2022; Zhao et al., 2023; Ibrahim et al., 2023). For ex-
ample, Rodrigues & Pereira (2018) proposed a crowdlayer
to simultaneously estimate the confusion matrices of mul-
tiple annotators and update the classifier. Gao et al. (2022)
proposed to jointly learn instance-dependent weights and
confusion matrices. Zhao et al. (2023) utilized a Mixture-of-
Experts (MoE) architecture to implicitly learn annotators’
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confusions from multiple noisy label sources. However, all
these methods neglect the self-cognition power of the neural
networks, which is theoretically and empirically proved to
be beneficial for learning from multiple noisy label sources
in this paper.

Comparison with small-loss-based methods. The small-
loss criterion (Gui et al., 2021) generally reflects the model’s
self-cognition capability at the instance level, and it has
been typically studied within the single-source noise learn-
ing problem. In the context of multi-source noisy label
learning, however, most related works do not focus on the
small-loss criterion itself but rather utilize this concept to en-
hance their schemes’ effectiveness and robustness through
sample selection. For example, Li et al. (2020c) simply
incorporated a small-loss-based co-teaching model (Han
et al., 2018) in one view of the proposed multi-view learn-
ing. Compared to their key contribution, i.e., leveraging
the ideas of multi-view learning into multi-source noisy
learning, the utilization of the small-loss criterion is con-
sidered trivial and not the central point; Tian et al. (2022)
only employed the small-loss-based sample selection during
the training of data classifiers. The key contribution of this
paper is the proposed mutual correction-based co-training
framework, in which the utilization of the small loss crite-
rion is not the key point; Zhang et al. (2024) borrowed the
ideas of the small-loss criterion during the distillation of
meta sets. The critical point of this article lies in a novel
meta-learning-based method for efficiently mitigating the
sparse annotation problem, wherein the small loss criterion
is only a component of one of the modules, but not the
core contribution. Contrastively, our work is centered on
the model’s self-cognition ability under multiple noisy la-
bel sources, both theoretically and methodologically, rather
than simply applying off-the-shelf techniques.

6. Conclusion and Future Work

This paper focuses on learning from multiple noisy label
sources and presents some novel theoretical analyses about
the self-cognition ability of neural networks. The theoret-
ical results inform the development of SDM, an approach
that exploits the self-cognition power of neural networks for
denoising during training. Additionally, a selective distilla-
tion module is designed to obtain a more lightweight model.
The experimental results and abundant analyses verify the
effectiveness of our method.

Currently, our work is focused on binary classification,
which is applicable in many real-world tasks, e.g., anomaly
detection and credit risk prediction. However, in the multi-
class scenario, the applicability of our theories and the
method derived from them is limited, and we need to further
explore the necessary theoretical framework and method
design. For instance, it is required to make assumptions

about noise from different sources by class, and the estima-
tion of annotator-wise quality qt also needs to be expanded
from one dimension to multiple dimensions. We believe our
pioneering work in the binary classification scenario will
inspire further exploration within the community of NN’s
self-cognition abilities under multiple noisy label sources,
including the theoretical derivation and methodology design
for multi-class cases.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof

Theorem 2.1. (Single noisy label source) Let hΘ∗
k

denote the neural network minimizing the expected loss in the k-th
noisy label source, i.e., E(x,ỹk)[ℓ(hΘ(x), ỹ

k)]. (x1, ỹ
k) and (x2, ỹ

k) are any two samples with the same observed label ỹk

satisfying that f∗(x1) = ỹk and f∗(x2) ̸= ỹk. If T k satisfies that T k
ii > 0.5, ∀i ∈ {0, 1}, then we have

ℓ(hΘ∗
k
(x1), ỹ

k) < ℓ(hΘ∗
k
(x2), ỹ

k).

Proof. Let d̃k = [d̃k0 , d̃
k
1 ] denote the one-hot version of ỹk, i.e., d̃kỹk = 1 and d̃k1−ỹk = 0. For binary cross-entropy loss

function ℓ(hΘ(x), ỹ
k) = −

∑1
i=0 d̃

k
i log(p̂

k
i (x)), where p̂ki (x) is the predicted probability of the i-th class in the k-th noisy

label source. Considering the expected loss of noisy data:

E(x,ỹk)[ℓ(hΘ(x), ỹ
k)] = −E(x,ỹk)

[ 1∑
i=0

d̃ki log(p̂
k
i (x))

]
= −

∫
x∈X

1∑
j=0

[ 1∑
i=0

d̃ki log(p̂
k
i (x))

]
p(x, ỹk = j)dx

= −
∫
x∈X

[ 1∑
j=0

1∑
i=0

d̃ki log(p̂
k
i (x))p(ỹ

k = j|x)
]
p(x)dx

= −
∫
x∈X

[ 1∑
i=0

[ 1∑
j=0

d̃ki p(ỹ
k = j|x)

]
log(p̂ki (x))

]
p(x)dx

= −
∫
x∈X

[ 1∑
i=0

E[d̃ki |x] log(p̂ki (x))
]
p(x)dx.

Therefore, minimizing E(x,ỹk)[ℓ(hΘ(x), ỹ
k)] equals to minimizing −

∑1
i=0 E[d̃ki |x] log(p̂ki (x)) for each x ∈ X . Due to

the constraints that
∑1

i=0 p̂
k
i (x) = 1 and 0 ≤ p̂ki (x) ≤ 1,∀i ∈ {0, 1}, we have −

∑1
i=0 E[d̃ki |x] log(p̂ki (x)) is minimized

when p̂ki (x) = E[d̃ki |x], ∀i ∈ {0, 1} by Lagrange multiplier method. Furthermore, since E[d̃ki |x] =
∑1

j=0 I[i = j]p(ỹk =

j|x) = p(ỹk = i|x), we have p̂ki (x) = p(ỹk = i|x). Then we can obtain

p̂ki (x) = p(ỹk = i|x) =
1∑

j=0

p(ỹk = i, y = j|x)

=
1∑

j=0

p(y = j|x)p(ỹk = i|y = j,x)

=

1∑
j=0

p(y = j|x)p(ỹk = i|y = j)

= p(ỹk = i|y = f∗(x))

= T k
f∗(x)i,

where the fourth equation is due to the class-dependent noise assumption and the fifth equation is due to that each x has only
one true label f∗(x). Therefore, the output of hΘ∗

k
satisfies p̂ki (x) = T k

f∗(x)i for x ∈ X . For any two examples (x1, ỹ
k) and

(x2, ỹ
k) with the same observed label ỹk satisfying that f∗(x1) = ỹk and f∗(x2) ̸= ỹk, the loss value of hΘ∗

k
on (x1, ỹ

k)
is

ℓ(hΘ∗
k
(x1), ỹ

k) = − log(p̂kỹk(x1)) = − log(T k
f∗(x1)ỹk).

Similarly, the loss value of hΘ∗
k

on (x2, ỹ
k) is

ℓ(hΘ∗
k
(x2), ỹ

k) = − log(p̂kỹk(x2)) = − log(T k
f∗(x2)ỹk).

12



Self-cognitive Denoising in the Presence of Multiple Noisy Label Sources

If T k satisfies that T k
ii > 0.5, ∀i ∈ {0, 1}, we have T k

ii > T k
ji, ∀i ̸= j. Since f∗(x1) = ỹk while f∗(x2) ̸= ỹk, we have

ℓ(hΘ∗
k
(x1), ỹ

k) = − log(T k
f∗(x1)ỹk) = − log(T k

ỹkỹk) < − log(T k
f∗(x2)ỹk) = ℓ(hΘ∗

k
(x2), ỹ

k). Theorem 2.1 is proved.

Theorem 2.2. (Two noisy label sources) Let hΘ∗
1

and hΘ∗
2

denote the neural networks minimizing the expected loss in the
1-th and 2-nd noisy label source respectively, i.e., E(x,ỹ1)[ℓ(hΘ(x), ỹ

1)] and E(x,ỹ2)[ℓ(hΘ(x), ỹ
2)]. If T 1

ii > T 2
ii > 0.5,

∀i ∈ {0, 1}, then we have
E(x,ỹ1)ℓ(hΘ∗

1
(x), ỹ1) < E(x,ỹ2)ℓ(hΘ∗

2
(x), ỹ2), (1)

and
E(x,y)ℓ(hΘ∗

1
(x), y) < E(x,y)ℓ(hΘ∗

2
(x), y). (2)

Proof. From the proof of Theorem 2.1, we have the output of hΘ∗
1

satisfies p̂1i (x) = p(ỹ1 = i|x) = T 1
f∗(x)i for any x ∈ X .

Similarly, the output of hΘ∗
2

satisfies p̂2i (x) = p(ỹ2 = i|x) = T 2
f∗(x)i for any x ∈ X . The expected loss value on (x, ỹ1) is

E(x,ỹ1)ℓ(hΘ∗
1(x)

, ỹ1) = −E(x,ỹ1) log(p̂
1
ỹ1(x))

= −E(x,ỹ1) log(T
1
f∗(x)ỹ1)

= −
∫
x∈X

1∑
j=0

log(T 1
f∗(x)j)p(x, ỹ

1 = j)dx

= −
∫
x∈X

1∑
j=0

log(T 1
f∗(x)j)p(ỹ

1 = j|x)p(x)dx

= −
∫
x∈X

1∑
j=0

T 1
f∗(x)j log(T

1
f∗(x)j)p(x)dx,

where the fifth equation is due to p(ỹ1 = j|x) = T 1
f∗(x)j . Similarly, we have

E(x,ỹ2)ℓ(hΘ∗
2(x)

, ỹ2) = −
∫
x∈X

1∑
j=0

T 2
f∗(x)j log(T

2
f∗(x)j)p(x)dx,

Construct a function h(x) = −x log x− (1− x) log(1− x), and the derivative of h(x) is

∂

∂x
h(x) = −1− log x+ 1 + log(1− x) = log

1− x

x
.

When x ∈ (0.5, 1), we have ∂
∂xh(x) < 0, so h(x) is monotonically decreasing. When f∗(x) = 0, we have

−
1∑

j=0

T 1
f∗(x)j log(T

1
f∗(x)j) = −

[
T 1
00 log(T

1
00) + T 1

01 log(T
1
01)
]

= −T 1
00 log(T

1
00)− (1− T 1

00) log(1− T 1
00)

= h(T 1
00).

Similarly, we have −
∑1

j=0 T
2
f∗(x)j log(T

2
f∗(x)j) = h(T 2

00). Since T 1
00 > T 2

00 > 0.5, we know that h(T 1
00) < h(T 2

00), so

−
1∑

j=0

T 1
f∗(x)j log(T

1
f∗(x)j) < −

1∑
j=0

T 2
f∗(x)j log(T

2
f∗(x)j)

when f∗(x) = 0. By the similar proof process, we can obtain that it also holds when f∗(x) = 1. Since the two noisy labels
ỹ1 and ỹ2 are always associated with the same sample x, we can obtain that

−
∫
x∈X

1∑
j=0

T 1
f∗(x)j log(T

1
f∗(x)j)p(x)dx < −

∫
x∈X

1∑
j=0

T 2
f∗(x)j log(T

2
f∗(x)j)p(x)dx,

13
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which equals to Eq (1).

Furthermore, the expected loss value on (x, y) for hΘ∗
1

can be formulated as

E(x,y)ℓ(hΘ∗
1
(x), y) = −E(x,y) log(p̂

1
f∗(x)(x))

= −E(x,y) log(T
1
f∗(x)f∗(x))

= −
∫
x∈X

1∑
j=0

log(T 1
jj)p(x, y = j)dx.

Similarly, we have

E(x,y)ℓ(hΘ∗
2
(x), y) = −

∫
x∈X

1∑
j=0

log(T 2
jj)p(x, y = j)dx.

Since T 1
jj > T 2

jj ,∀j ∈ {0, 1}, we can obtain that −
∑1

j=0 log(T
1
jj) < −

∑1
j=0 log(T

2
jj). Due to the fact that hΘ∗

1
and hΘ∗

2

are trained with the example (x, y) from the same distribution, we have that

−
∫
x∈X

1∑
j=0

log(T 1
jj)p(y = j|x)p(x)dx < −

∫
x∈X

1∑
j=0

log(T 2
jj)p(y = j|x)p(x)dx,

which equals to Eq (2).

Corollary 2.3. (Multiple noisy label sources) Let hΘ∗
k

denote the neural network minimizing the expected loss in the k-th
noisy label source among s sources, i.e., E(x,ỹk)[ℓ(hΘ(x), ỹ

k)]. If T 1
ii > · · · > T s

ii > 0.5, ∀i ∈ {0, 1}, then we have

E(x,ỹ1)ℓ(hΘ∗
1
(x), ỹ1) < · · · < E(x,ỹs)ℓ(hΘ∗

s
(x), ỹs), (3)

and
E(x,y)ℓ(hΘ∗

1
(x), y) < · · · < E(x,y)ℓ(hΘ∗

s
(x), y). (4)

Proof. For any j ∈ {1, . . . , s − 1} and any i ∈ {0, 1}, the transition matrices satisfy that T j
ii > T j+1

ii > 0.5, so we
have that E(x,ỹj)ℓ(hΘ∗

j
(x), ỹj) < E(x,ỹj+1)ℓ(hΘ∗

j+1
(x), ỹj+1) and E(x,y)ℓ(hΘ∗

j
(x), y) < E(x,y)ℓ(hΘ∗

j+1
(x), y) hold for

any j ∈ {1, . . . , s− 1} by Theorem 2.2. These two formulations can be straightforwardly extended to Eq (3) and Eq (4)
respectively.

B. Details of Experiments

B.1. Details of Datasets

In experiments, six benchmark datasets are adopted, i.e., three NLP datasets named Yelp, IMDb and AgNews, two CV
datasets named SVHN and MNIST, and a tabular dataset named Bank. Following Han et al. (2022); Zhao et al. (2023), we
use pre-extracted features and pre-defined binary ground-truth labels for the NLP and CV datasets. For each dataset, we use
70% for training, 25% for testing, and 5% for validation. We list some details of the used datasets as follows:

1. Yelp, IMDb, and AgNews: For these NLP datasets, we utilize BERT (Devlin et al., 2018) to pre-extract features to the
dimension of 768. For the Yelp dataset, we regard the reviews of 0 and 1 stars as the positive class, and the reviews of
3 and 4 stars as the negative class. For the IMDb dataset, we use the original ground-truth labels; For the AgNews
dataset, we set one of the classes as negative and downsample the remaining classes to 5% of the total instances as
positives. All these datasets have 10000 samples, where 500 samples are positive.

2. SVHN: For this dataset, we utilize ResNet-18 (He et al., 2016) to pre-extract features to the dimension of 512. We set
one of the multi-classes as negative and downsample the remaining classes to 5% of the total instances as positive,
constructing 160 positive samples in the total 5208 samples.
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Figure 6. Complete results with the number of parameters (represented by the area of scatters) and performance of different methods on
six benchmark datasets. The parameters of models vary across datasets due to different dimensions of input features.

3. MNIST: For this dataset, we utilize LeNet (LeCun et al., 1998) to pre-extract features to the dimension of 100. There
are 7603 samples, where 700 samples are positive.

4. Bank: This tabular dataset is from the UCI repository (Markelle et al., 2013), which contains information on various
customers for the purpose of predicting their likelihood of conversion. There are 41176 samples with 16 features of
different types, e.g., categorical, numerical, and date, where 4639 samples are positive.

B.2. Details of implementation

During training, we use Adam (Kingma & Ba, 2015) with an initial learning rate of 0.001, a batch size of 256, and training
epochs of 100 for both GΘ and gθ. We set the hyperparameters P = 80, T = 0.1, t0 = 20, λ = 0.9, α = β = 1 in all
the experiments. The analysis of important hyperparameters can be found in Appendix C.3. For a fair comparison, the
experiments are also conducted with 100 training epochs and 256 batch size on MLP with hidden dimension 128 for all the
compared methods. All results are the averaging results of the last 5 epochs.

C. Additional Experimental Results
C.1. Complete Results for the Distilled Model

To ease the problem of computing resources, we distill the valuable knowledge from the original multi-tower model GΘ to a
lighter single-tower model gθ. In the main paper, to compare the parameters and performance among these two models
and other compared methods, we demonstrate the mean results over six benchmark datasets. Furthermore, we give the
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(c) Tower3 with estimated quality 0.0344
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(d) Tower4 with estimated quality 0.0225

Figure 7. Illustration for the class-wise loss distributions over clean and noisy samples with the associated threshold on different towers.

complete demonstrations of each dataset in Figure 6, which indicates that the distilled model gθ with fewer parameters yields
comparable performance and sometimes even better to the original model GΘ, and outperforms the compared methods on
many datasets. Note that the parameters of models vary across datasets due to different dimensions of input features.

C.2. Complete Loss Distributions of Each Tower

To demonstrate that the filter matrix M t indeed filters out the noisy samples in each noisy label source, we illustrate the
class-wise loss distributions in epoch t0. In the main paper, we only illustrate the loss distributions of the first tower due to
space constraints. Furthermore, we illustrate the complete loss distributions of each tower in Figure 7. It can be found that
most of the samples that were filtered out by the first two towers with our designed class-wise thresholds are noisy samples.
Nonetheless, the remaining two towers exhibit deficiencies in effectively discriminating noisy samples. This issue stems
from their exposure to markedly inferior noisy label sources throughout the training process, which hinders their ability to
autonomously identify noisy samples in these sources. Consequently, this introduces the concern that the filter matrix M t

might become redundant or potentially harmful when faced with particularly inferior noisy label sources. Despite this, the
calculated annotator-wise quality qt assigns minimal weights, i.e., 0.0344 and 0.0225, to such sources during the training
phase, thereby safeguarding the model’s robustness.

C.3. Hyperparameter Analysis

We give the analyses on two important hyperparameters, i.e., the threshold quantile P in estimating instance-wise filter
matrix M t and the temperature in estimating the annotator-wise quality qt. We conduct experiments on the IMDb dataset
with both class-dependent and instance-dependent noise, and the results are shown in Figure 8. It can be found that
appropriately decreasing temperature T yields better performance. The reason lies in that an appropriately small temperature
can amplify the impact of the estimated cosine similarities in Eq (8), which will enforce the model to pay more attention
to the helpful sources. As for the threshold quantile P , we find that this hyperparameter exhibits low sensitivity in an
appropriate range. We use P = 80 and T = 0.1 in all the experiments.

C.4. Discussion about Ensemble Strategies

In our proposed method, the averaged ensemble score σ
(

1
s

∑s
j=1 zj (x)

)
is used for any test sample x during the inference

process. However, it is yet to be investigated whether a weighted ensemble score via qt, i.e., σ
(

1
s

∑s
j=1 q

t
jzj(x)

)
, could
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Figure 8. Hyperparameter Analysis on the threshold quantile P and temperature T .
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Figure 9. Performance on various datasets with different ensemble strategies.

yield improved performance. To answer this, we conduct experiments on various datasets with weighted ensemble scores
during the inference process, and the results are illustrated in Figure 9. It is observed that the averaged ensemble yields
marginally superior results compared to the weighted ensemble for both class-dependent and instance-dependent noise. The
reason lies in that different towers acquire useful knowledge from one another throughout the training process, rendering the
initially estimated annotator-wise quality qt unsuitable for application post-training.

C.5. Results on Real-world Noisy Datasets

In this section, we provide experimental results on two real-world noisy datasets: Music and Sentiment Polarity (Rodrigues
et al., 2014). Both datasets were published on Amazon Mechanical Turk for annotation, and separate test sets are provided.
We list some details of these two datasets as follows:

• Music: It is a music genre classification dataset, which consists of 1K music pieces with 30 seconds in length. All the
music pieces are from 10 music genres (classical, country, disco, hiphop, jazz, rock, blues, reggae, pop, and metal) and
are labeled by 44 annotators in total, with an average of 4.2 annotators per piece. We regard the ’blues’ as the positive
class and others as the negative class.

• Polarity: It contains 5000 sentences from movie reviews extracted from the website RottenTomatoes.com and whose
sentiment was classified as positive or negative. The training set are labeled by 203 annotators in total, with an average
of 5.5 annotators per instance.
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Table 4. Results of real-world noisy datasets with percentage of AUC.

Single Major EBCC DoctorNet CrowdLayer CVL WeaSEL HE M HE A SLF ADMoE SDM

Music 68.94 70.95 71.72 71.59 70.56 72.63 71.96 69.98 71.59 72.06 72.74 74.55
Polarity 72.17 75.28 75.63 74.93 75.21 75.39 75.45 73.65 75.82 76.13 75.89 76.43

For each training instance, we choose labels from 3 annotators. For the instance that does not have 3 annotators, we use the
negative label as default. We conduct experiments on these two real-world noisy datasets, with both our methods and the
compared methods. The experimental results are summarized in Table 4, which indicates that our method also surpasses the
compared methods on the real-world noisy datasets.

C.6. More Empirical verifications for the Theoretical Insights

In the main paper, we empirically verify on the Yelp dataset with instance-dependent noise that the inspirations of Theorem
2.2 and Corollary 2.3 hold in practice. In this section, we aim to provide additional empirical evidence across different
datasets featuring both class-dependent and instance-dependent noise, to showcase the broad applicability of our theoretical
findings. For the instance-dependent noise, we follow the process in the main paper, i.e., we use varying percentages (10%,
30%, 50%) of ground-truth labels to train three LightGBM classifiers to consider their predictions as noisy labels from three
sources. As for the class-dependent noise, we follow the process in the experiment section, i.e., we swap 1− r of positive
samples’ labels and the same number of negative samples’ labels to generate noisy labels. Here, we set r = 0.7, r = 0.5,
r = 0.3 for the 1-st, 2-nd, 3-rd noisy label source respectively. We conduct experiments on the Yelp, IMDb, AgNews (AN),
and MNIST datasets with both types of noise, and the results are shown in Figure 10. The left part of Figure 10(a)-10(h)
jointly indicate that neural networks are easier to fit noisy supervisions in a more accurate source, which empirically verifies
the insights from Eq (1) and Eq (3). Meanwhile, the right part of Figure 10(a)-10(h) jointly indicate that neural networks’
predictions are closer to true label distributions in a more accurate source, which empirically verifies the insights from Eq (2)
and Eq (4).
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(a) Yelp with Class-dependent Noise
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(b) Yelp with Instance-dependent Noise
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(c) IMDb with Class-dependent Noise
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(d) IMDb with Instance-dependent Noise
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(e) AN with Class-dependent Noise
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(f) AN with Instance-dependent Noise

0 5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
rit

y

Cos(p1,y1)
Cos(p2,y2)
Cos(p3,y3)

Cos(y1,y)
Cos(y2,y)
Cos(y3,y)

0 5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
rit

y

Cos(p1, y)
Cos(p2, y)
Cos(p3, y)

Cos(y1,y)
Cos(y2,y)
Cos(y3,y)

(g) MNIST with Class-dependent Noise
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(h) MNIST with Instance-dependent Noise

Figure 10. Empirical verificaitions for the theoretical insights on different datasets with different types of noise.
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