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SUPPLEMENTARY MATERIAL:
LEVERAGING FUTURE RELATIONSHIP REASONING FOR
VEHICLE TRAJECTORY PREDICTION

1 ASSESSMENT OF ASSUMPTION VALIDITY

In our method, we assume that vehicles mainly follow lane centerlines. In fact, even if the influencer
(giving interaction) does not follow lanes, our method is still valid at least if the reactor (receiving
interaction) follow lanes. Nevertheless, we investigated the frequency of instances where this
assumption is violated in the nuScenes trajectory dataset.

To determine if a vehicle is following a lane, we filtered lane candidates whose directions are within
+/- 30 degrees of the vehicle’s heading and selected the closest lane candidate to the vehicle’s position.
We then examined all future time steps of the vehicle trajectory. If the distance between the vehicle’s
position and the closest lane is smaller than half the width of the lane (generally 1.5m), we considered
the vehicle to be following the designated lane.

Our analysis of the dataset showed that the average distance between the vehicle and the supposed
following lane was 0.57m, and the vehicle followed the lane in 94% of the entire dataset. The
assumption is violated only in a small fraction of cases, such as during U-turns or in noisy segments
resulting from detection errors.

2 DETAILS OF ARCHITECTURE

In this section, we provide further details of the proposed architecture.

2.1 ENCODER

The encoder is composed of two components: Agent Encoder and Lane Encoder. The Agent Encoder
encodes the agents’ past trajectories, while the Lane Encoder encodes sequences of lanes. Both
encoders use a 1-layer GRU with a hidden dimension of 128, and we take the last values among
output sequences. Followed by the GRU, the Agent Encoder has a 1-layer Multi-head attention
(MHA) encoder layer. The MHA layer has 4 parallel heads and a feed-forward dimension of 256.
The feed-forward and self-attention blocks have a 0.1 dropout layer, and the feed-forward layer has a
ReLU activation. The Lane Encoder has a 2-layer Graph Attention Network (GAT). GAT follows a
layer-wise propagation rule along predefined lane edges: successor, predecessor, left/right neighbor,
and in the same intersection. Each GAT layer has a 0.5 dropout layer, and the output dimension is
128, same as the input.

2.2 WAYPOINT OCCUPANCY PREDICTION

Goal occupancy is predicted by a Multi-Layer Perceptron (MLP) from a concatenated feature of hx
of 128 dimensions and hℓ of 128 dimensions. The MLP has 2 layers with a hidden dimension of 128
and tf output dimensions.

2.3 FUTURE RELATION MODULE

The Future Relation Module then utilizes a 2-layer Graph Convolutional Network (GCN) to smooth
waypoint occupancy, which is predicted from past trajectory or obtained from the Ground Truth (GT)
future trajectory. The GCN layer propagates 3-dimensional occupancy according to the adjacency
matrix obtained from lane edges: successor, predecessor, left/right neighbor, and in the same
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intersection. Therefore, the source waypoint occupancy is multiplied with a 5-dimensional trainable
weight vector and then added to the destination occupancy feature. Lane-wise spatial proximity PR is
then fed to a 1D convolutional layer with zero padding of 1, a kernel size of 2, and a stride of 2. For
the posterior distribution, an MLP is applied to obtain a 64-dimensional feature, which is split into a
32-dimensional µ and σ. For the prior distribution, the output of the MLP is a 64 × K-dimensional
feature, which corresponds to K pairs of µ and σ. Here, we set K as 4. Another MLP is applied to get
a 32-dimensional feature from hhhx, and the obtained feature is Hadamard multiplied to the interaction
feature hR following Eq.(7) in the main paper.

2.4 DECODER

The decoder takes the feature of 288 dimensions, which is a concatenation of hx of 128 dimensions,
hℓ of 128 dimensions, and hR of 32 dimensions. The feature is fed to a 2-layer MLP with 144 hidden
dimensions and a 0.01 slope of the Leaky ReLU activation function. For the nuScenes dataset, the
MLP outputs a 24-dimensional output, which is a 2-dimensional coordinate (x, y) of 12 time steps (6
seconds × 2Hz). For the Argoverse dataset, the output decoder is a 30-dimensional feature, which
corresponds to 3 seconds with 10 Hz. With a large number of predicted trajectories, we follow the
clustering and scoring method to obtain 10 final trajectory outputs.

3 OTHER IMPLEMENTATION DETAILS

How to obtain lane connectivity

To obtain lane connectivity edges, we use predecessive and successive connectivity as defined in
the nuScenes map API. We also define neighboring connectivity as lanes that are not predecessive
or successive, but are within 4 meters of pairwise distance and have a yaw difference of less than
45 degrees. For in same intersection connectivity, lanes are not predecessive or successive, are not
neighboring each other, and should be inside the same intersection polygon defined in the nuScenes
API. During data augmentation, we randomly flip all coordinates of trajectories and lane information
horizontally. When flipping lane information, the left and right neighbor connectivity is reversed.

How to obtain GT waypoint occupancy from GT future trajectory

To obtain the GT waypoint occupancy from the GT future trajectory, we use the location and heading
of the vehicles at each future timestep. We choose a waypoint as the nearest lane with a direction
within 45 degrees of the vehicle’s heading at each timestamp. If there are two lanes that are equidistant
within a threshold of 0.1 meters, both lanes are chosen as waypoints.

4 METRICS DEFINITIONS

In this section, we provide definitions for all metrics used in this paper. The meaning of each symbol
is consistent with the main paper.

minimum Average Displacement Error (mADE) The ADE measures the average L2 distances
between the predicted trajectory xit = (xi

t, y
i
t) and its corresponding ground truth x̂i

t for i-th agent
and t-th time step. The mADEk represents the minimum ADE over the k most likely predictions.
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1
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N∑
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1

tf

tf∑
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k

(ADE(1), ...,ADE(k)) (2)

minimum Final Displacement Error (mFDE) The FDE measures the L2 distances between the
final points of the prediction and ground truth. The mFDEk represents the minimum FDE over the k
most likely predictions.
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N
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mFDEk = min
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(FDE(1), ...,FDE(k)) (4)

ii



Published as a conference paper at ICLR 2023

Table 1: Comparison with other methods on the Argoverse valid/test set in mADE6

Category Method Val set Test set Decline ratio
(from val to test)

Goal-based

TNT 0.73 0.94 -28.7%
DenseTNT 0.73 0.88 -20.5%
Ours-baseline 0.71 0.86 -21.2%
Ours-full 0.68 0.82 -20.6%
avg -22.8%

Other

LaneRCNN 0.77 0.90 -14.4%
TPCN 0.73 0.87 -19.2%
Autobot 0.73 0.89 -21.9%
mmTransformer 0.72 0.84 -16.6%
SceneTransformer - 0.80 -
Multipath++ - 0.79 -
HiVT 0.66 0.77 -16.6%
avg -17.7%

Miss Rate (MR) The MR is the proportion of missed predictions over all predictions. A prediction
is considered a miss if its maximum pointwise L2 distance to the ground truth is greater than 2 meters,
following the nuScenes benchmark. The MRk takes the k most likely predictions and determine
whether they are missed predictions or not. If there are m misses out of a total of n predictions, the
MR would be m

n .

5 DERIVATION OF KULLBACK–LEIBLER (KL) TERM FOR OBJECTIVE

We assume a Gaussian mixture distribution as the prior distribution of interaction to allow multi-model
interaction, given by:

pθ(z | x) =
k∑

i=1

πiN
(
z;µi,σ

2
i

)
(5)

where πi is the mixture weight, µi is the mean, and σ2
i is the covariance matrix of the i-th Gaussian

component.

On the other hand, we model the posterior distribution of interaction as a single Gaussian distribution,
given by:

qϕ(z | x,y) = N
(
z;µ,σ2

)
(6)

where µ is the mean, and σ2 is the covariance matrix of the Gaussian distribution.

The Kullback–Leibler (KL) divergence is used to measure the difference between these two distribu-
tions, The Eqs.(7) express closed-form variational approximation of the KL-divergence.

DKL(q∥p) ≈
∑
i

wi log

∑
i′ wi′ exp (−DKL (qi∥qi′))∑
j πj exp (−DKL (qi∥pj)) (7)

Since we define the posterior distribution as a single Gaussian distribution, Eq.(7) can be simplified
as:

DKL(q∥p) ≈ log
1∑

j πj exp (−DKL (q∥pj))
= DvKL(q∥p). (8)

6 QUANTITATIVE RESULT ON ARGOVERSE

We report our results on the Argoverse test and validation set and compare them with those of other
methods in terms of mADE6. In addition to previously compared methods, we include Multipath++
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(Varadarajan et al. (2022)) and SceneTransformer (Ngiam et al. (2022)) for comparison in Table 1 of
the supplementary material. While our method is more effective for long-range prediction, it might
be less effective in the Argoverse set, which focuses more on short-range prediction. However, our
model (0.82) still performs comparably to SceneTransformer (0.80) and Multipath++ (0.79). HiVT
shows the best performance (0.77), possibly due to its use of the surrounding agent’s trajectory for
training, increasing the amount of training data.

The performance decline of our method from the validation set to the test set is not less than that
of HiVT. Our analysis shows that goal-based models seem to have a larger performance drop in
the test set, with an average mADE6 drop of 22.8%, compared to 17.7% for other methods. This
indicates that the distribution gap is larger in map data than in motion data in the Argoverse. Recent
work Bahari et al. (2022) reports performance degradation due to map data distribution gap, but also
proposes a learning method to mitigate this decline. We believe that our method could achieve better
test results by adopting the learning method proposed in Bahari et al. (2022).

Despite the performance drop, our model still has strengths in terms of diversity and plausibility,
thanks to the goal-based method. Please refer to the qualitative comparison with HiVT in Fig. 1 of the
supplementary material for more details. These strengths are crucial in autonomous driving systems,
where various risks must be taken into account.

7 QUALITATIVE RESULT

We present a qualitative comparison with HiVT in Fig. 1 on the Argoverse dataset. It is observed that
goal-based methods exhibit a relatively larger performance drop from the validation set to the test
set. However, in autonomous driving systems, AVs must consider various risks in the future, and the
goal-based approach has an advantage in terms of diversity. Furthermore, as seen in the third result,
the output from our method appears to be more plausible.

8 COMPUTATION

We compared the computational cost by examining the total FLOP count. For the Argoverse dataset,
we estimated the total FLOP count by taking into account the computing capabilities of the GPUs used
and the training time for both SceneTransformer and Autobot: SceneTransformer takes 108,000,000
TFLOPs (420 TFLOPS TPU-v3 X 73 hours), while Autobot takes 396,000 TFLOPs (11 TFLOPS
Nvidia 1080ti X 10 hours). Our model, on the other hand, takes 6,739,200 TFLOPs (39 TFLOPS
Nvidia A6000 X 48 hours). Ultimately, our method performs competitively with SceneTransformer
but with much fewer FLOPs, while showing superior performance compared to Autobot, albeit with
more FLOPs.

9 LIMITATION

We model the interaction in a lane-wise manner using prior knowledge of the vehicle. Assuming
that an agent normally follows lanes is efficient for vehicle trajectory prediction, but it is not directly
applicable for pedestrian trajectory prediction, which is also crucial for autonomous driving. Although
we can predict waypoint occupancy for pedestrians, since connectivity between waypoints is not
provided, it is challenging to consider a relationship that reflects traffic rules like the method using
lanes. In addition, our proposed method is heavily influenced by the domain of map information. As
shown in Tab.1 of the supplementary material, the goal-based approach is particularly affected by
the domain gap between the validation and test sets of the map information. Because our method
uses waypoints inferred from map information, it can have a negative impact on performance in cases
where the distribution of map information differs significantly. This is considered a limitation of our
method.
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Figure 1: Qualitative comparison between HiVT (left) and our method (right) on the Argoverse
dataset. While goal-based methods exhibit a relatively larger drop in performance from validation
to test set, they have a clear advantage in terms of diversity, which is crucial in autonomous driving
systems that must consider various future risks. Our method also produces more plausible trajectories,
as seen in the third example.
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