
Published as a conference paper at ICLR 2025

BRAINACTIV: IDENTIFYING VISUO-SEMANTIC
PROPERTIES DRIVING CORTICAL SELECTIVITY
USING DIFFUSION-BASED IMAGE MANIPULATION

Diego Garcı́a Cerdas∗∗1, Christina Sartzetaki1, Magnus Petersen2,
Gemma Roig2, Pascal Mettes1, and Iris Groen1

1University of Amsterdam, The Netherlands, 2Goethe-Universität Frankfurt, Germany

Figure 1: BrainACTIV manipulates a reference image to maximize or minimize the activity of
a target region in the human visual cortex. By analyzing the resulting image variations, we can
quantify visuo-semantic representations that underlie selective responses in the human brain. In the
examples above, manipulations enhance hypothesized preferred categories in specific brain regions
known to exhibit selectivity for faces, bodies, words, and places, respectively.

ABSTRACT

The human brain efficiently represents visual inputs through specialized neural
populations that selectively respond to specific categories. Advancements in gen-
erative modeling have enabled data-driven discovery of neural selectivity using
brain-optimized image synthesis. However, current methods independently gen-
erate one sample at a time, without enforcing structural constraints on the genera-
tions; thus, these individual images have no explicit point of comparison, making
it hard to discern which image features drive neural response selectivity. To ad-
dress this issue, we introduce Brain Activation Control Through Image Variation
(BrainACTIV), a method for manipulating a reference image to enhance or de-
crease activity in a target cortical region using pretrained diffusion models. Start-
ing from a reference image allows for fine-grained and reliable offline identifica-
tion of optimal visuo-semantic properties, as well as producing controlled stimuli
for novel neuroimaging studies. We show that our manipulations effectively mod-
ulate predicted fMRI responses and agree with hypothesized preferred categories
in established regions of interest, while remaining structurally close to the refer-
ence image. Moreover, we demonstrate how our method accentuates differences
between brain regions that are selective to the same category, and how it could
be used to explore neural representation of brain regions with unknown selec-
tivities. Hence, BrainACTIV holds the potential to formulate robust hypotheses
about brain representation and to facilitate the production of naturalistic stimuli
for neuroscientific experiments.
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1 INTRODUCTION

The discovery of brain regions that selectively respond to specific image categories raises intriguing
questions about their underlying neural representations (Grill-Spector and Weiner, 2014). While
traditional approaches to measuring neural selectivity relied on a few hand-selected image cate-
gories, recent studies guide generative models with brain encoder gradients to activate category-
selective regions of interest (ROIs) in human visual cortex (Ratan Murty et al., 2021; Ozcelik and
VanRullen, 2023; Luo et al., 2023). These studies pioneered data-driven exploration of neural se-
lectivity by optimizing random noise vectors to synthesize maximum-activating images, allowing
the formulation of new hypotheses about the representations in each ROI. However, none of them
explicitly enforce structural constraints on the generations; hence, the images are independently
sampled without an explicit reference point. This process naturally leads to a varied set of images
of which some characteristics are preferred by ROIs and others are randomly produced by the gen-
erative model. Disentangling these factors is essential for understanding the neural representations
underlying category-selectivity and for determining the relative contribution of visual versus seman-
tic features to neural representation, a key debate across scene (Groen et al., 2017), object (Bracci
et al., 2017), face (Vinken et al., 2023) and word (Janini et al., 2022) perception.

We introduce Brain Activation Control Through Image Variation (BrainACTIV), a method for ma-
nipulating a reference image to increase or decrease predicted brain activity in a target cortical
region, see Figure 1. BrainACTIV uses IP-Adapter (Ye et al., 2023) to prompt a pretrained diffusion
model with brain-optimal embeddings obtained through spherical interpolation in CLIP space. Ini-
tial diffusion latents are computed with SDEdit (Meng et al., 2022) to retain the low-level structure
of the reference image. The manipulation of a reference image (Goetschalckx et al., 2019; Papale
et al., 2024) ensures a reliable comparison point for the synthesized stimuli, isolating the effect of
brain optimality on the latter. Besides a straightforward visual interpretation, our method facilitates
quantifying differences in visuo-semantic and mid-level image features using computer vision tech-
niques, highlighting those preferred by a brain region of interest. Moreover, the use of a real image
as reference enables the integration of BrainACTIV into novel hypothesis-driven studies.

We validate BrainACTIV by targeting fMRI responses in well-established category-selective ROIs,
confirming that their predicted activation is successfully modulated by our image variations and
that the visuo-semantic properties highlighted by them agree with previous neuroscientific work.
Additionally, we demonstrate how our method can accentuate differences between similar regions
of interest, providing insights into the specific role of each region in visual processing. Finally,
we describe how researchers can select between semantic variation and low-level structural control
when using BrainACTIV for experimental stimulus design. Our contributions are:

• The use of image manipulation to maximize or minimize responses in higher visual cortex:
this guarantees that the changes made to the original image come from the objective of in-
creasing or decreasing the brain activation, rather than stochasticity in the image generation
process, with the original image serving for activity baseline comparison.

• The use of automated methods to quantify semantic category presence and mid-level im-
age features to characterize each ROI in finer detail, circumventing the need for human
behavioral assessments.

• The identification of differences in stimulus representation between similar brain regions
beyond category selectivity, by accentuating these differences in a reference image.

• The introduction of BrainACTIV as a controllable method for neuroscientific stimulus gen-
eration, describing how researchers can modify the degree of low-level visual changes
when generating image variations.

Our code is available at github.com/diegogcerdas/BrainACTIV.

2 RELATED WORK

Category Selectivity in the Higher Visual Cortex. Different regions in high-level areas of the
human visual cortex exhibit selectivity for specific semantic categories like faces, bodies, places,
and words (Kanwisher et al., 1997; McCarthy et al., 1997; Downing et al., 2001; Peelen and Down-
ing, 2005; Epstein and Kanwisher, 1998; McCandliss et al., 2003). Reliable characterization of
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each region requires measuring neural responses to large sets of images and finding those that elicit
maximal activity (Ratan Murty et al., 2021). However, experimental constraints and the high di-
mensionality of image space make it impossible to test all potential stimuli. Neuroscientists have
traditionally narrowed this search by focusing on hand-selected stimuli, but this risks overlooking
relevant features that could not be conceived a priori. Deep neural networks (DNNs) trained on
large-scale datasets of brain recordings have been adopted as ”brain encoders” to make rapid and
highly accurate predictions of neural responses to large volumes of images (Khosla et al., 2021).
Moreover, deep generative models such as diffusion models Ho et al. (2020); Song et al. (2020) can
synthesize novel stimuli by sampling from rich image priors constrained to the domain of natural
images. Our work combines brain encoders and diffusion models to highlight semantic properties
that drive functional selectivity in the visual cortex, enabling the formulation of new hypotheses
more robustly and objectively than current data-driven approaches.

Image Variation with Diffusion Models and CLIP. Diffusion models treat the data generation
process as iterative noise removal, progressively refining random noise xT ∼ N (0, 1) into struc-
tured data xT−1, ...,xt+1,xt,xt−1, ...,x0 through a trained denoising network. This process can be
guided to synthesize samples from a conditional distribution, as done by text-to-image (T2I) models
(Nichol et al., 2022; Saharia et al., 2022). Stable Diffusion (Rombach et al., 2022) enables efficient
T2I synthesis by representing data in a lower-dimensional latent space. Image prompting allows
for generating variations of a reference image I, preserving its style and content. IP-Adapter Ye
et al. (2023) introduces additional cross-attention layers in the denoising network of pretrained T2I
models, incorporating information extracted by a CLIP image encoder (Radford et al., 2021). To
preserve low-level structural fidelity to the reference image, SDEdit (Meng et al., 2022) initializes
the denoising process at an intermediate step by injecting noise to I up to timestep t0 = γ · T with
γ ∈ [0, 1] and using xt0 as starting point. Our work employs IP-Adapter and SDEdit on Stable
Diffusion to generate image variations conditioned on brain-derived CLIP embeddings.

Optimal Visual Stimulus Generation. Previous studies have successfully used gradients from
DNN-based brain encoders to produce stimuli that maximally activate parts of the macaque and
mouse visual cortex (Bashivan et al., 2019; Walker et al., 2019; Ponce et al., 2019). Later approaches
steered random noise vectors within generative models using encoder gradients to synthesize optimal
stimuli for category-selective visual regions in macaques (Pierzchlewicz et al., 2024) and the human
brain: NeuroGen (Gu et al., 2022) and Ratan Murty et al. (2021) used GANs (Goodfellow et al.,
2014), while BrainDiVE (Luo et al., 2023) improved stimulus quality and semantic specificity by
using diffusion models and a CLIP-based brain encoder. Diffusion-based generation has proven ef-
fective in “brain decoding” settings, where a visual stimulus is reconstructed based on elicited brain
activation patterns (Chen et al., 2023; Scotti et al., 2023; Zeng et al., 2023; Ozcelik and VanRullen,
2023). In contrast, BrainDiVE and BrainACTIV synthesize novel stimuli that maximize predicted
activity in specific brain regions. Because the noise vectors in BrainDiVE are randomly sampled for
each synthesized image, this process leads to a varied stimulus set that shares some characteristics
(i.e., those preferred by the region) and differs in others (i.e., those randomly produced by the gener-
ative model). This introduces the need for human behavioral studies to interpret large image sets to
disentangle these features. Instead, our method of brain-targeted image variation ensures a point of
comparison for each synthesized stimulus, directly disentangling the effect of brain activity optimal-
ity and allowing the quantification of semantic and mid-level image features relevant to the targeted
cortical region using computer vision techniques. Concurrent work by Prince et al. (2024) explores
the accentuation of pixel-based features in an image through gradient ascent to modulate brain ac-
tivations; further, work by Papale et al. (2024) explores image perturbation through a GAN-based
brain decoder (Dado et al., 2024) to study tuning properties of monkey IT neurons. In contrast, we
leverage diffusion models and spherical interpolation in CLIP’s latent space to study broader regions
in the human visual cortex.

3 METHODS

Given a real reference image I, we aim to produce variations highlighting semantic selectivity prop-
erties of a target cortical region. First, we explain how to condition diffusion models on a brain-
derived signal to synthesize variations that increase or decrease predicted activations (Figure 2).
Then, we describe how to quantify differences in semantic and mid-level image features to identify
properties preferred by each region.
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Figure 2: Brain-targeted image variation pipeline. (1) Modulation embeddings are derived from
a CLIP-based brain encoder. (2) For a reference image, we produce intermediate embeddings using
spherical interpolation in CLIP space. (3) An IP-Adapter conditions a pretrained diffusion model
on the intermediate embeddings to generate images that maximize or minimize activity in category-
selective ROIs; SDEdit helps retain low-level structural similarity to the reference image.

3.1 BRAIN-TARGETED IMAGE VARIATION

CLIP’s semantically rich image embeddings have displayed high representational similarity to the
higher visual cortex (Conwell et al., 2023; Wang et al., 2023), making them a suitable choice for
representing and manipulating semantic content in the original image I. Specifically, we move the
image embedding zI = CLIPimg(I) towards optimal endpoints that we derive from paired images
and fMRI recordings. We refer to these endpoints as modulation embeddings.

First, similarly to BrainDiVE (Luo et al., 2023), we fit a brain encoder f : RH×W×3 → R that
transforms images J into brain activations y, where the latter are single values representing the
average of voxel-wise beta values belonging to the region of interest (ROI)1. The brain encoder
consists of two parts. The first is a frozen CLIP image encoder that outputs D-dimensional vectors.
The second is a regularized linear regression model on normalized CLIP embeddings:[

CLIPimg(J )

∥CLIPimg(J )∥
·w + b

]
⇒ y. (1)

Due to the linear relationship between normalized embeddings and activations, w ∈ RD can be
thought of as a vector in CLIP space that points in the direction of maximal activity for an ROI.
Likewise, the negated weights −w point in the direction that minimizes it. Therefore, we define two
ROI-specific modulation embeddings, zmax and zmin, through the unit-norm weight vector:

zmax =
w

∥w∥
, zmin =

−w

∥w∥
. (2)

Luo et al. (2024) explain how to close the modality gap between CLIP embeddings of natural images
and zmax. First, for each image Mi in a set of K natural images M = {M1,M2, · · · ,MK}, a

1While we use ROI-wise averaged brain responses, this method could be straightforwardly adapted to
smaller cortical regions or even single voxels.
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softmax score with temperature τ is computed through

scorei =
exp(Scos(zmax, ei)/τ)∑K

k=1 exp(Scos(zmax, ek)/τ)
, (3)

where ei = CLIPimg(Mi) and Scos(·, ·) is the cosine similarity function. Then, zmax is projected to
the space of CLIP embeddings for natural images through a decoupled weighted sum of the image
embeddings:

zproj
max =

(
K∑

k=1

scorek · ∥ek∥

)
·

(
K∑

k=1

scorek · ek
∥ek∥

)
. (4)

A similar procedure can be followed for zmin. In the following, we assume both zmax and zmin are
projected unless otherwise stated.

Next, we use modulation embedding zmax and the reference image embedding zI to produce inter-
mediate embeddings zmax

Iα
using spherical linear interpolation:

zmax
Iα

=
sin((1− α) · θ)

sin(θ)
zI +

sin(α · θ)
sin(θ)

z′
max, (5)

where θ = cos−1(
zI ·z′

max
∥zI∥·∥z′

max∥
) is the angle between the vectors, α ∈ [0, 1] indicates the extent of

rotation, and z′
max = ∥zI∥ · zmax. Larger values of α are thus expected to increase activations in the

target ROI. An analogous operation with zmin yields intermediate embeddings zmin
Iα

.

Finally, we perform guided image synthesis with Stable Diffusion (Rombach et al., 2022) to generate
the image variations Iα. To incorporate the brain-optimized semantic information from I into Iα,
we use an IP-Adapter (Ye et al., 2023) to prompt the diffusion model with zmax

Iα
or zmin

Iα
(skipping the

adapter’s prepended image encoder). To retain the low-level structure of I in Iα, we obtain the initial
diffusion latents xt0 through SDEdit with t0 = γ ·T , where T is the total number of denoising steps
and γ ∈ [0, 1]. The hyperparameters α and γ specify the degree of semantic variation and structural
control in the manipulations (subsection 4.5).

3.2 QUANTIFYING INFORMATION IN ACTIVITY-MAXIMIZING AND MINIMIZING IMAGES

We identify the effect of brain optimization in the image variations Iα by quantifying differences
in category presence and mid-level image features with respect to the reference I. We focus on
16 categories based on previous research on cortical representation and behavioral judgments (Huth
et al., 2012; King et al., 2019; Hebart et al., 2020): faces, hands, feet, people, animals, plants, food,
furniture, tools, clothing, electronics, vehicles, landscapes, buildings, rooms, and text. For each cat-
egory, we build a representation embedding with CLIP. A challenge in doing so is that single-word
descriptions are typically insufficient to capture all possible category instances. Therefore, we build
the embeddings using an overcomplete set of concrete nouns from WordNet (Miller, 1995) classi-
fied by a large language model (details in appendix subsection A.1). Hence, we measure category
presence through cosine similarity between an image embedding and the category’s embedding.

To illustrate how BrainACTIV can reveal not only high-level categorical, but also low-level struc-
tural changes in brain-optimized images, we compute a number of mid-level features: entropy, the
minimum number of bits needed to encode the gray level distribution in a local neighborhood, as
a loose quantification of texture/clutter, which is known to affect many aspects of human vision
Rosenholtz et al. (2007); and inspired by prior work showing that metrics of 3D scene structure are
represented in scene-selective ROIs (Lescroart and Gallant, 2019; Dwivedi et al., 2021; Sarch et al.,
2023), we also computed metric depth, estimated with the ZoeDepth network (Bhat et al., 2023), and
Gaussian curvature and surface normals, computed with the XTC network (examples for reference
NSD images can be found in Appendix subsection A.11).

4 RESULTS

4.1 SETUP

We use the Natural Scenes Dataset (NSD) (Allen et al., 2022), a large dataset of whole-brain
high-resolution fMRI responses from eight human subjects. Each subject viewed ∼10,000 nat-
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Figure 3: Example variations and modulation results. (A) Example image variations show the
effect of activation maximization and minimization in each ROI; line plots show predicted differ-
ences in activation with respect to the reference image. (B) ROI activations predicted by DINO-ViT
encoder (top), fwRF encoder (middle), and CLIP encoder (bottom) as a function of interpolation α
with each modulation embedding, averaged across test images and subjects.

ural images from the MS COCO dataset (Lin et al., 2014) repeated three times across multiple
scanning sessions. The fMRI beta values are z-scored within their original session and averaged
across repetitions. Following standard practice in fMRI encoding (van Gerven, 2017; Naselaris
et al., 2011), we split the data into a shared test set consisting of the 1,000 images seen by all
subjects and a subject-specific training set with the remaining images. The training sets are used
to analytically derive weights w during modulation embedding derivation, as well as for embed-
ding projection (using τ = 0.01). We use a projection set consisting of 400,000 images from the
laion/relaion2B-en-research-safe dataset (Schuhmann et al., 2022). We use the functional
localizer masks included in NSD (thresholding at t > 5) to define cortical regions of interest.

We employ a pretrained Stable Diffusion model (stable-diffusion-v1-5) (Rombach et al.,
2022) for guided image synthesis and a pretrained IP-Adapter (ip-adapter sd15) (Ye et al.,
2023) for image embedding conditioning. For consistency with these models, we use Open-
CLIP’s ViT-H/14 CLIP architecture with LAION2B-S32B-B79K pretrained weights (Radford
et al., 2021; Ilharco et al., 2021; Schuhmann et al., 2022). We use a separate brain encoder to predict
activations in our experiments. Its architecture consists of DINOv2 (Oquab et al., 2023) as a feature
extractor, followed by an ensemble of single-layer vision transformers (ViTs) (Dosovitskiy et al.,
2021) and multilayer perceptrons, inspired by Adeli et al. (2023). To ensure the robustness of our
method, we employ an additional feature-weighted receptive field encoder (St-Yves and Naselaris,
2018; Allen et al., 2022) (available through the Neural Encoding Dataset (Gifford and Cichy, 2024))
in our validation procedure. We refer to these as DINO-ViT encoder and fwRF encoder, respec-
tively. Importantly, neither encoder is CLIP-based; hence, they do not share the same latent space
as the encoders used to derive the modulation embeddings. Details on architecture and prediction
performance of all encoders can be found in the appendix subsection A.2.

4.2 MODULATING ACTIVITY IN BRAIN REGIONS OF INTEREST

We validate BrainACTIV by targeting six previously identified regions of interest in the higher vi-
sual cortex: fusiform face area (FFA), extrastriate body area (EBA), visual word form area (VWFA),
occipital place area (OPA), parahippocampal place area (PPA), and retrosplenial cortex (RSC) (pre-
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ROI L2 (↓) LPIPS (↓)
Random Maximize Minimize Random Maximize Minimize

FFA

79.2±15.7

31.9±4.9 30.1±5.4

0.55±0.09

0.27±0.09 0.27±0.09

EBA 30.7±5.8 30.8±5.2 0.24±0.09 0.28±0.10

VWFA 29.9±4.8 30.5±4.7 0.26±0.10 0.28±0.10

OPA 31.3±4.7 29.9±5.5 0.29±0.11 0.24±0.09

PPA 32.3±4.7 29.4±5.6 0.31±0.11 0.26±0.10

RSC 31.1±4.9 32.1±4.1 0.27±0.10 0.29±0.10

Table 1: Structural control metrics. Image variations remain structurally similar to the reference
image even at α = 1 for maximization and minimization objectives; hence, they serve as a reliable
comparison point to quantify preferred features. Additional baselines in Appendix subsection A.12.

cise location can be found in Allen et al. (2022)). First, we identify six mutually exclusive subsets
of images in NSD that share broadly similar semantic contexts: wild animals, birds, vehicles, people
in sports, food, and furniture. We define each subset by filtering the pixel-wise category annotations
made available with COCO (appendix subsection A.3). These subsets are employed to enforce the
diversity of image selection in our experiment.

For each subject and each ROI, we select the 20 test images from each subset with measured re-
sponses closest to baseline activation (i.e., the average ROI activation across all test images). Be-
cause initial experiments showed that modulation embeddings are highly similar across subjects (see
Appendix subsection A.9), we opt to use the average of all subject-specific zmax and zmin (before
projection), excluding the subject on which predictions are made. Hence, we are modulating brain
activity in each subject through a signal (averaged zmax or zmin) derived exclusively from the rest
of the subjects’ data. We manipulate each of the 120 selected test images with interpolation values
α ∈ {0.1, 0.2, ..., 0.9, 1}, producing 20 variations in total for each image. For SDEdit, we use a log-
arithmic warm-up schedule for γ up to a value of γ = 0.6 for α = 1. Note that α = 0 corresponds
to the unaltered test image—the diffusion model is not used. Next, we predict activations for each
of them using the appropriate subject- and ROI-specific DINO-ViT encoder and fwRF encoder. To
compute the predicted difference in activation for each variation, we subtract the prediction of the
reference image.

Figure 3 (A) displays example variations for each ROI, along with the predicted differences in ac-
tivation. Note that the effect of α on the magnitude of these differences varies for each image, as
an effect of its features and the ROI’s sensitivity to these. To study a region’s selectivity, we look
for features that consistently appear or disappear over a wide range of contexts. Thus, our analy-
ses focus on the general effect of BrainACTIV over the whole selection of test images. Additional
examples can be found in the appendix subsection A.4.

First, we verify that the reference images serve as a reliable comparison point by measuring how
structurally similar they are to the variations. Following Meng et al. (2022), we compute image L2

distance and LPIPS (Zhang et al., 2018) between reference and variations, averaged over images and
subjects. As a baseline, we compare 1,000 random pairs in the test set. Table 1 shows that structural
similarity is preserved on maximization and minimization (α = 1) for all ROIs.

Next, we look at the effect of our variations on the DINO-ViT and fwRF encoder outputs to verify
that BrainACTIV successfully increases and decreases predicted ROI responses. Figure 3 (B) shows
these predictions as a function of α for all ROIs (averaged over images and subjects). We observe a
stable increase and decrease across ROIs for both encoders, confirming that our method modulates
predicted activations. The plots show an expected lag in activity increase/decrease up to α ≈ 0.4
due to our γ schedule since we intended the initial variations to be close to the reference image.
Furthermore, we observe a similar effect with the CLIP encoder used to manipulate the images.

4.3 QUANTIFYING VISUO-SEMANTIC CHANGES IN IMAGE VARIATIONS

In this section, we verify that the category selectivity suggested by BrainACTIV for each ROI agrees
with established neuroscientific findings. To this end, we use the manipulations from subsection 4.2
to identify the categories whose presence is increased when activations are maximized (Figure 4,
top row). The plots display differences in category presence (relative to the reference) averaged over
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Figure 4: Top categories for each region. Each plot displays the difference in category presence
(see subsection 3.2) with respect to the reference image as a function of α. Top-5 categories per ROI
for maximization (top) and minimization objective (bottom) are ranked by the highest measured
difference. Results agree with hypothesized preferred categories.

all images and subjects. FFA increases the presence of faces, agreeing with Kanwisher et al. (1997)
and McCarthy et al. (1997); EBA increases body parts (Downing et al., 2001); VWFA increases
text (McCandliss et al., 2003) and tools/food, potentially suggesting preference for text on small ob-
jects 2; OPA, PPA, and RSC increase manmade structures/scenes (Kamps et al., 2016; Epstein and
Kanwisher, 1998; Mitchell et al., 2018). Category presence also increased during activation mini-
mization (Figure 4, bottom row): FFA, EBA, and VWFA respond minimally for scenes/structures
(particularly for FFA, landscapes), OPA and PPA to people/plants, and RSC to food. These mini-
mizations are also broadly consistent with existing literature: the opposite preference of face- versus
place-selective regions is commonly observed in fMRI (e.g. Silson et al., 2022; Margalit et al., 2020),
and the minimal preference for plants in place-regions could reflect a preference for built/man-made
structure (Çukur et al., 2016; Groen et al., 2021). However, others are novel; e.g. a minimal prefer-
ence for food in RSC has, to our knowledge, not been reported before.

Figure 5: Mid-level features. Correlation between predicted ROI activation differences and mid-
level feature differences at each pixel location in an image.

Because BrainACTIV allows the generation of image variations over a wide range of activation val-
ues, we can use it to study the correlation between predicted activation differences and mid-level
feature differences for different locations in an image (Figure 5). Results suggest an important role
of surface orientation in differentiating scene- and object-selective regions, with FFA, EBA, and
VWFA preferring surfaces pointing outwards and OPA, PPA, and RSC preferring surfaces pointing
inward, as reported before in controlled stimulus sets (Cheng et al., 2021). Moreover, the enhanced
correlations with surface normals in scene-selective regions are consistent with their reported sen-
sitivity to 3D configurations (Lescroart and Gallant, 2019). Depth correlations further emphasize
differences between scene-selective regions, with RSC showing a higher correlation with deeper
depth values. This could potentially reflect a role for RSC in coding perceived egocentric distances
(Persichetti and Dilks, 2016). Together with section 4.2, these results demonstrate the validity of
BrainACTIV as a data-driven method that reproduces known properties of visual cortex and can
help formulate fine-grained new hypotheses about image properties driving brain activations.

2It is important to note that the projection of modulation embeddings to the space of CLIP image embed-
dings necessarily biases the representativity of particular features towards objects in the projection set that most
frequently hold these features (e.g., small size → food).
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Figure 6: Differences between similar ROIs. (A) Top nouns emphasize differences between scene-
selective ROIs. (B) (Top) Example variations accentuating differences for three ROI pairs: OFA-
FFA, OWFA-VWFA, OPA-PPA. (Bottom) Differences in mid-level feature values (with respect to
reference image) of each ROI, averaged and z-scored over test images.

4.4 IDENTIFYING DIFFERENCES BETWEEN SIMILAR ROIS

BrainACTIV can also be used to identify what distinguishes one region from another beyond cate-
gory selectivity, an important step toward understanding broader functional organization principles
in the visual cortex. We perform a top-nouns analysis (Figure 6 (A)) to identify the WordNet nouns
whose presence increases the most on our maximization results for subsection 4.2. This analysis
already highlights differences between the three scene-selective regions: OPA prefers local scene el-
ements, while PPA and RSC prefer more global views (Kamps et al., 2016; Henderson et al., 2008);
additionally, RSC prefers corridor-like scenes, potentially related to its role in navigation (Mitchell
et al., 2018). These results further demonstrate how BrainACTIV improves upon BrainDiVE and
NeuroGen while retaining their fine-grained distinction capabilities.

However, BrainACTIV can also be adapted to directly generate new hypotheses about ROIs with
similar category-selectivity, through accentuation of differences between ROIs by manipulating a
reference image. To demonstrate this, we here target three pairs of ROIs that are selective to the
same category: face-selective OFA and FFA, word-selective OWFA and VWFA, and place-selective
OPA and PPA. For each pair, we create accentuation embeddings by subtracting the modulation
embeddings of each ROI from one another. We randomly sample 50 images from the test set and
manipulate each of them with interpolation values α ∈ {0.1, 0.2, ..., 0.9, 1} toward the accentuation
embeddings. For SDEdit, we use an exponential warm-up schedule up to γ = 0.6 for α = 1.
Figure 6 (B) displays example variations for each ROI pair and measured differences in entropy,
depth, and curvature. Additional examples can be found in Appendix subsection A.5. The features
accentuated on each side represent preferred visual properties that distinguish the regions.

BrainACTIV suggests a higher preference for text in OFA and a higher preference for faces in FFA,
despite both being face-selective. For OWFA, we identify a higher preference for cluttered coarse-
grained elements, evidenced by higher entropy values; VWFA shows a preference for text on small
items. Finally, OPA and PPA differ in sensitivity to depth as analyzed in subsection 4.2. These new
hypotheses can be validated by using these images as experimental stimuli in new fMRI studies.

4.5 PRODUCING NOVEL EXPERIMENTAL STIMULI

BrainACTIV generates synthetic stimuli that differ from a real reference image along a hypoth-
esized tuning axis—derived in a data-driven manner—for a particular ROI. These paired images
can be employed as stimuli for novel neuroscientific experiments (Figure 7 (A)). To facilitate its
use for researchers and illustrate the available design choices, we briefly show the effect of our
two hyperparameters—interpolation α and SDEdit γ—on the resulting images (Figure 7 (B). Both
hyperparameters decrease semantic similarity and structural fidelity to the reference image (as evi-
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Figure 7: Effect of α and γ for novel stimuli. (A) Schematic of the use of BrainACTIV on neuro-
scientific experiments. (B) Different values of α and γ present a choice between structural fidelity
and semantic variation. (C) Predicted activations are more strongly modulated when semantic con-
tent is closer to zmax or zmin; lower α and γ result in higher semantic similarity and structural fidelity
to the reference image.

denced by lower cosine similarities and higher LPIPS metrics, respectively) (Figure 7 (C)). At the
same time, we observe that lower semantic similarity and lower structural fidelity result in higher
changes in predicted activations. This is to be expected from the design of our modulation embed-
dings. However, two distinct alternatives exist: choosing lower α and higher γ results in variations
that mostly retain the semantic content of the reference image while the spatial arrangement differs
(depending on how well CLIP can capture it). Conversely, higher α and lower γ favor the low-level
structure of the reference image while more strongly varying the semantic content.

5 DISCUSSION

We introduced BrainACTIV, a method for modulating predicted brain responses through image ma-
nipulation. To our knowledge, we are the first work to use generative models—particularly, diffusion
models—to manipulate reference images with the goal of maximizing or minimizing activations in
the human visual cortex. Our results show the potential of our approach for fine-grained and re-
liable identification of visuo-semantic properties preferred by specialized neural populations. This
information can be used to formulate new hypotheses about visual representations in the brain.

We propose that our generative framework can be employed by neuroscientists to design precisely
controlled and innovative experimental paradigms to disambiguate the role of low-, mid- and high-
level features, whose inherent correlations in natural images complicates the ability to isolate their
effect on brain responses (Malcolm et al., 2016; Lescroart et al., 2015). We here primarily demon-
strate our approach on brain regions with known category-selectivity, but also explore earlier visual
regions and anterior IT (see Appendix subsection A.6 and subsection A.7) to highlight how Brain-
ACTIV could help interpret ’no-mans land’ regions of cortex (Bao et al., 2020) whose functional
specialization is less well understood. Future work can explore BrainACTIV’s manipulation frame-
work in alternative stimulus modalities, such as natural language (Luo et al., 2024; Tuckute et al.,
2024). Finally, given BrainACTIVs reduced computational need relative to prior work, we believe
it holds potential for exploration of selectivity in closed-loop paradigms where activations are con-
tinuously updated along an optimization trajectory (e.g. Ponce et al., 2019).

Our method has some limitations. First, because we employ pretrained models for image synthesis
and representation, our results are subjected to biases in their training data. These biases might over-
represent certain categories through correlations with specific image features, producing misleading
results. We encourage future work to use fine-tuned models and domain-specific representation
spaces to explore finer-grained selectivity within smaller specialized cortical regions. Second, our
work relies on brain encoders to validate the effective modulation of brain activity. While we have
taken measures to ensure the robustness of our results, future work should validate BrainACTIV’s
predicted activations against novel brain recordings. In summary, BrainACTIV unlocks the possibil-
ity to test existing and generate novel hypotheses about neural representations in visual cortex using
brain-guided image diffusion with structural control.
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A APPENDIX

A.1 CATEGORY REPRESENTATIONS IN CLIP

We build category-specific CLIP embeddings to quantify the presence of each category (faces,
hands, feet, people, animals, plants, food, furniture, tools, clothing, electronics, vehicles, land-
scapes, buildings, rooms, and text) in an image through cosine similarity with the image embedding.
First, we gather a large list of Nnouns = 17, 086 concrete nouns from WordNet (Miller, 1995) by
collecting all hyponyms of the following synsets:

• amphibian.n.03
• article.n.02
• bird.n.01
• body of water.n.01
• building.n.01
• commodity.n.01
• correspondence.n.01
• external body part.n.01
• facility.n.01

• fish.n.01
• food.n.02
• instrumentality.n.03
• land.n.04
• person.n.01
• placental.n.01
• plant.n.02
• plaything.n.01
• geological formation.n.01

• publication.n.01
• reptile.n.01
• room.n.01
• sign.n.02
• vehicle.n.01
• way.n.06
• written record.n.01

Then, we perform zero-shot classification of each noun into one of the categories using
facebook/bart-large-mnli, a version of the language model BART (Lewis et al., 2020)
trained on the MultiNLI dataset (Williams et al., 2018; Yin et al., 2019). Instead of using the cate-
gory names as labels, we build custom labels:

• faces: “related to faces, eyes, nose, mouth”
• hands: “related to hands, arms, fingers”
• feet: “related to feet, legs, toes”
• people: “related to people, humans, persons”
• animals: “related to animals, creatures, fauna”
• plants: “related to plants, greenery, flora”
• food: “related to food, meals, eating”
• furniture: “related to furniture, household items”
• tools: “related to tools, equipment, instruments”
• clothing: “related to clothing, textiles, garments”
• electronics: “related to electronics, gadgets, devices”
• vehicles: “related to vehicles, transportation, travel”
• landscapes: “related to natural areas, landscapes, outdoors”
• buildings: “related to urban areas, buildings, structures”
• rooms: “related to indoors, rooms, interiors”
• text: “related to written text, signs”

The resulting class probabilities are gathered in a matrix Yprob ∈ [0, 1]Nnouns×16 where each row sums
up to 1. We weigh the probabilities by the salience of each category with respect to the rest for each
noun to obtain Ysal:

[Ysal]i,j = [Yprob]i,j ·
[Yprob]i,j∑
k[Yprob]i,k

.

Next, we compute embeddings for each of the nouns using CLIP’s text encoder. To make these more
robust, we average the embeddings obtained through 18 prompt templates (e.g., “a photo of a {}.”
or “a good photo of the {}.”) used originally by CLIP for image classification (Radford et al., 2021).
We normalize these embeddings and gather them in a matrix Znouns ∈ RNnouns×1024.

Finally, we use a regularized linear regression model on Znouns to predict Ysal and analytically derive
the weights Wnouns ∈ RD×16. Each column in the weight matrix then functions as our representation
for each category. We notice that the text category is difficult to represent through this method;
therefore, we instead compute its embedding by encoding the phrase “text on an object” using each
of the 18 prompt templates and averaging them. Figure 8 displays each category’s representative
examples from the Natural Scenes Dataset (NSD) Allen et al. (2022), as well as salient WordNet
nouns.
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Figure 8: Representative examples (high cosine similarity) from NSD for each category, together
with top WordNet nouns as classified by facebook/bart-large-mnli.
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A.2 BRAIN ENCODER PERFORMANCE AND DETAILS

Figure 9: Encoding performance (explained variance) of DINO-ViT, fwRF, and CLIP encoders for
each subject and each region of interest. Black lines indicate the estimated noise ceiling from Allen
et al. (2022) (maximum over ROI voxels).

DINO-ViT Encoder. Adeli et al. (2023) explored the use of a pretrained 12-layer DINOv2 model
(Oquab et al., 2023) as a feature extractor for a single-layer transformer that learns ROI-specific
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queries, which are later linearly mapped to voxel activations. They train 22 models per subject,
differing on the choice of layer used to extract features from DINOv2 and targeted ROIs. Finally,
they employ an ensemble approach to produce their voxel-wise predictions. We simplify this process
by fixing a single architecture and training it once for each category-selective ROI (9 models in total
per subject). Specifically, we extract the output of each of the 12 layers in DINOv2 and pass each of
them through a separate single-layer vision transformer (ViT) (Dosovitskiy et al., 2021). The output
CLS token of each ViT is used by a multilayer perception (MLP) to predict voxel-wise activations
for the ROI. The outputs of the 12 MLPs are aggregated through a learnable linear layer to produce
our final predictions. All models are trained for 15 epochs with early stopping, using a learning rate
of 1e-4 and a batch size of 64 samples.

fwRF Encoder. The Neural Encoding Dataset (NED) (Gifford and Cichy, 2024) provides pre-
trained brain encoders for the NSD dataset (Allen et al., 2022). These encoders are feature-weighted
receptive field encoding models (St-Yves and Naselaris, 2018), neural networks trained end-to-end
to predict neural responses.
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A.3 NSD IMAGE SUBSETS

We identify six mutually exclusive subsets of images in NSD (Figure 10) to enforce diversity in our
validation experiment. We filter the pixel-wise category annotations from COCO (Lin et al., 2014)
as specified in Figure 11; each row also indicates the size of each subset for training and test sets.

Figure 10: Example images per subset.

Subset Size
(training set)

Size
(test set) COCO Categories

Wild animals 773±38 150
include: horse, sheep, cow, elephant, bear, zebra, giraffe

exclude: person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, banana, apple, sandwich, orange, 
broccoli, carrot, hot dog, pizza, donut, cake

Birds 125±14 24
include: bird

exclude: person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, banana, apple, sandwich, orange, 
broccoli, carrot, hot dog, pizza, donut, cake, horse, sheep, cow, elephant, bear, zebra, giraffe, cat, dog

Vehicles 1000±37 123
include: bicycle, car, motorcycle, airplane, bus, train, truck, boat

exclude: person, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, horse, 
sheep, cow, elephant, bear, zebra, giraffe, bird, cat, dog

People in sports 839±31 101

include: person AND frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, 
surfboard, tennis racket
exclude: horse, sheep, cow, elephant, bear, zebra, giraffe, bird, cat, dog, bicycle, car, motorcycle, airplane, 
bus, train, truck, boat, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake

Food 509±33 52
include: banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake

exclude: person, horse, sheep, cow, elephant, bear, zebra, giraffe, bird, cat, dog, bicycle, car, motorcycle, 
airplane, bus, train, truck, boat

Furniture 883±40 108

include: chair, couch, potted, bed, toilet

exclude: person, horse, sheep, cow, elephant, bear, zebra, giraffe, bird, cat, dog, bicycle, car, motorcycle, 
airplane, bus, train, truck, boat, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, 
cake, dining table, umbrella

Figure 11: Overview of the size and COCO categories used to define each subset. Upper rows (in
the rightmost column) indicate categories present in all images. Bottom rows indicate categories
that were explicitly excluded.
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A.4 ADDITIONAL IMAGE VARIATIONS

FUSIFORM FACE AREA (FFA)

Figure 12: Example image variations (two per subject). Middle column: reference images. Left:
minimization of FFA. Right: maximization of FFA.
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EXTRASTRIATE BODY AREA (EBA)

Figure 13: Example image variations (two per subject). Middle column: reference images. Left:
minimization of EBA. Right: maximization of EBA.
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VISUAL WORD FORM AREA (VWFA)

Figure 14: Example image variations (two per subject). Middle column: reference images. Left:
minimization of VWFA. Right: maximization of VWFA.
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OCCIPITAL PLACE AREA (OPA)

Figure 15: Example image variations (two per subject). Middle column: reference images. Left:
minimization of OPA. Right: maximization of OPA.
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PARAHIPPOCAMPAL PLACE AREA (PPA)

Figure 16: Example image variations (two per subject). Middle column: reference images. Left:
minimization of PPA. Right: maximization of PPA.
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RETROSPLENIAL CORTEX (RSC)

Figure 17: Example image variations (two per subject). Middle column: reference images. Left:
minimization of RSC. Right: maximization of RSC.
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A.5 ADDITIONAL EXAMPLES: DIFFERENCES BETWEEN REGIONS

Figure 18: Example image variations accentuating one region (left) from another (right) in a refer-
ence image (middle).
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A.6 EARLY- AND MID-LEVEL ROIS

We showcase the use of BrainACTIV on early- to mid-level regions of interest. In particular, we
target V1, V2, V3, and V4 for Subject 5. These regions are known to be selective for low-level image
properties such as orientation (Tootell et al., 1998), ocular dominance (Menon et al., 1997), color
(Engel et al., 1997), and spatial frequency (Mazer et al., 2002). We follow a similar procedure as
outlined in subsection 4.2. Figure 21 shows example variations for each ROI, while Figure 19 shows
successful modulation of predicted activations in these ROIs. Because BrainACTIV employs CLIP’s
image space to represent and modify the reference image’s content, the manipulations mainly display
semantic changes. However, these changes likely reflect semantic associations or co-occurrences
with the low- and mid-level properties preferred by the ROIs, learned by CLIP during pre-training.
For example, the appearance of light bulbs and cluttered elements in V1, or colorful objects in
V4. Hence, conclusions and hypotheses formulated from these results must be cautious regarding
semantic selectivities.

Figure 20 displays measured low- and mid-level image features for both optimal endpoints (averaged
over all reference images). Importantly, we identify changes in color saturation and entropy (texture)
that are not present for high-level ROIs (see subsection A.8).

Figure 19: ROI activations predicted by DINO-ViT encoder (left) and fwRF encoder (right) as a
function of interpolation α with each modulation embedding, averaged across test images.

Figure 20: Quantification of average low-level and mid-level image features for variations at maxi-
mal (black) and minimal (red) activation.
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Figure 21: Example reference images (top) with their corresponding maximization (middle) and
minimization (bottom) α = 1 results. DINO-ViT predictions are displayed next to each image.

29



Published as a conference paper at ICLR 2025

A.7 EXPLORATION OF ANTERIOR IT CORTEX

We showcase the use of BrainACTIV to explore brain representations in regions for which selectiv-
ity is less well-understood than that of the areas targeted in subsection 4.2. Particularly, we target
the anterior IT cortex. To do so, we first identify four components in the data by performing non-
negative matrix factorization (NMF) (Cichocki et al., 2009) on the NSD data matrix of anterior IT
(number of images × number of voxels) for subject 5, similarly to Khosla et al. (2022)’s exploration
of the ventral visual cortex. This operation yields two lower-dimensional matrices W and H whose
product approximates the original data matrix. W represents the relative contribution of each iden-
tified component to each of the voxels in anterior IT. H represents the response of each component
to all visual stimuli.

Figure 22 displays each component in W overlayed on a flat cortical surface map. Higher values
indicate a greater contribution of each component to the response profile of a voxel. Importantly,
the four components define subdivisions of anterior IT that distinctly represent visual stimuli. Once
we have identified the four components, we define sub-ROIs by taking the 100 most relevant voxels
for each component and computing a modulation vector, as outlined in subsection 3.1. Then, we
perform image manipulations as in subsection 4.2. Example results are displayed in Figure 24.

Figure 22: Relative contribution of each NMF component to the voxels in the anterior IT cortex.

Figure 23: Top-nouns analysis of the image manipulations for each component illustrates what each
of the corresponding sub-ROIs is suggested to be most responsive to.
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To characterize the selectivity suggested by these results, we perform a top-nouns analysis in Fig-
ure 23. Inspection of these nouns together with manipulated images suggests the existence of sub-
divisions within anterior IT that are responsive to food, places, people, and text/objects. Interest-
ingly, the visual characteristics of component 2 and 3 are different from what we observed for FFA,
PPA, OPA, and RSC. For example, we seem to see gender-specific separation for people. These
results can be used to formulate new hypotheses about neural representations in anterior IT, which
must be tested through neuroimaging studies.

Figure 24: Example manipulations for each of the sub-ROIs computed for anterior IT. The middle
column shows reference images; minimization results are on the left; and maximization results are
on the right.
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A.8 DIFFERENCE IN LOW-LEVEL IMAGE FEATURES

Figure 25: Quantification of low-level properties (brightness, saturation, color warmth) shows that
these remain unaffected by variations at maximal (black) and minimal (red) activation, unlike mid-
level features.
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A.9 SIMILARITY BETWEEN MODULATION EMBEDDINGS

BEFORE AVERAGING OVER SUBJECTS

Figure 26: Cosine similarity between subject-specific modulation embeddings zmax for each ROI
before averaging over subjects.

AFTER AVERAGING OVER SUBJECTS

Figure 27: Cosine similarity between subject-specific modulation embeddings zmax for each ROI
after averaging over subjects.
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A.10 SIMILARITY ACROSS RANDOM SEEDS

FUSIFORM FACE AREA

Figure 28: Example manipulations maximizing FFA (α = 1) show great similarity across random
seeds of the diffusion model, emphasizing that BrainACTIV isolates the effect of brain optimality.

PARAHIPPOCAMPAL PLACE AREA

Figure 29: Example manipulations maximizing PPA (α = 1) show great similarity across random
seeds of the diffusion model, emphasizing that BrainACTIV isolates the effect of brain optimality.
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A.11 ILLUSTRATIVE NSD EXAMPLES PER MID-LEVEL FEATURE

Figure 30: Examples from the NSD dataset displaying maximal and minimal pixel-averaged values
for the different mid-level features we employ in this study.
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A.12 ADDITIONAL STRUCTURAL CONTROL BASELINES

To provide additional context on the structural control metrics for BrainACTIV (Table 1), we com-
pute these metrics on stimuli synthesized without brain-conditioned targeting, namely α = 0 (equiv-
alent to simply passing the reference image through IP-Adapter, as would be commonly done for
generating image variations).

We compute L2 distance and LPIPS between the reference image and the synthesized images using
different values of SDEdit’s γ (examples in Figure 31). Intuitively, the difference between these
synthesized images is that γ = 1 shows how CLIP ”interprets” the semantic content in the refer-
ence, while γ = 0 has no effect from CLIP and γ’s in-between are an interpolation between these
two endpoints. Hence, all of these represent different interpretations of synthesis without brain
conditioning.

Figure 31: Examples for synthesis without brain conditioning using α = 0 and differing γ.

Metrics in Figure 32 show that images closer to γ = 0 are structurally very similar to the reference
image, while this similarity decreases as γ approaches 1. In these plots, we highlight γ = 0.6, the
maximal value used by BrainACTIV to compute results in Table 1.

Figure 32: L2 and LPIPS metrics for differing values of γ when α = 0. Averaged over test samples.
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