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In this supplementary material, we provide more implementation details (Sec. A), more quantita-
tive and qualitative comparisons (Sec. B), and more detailed analysis (Sec. C) about our proposed
method.

A IMPLEMENTATIONS DETAILS

We implement our method based on the 3D Gaussian Splatting (3D-GS) Kerbl et al. (2023) repre-
sentation. Specifically, we set the dimension of the Gaussian-level feature as 16 to maintain a fair
comparison with previous baselines (e.g., Gaussian Grouping (Ye et al., 2023) and OmniSeg3D-
GS (Ying et al., 2024)). For the learning of original properties in 3D Gaussian points, we use the
same learning rate and same density control as the in the original work (Kerbl et al., 2023). For
the Gaussian-level feature, we utilize the Adam optimizer with a learning rate of 0.0025. For the
object-level code, we employ the Adam optimizer with a learning rate of 0.0005. We jointly train all
parameters for 30,000 iterations on each dataset covered in this work, using a single NVIDIA RTX
3090.

B MORE QUANTITATIVE AND QUALITATIVE COMPARISONS

Quantitative comparisons with OmniSeg3D-GS. Since OmniSeg3D-GS (Ying et al., 2024)
only learns feature embeddings, we equip OmniSeg3D-GS with HDBSCAN clustering algo-
rithm (McInnes et al., 2017) to produce the final segmentation results. We report the performance
under the optimal best-found hyper-parameter (i.e., minimal cluster size) for HDBSCAN, following
the same strategy used in Contrastive Lift (Bhalgat et al., 2023). Specifically, we utilize the training
views to search for the best hyper-parameter for each scene, setting the search range from 10 to 200,
as suggested in “Tuning Clustering Hyperparameter” (Bhalgat et al., 2023). As shown in Fig. 1,
while the exhaustive search can improve performance, it is still behind our method, which achieves
consistent results without the need for hyperparameter tuning.

Qualitative comparisons. In addition to the visual results presented in the main paper, we provide
more qualitative comparisons in Fig. 2, Fig. 3 and Fig. 4. These visual results further demonstrate
that our method delivers more accurate and consistent segmentation across various views, while also
minimizing artifacts.

C MORE ANALYSIS OF PROPOSED COMPONENTS

Table 1: Effectiveness analysis of the proposed area-aware ID mapping method. We compare the
segmentation results of pseudo-labels generated by our area-aware ID mapping and the approach
proposed in Panoptic Lifting (Siddiqui et al., 2023).

ID matching strategy mIoU(%) F-score(%)

Siddiqui et al. (2023) 30.3 30.4
Proposed area-aware ID mapping 31.7 33.5

Area-aware ID mapping. To further verify the effectiveness of our area-aware ID mapping, we
present additional quantitative comparisons between the generated pseudo-labels by our area-aware
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(a) LERF-Masked dataset

(b) Replica dataset

(c) Messy Rooms dataset

mIoU F-score

mIoU

Hyper-parameter Hyper-parameter

Hyper-parameter

Hyper-parameter

Hyper-parameter

mBIoU

PQ-Scene

Figure 1: The detailed comparison between our method and OmniSeg3D-GS methods on the
LERF-Mask dataset (Ye et al., 2023), Replica dataset (Straub et al., 2019) and the Messy Rooms
dataset (Bhalgat et al., 2023) dataset. For LERF and Replica datasets, we utilize the mIoU metric
to search the best hyper-parameter for each scene. For the Messy Rooms dataset, we utilize the
PQ-Scne to select the best hyper-parameter for each scene. Note that our method is denoted by the
red color, and OmniSeg3D-GS is denoted by the blue color.

Table 2: Quantitative comparisons of using different thresholds τ values in the noisy label filtering
module.

τ 0.75 0.80 (default) 0.85

mIoU(%) 40.0 41.6 40.4
F-score(%) 43.0 43.9 43.7

ID mapping method and the method proposed in Panoptic Lifting (Siddiqui et al., 2023). The results
shown in Tab. 1 verify that the pseudo-labels generated by our area-aware ID mapping are more
accurate and consistent.

Sensitivity to different per-defined values in noisy label filtering. We investigate the impact of
varying the predefined threshold used to filter noisy labels in the noisy label filtering module. In
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Table 3: Ablation study on the effectiveness of our gradient-blocking design.
Method mIoU(%) F-score (%)

Full model 41.6 43.9
Full model w/o gradient-blocking design 39.7 39.8

our main experiments, we set a predefined threshold of τ = 0.8 to filter noisy segmentations in
the noisy label filtering module. To investigate the impact of this threshold, we conduct additional
experiments using two different values (τ = 0.75 and 0.85). As shown in Tab. 2, the results remain
rather stable despite moderate changes in the threshold τ .

Gradient-blocking. In practice, we block the gradient derived from the association constraints
from propagating to the Gaussian-level features. This gradient-blocking design ensures that the
Gaussian-level features are exclusively optimized through the contrastive loss. The ablation study
in Tab. 3 demonstrates that this design improves optimization stability.
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Figure 2: Visual comparisons between our method and previous methods on the LERF-Masked
dataset (Ye et al., 2023).
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Figure 3: Visual comparisons between our method and previous methods on the Replica
dataset (Straub et al., 2019).
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Figure 4: Visual comparisons between our method and previous methods on the Messy Rooms
dataset (Straub et al., 2019).
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